Philadelphia University

Faculty of Science

Department of Math

Academic year 2024/2025

Approval date: 8/10/2024

Issue:

Credit hours: 3

Course Syllabus

Bachelor

Course information

Course#		Course title			Prerequisite	
250371		Numerical Analysis		ODE 250203		
Course type			Class	time	Room #	
□ University Requirement □ Faculty Requirement		ST 09:4	5-11:30	21009		
🛛 Major Requirem			SM 12:4	0-13:55	21003	
Degree / NQF Level		🗆 🗆 Diploma d	Diploma degree (6)		r degree (7	7)

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Feras Awad	822	2132	SSMT 11:30-12:30	fawad@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method				
$oxtimes$ Physical \Box Online \Box Blended				
Learning Model				
B Synchronous Asynchronous Physical				
Precentage	0%	0%	100%	

Course Description

The Numerical Analysis course covers numerical methods for solving mathematical problems, including error analysis, root finding, interpolation, differentiation, integration, and solving linear systems. Emphasis is on algorithm accuracy, stability, and efficiency, with practical applications using software tools.

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes
	Knowledge	
K1	Recognize different numerical methods for solving equations, interpolation, differentiation, and integration, while evaluating the accuracy, stability, and efficiency of these algorithms in practical applications.	K _p 1
S1	Implement numerical algorithms using computational tools or programming languages to solve mathematical problems.	S _p 4
S2	Apply appropriate numerical techniques to solve practical problems in science and engineering.	S _p 2

Competencies			
C1	Collaborate effectively in teams to solve numerical problems,	Ср2	
CI	analyze errors, and present findings clearly and concisely.	Cp2	

Learning Resources

Course textbook	Richard L. Johnson and Douglas J. Faires. (2011) Numerical Analysis. (9 th ed.). Brooks / Cole.		
Supporting References	 Ward Cheney and David Kincaid. (2004) Numerical mathematics and computing. (5th ed.). Brooks / Cole. John H. Mathews and Kurtis D. Fink. (2004) Numerical methods using MATLAB. (4th ed.). Prentice Hall. 		
Supporting websites	 Companion Website: <u>https://sites.google.com/site/numericalanalysis1burden/</u> Geogebra: <u>https://www.geogebra.org/</u> Online Python Compiler: <u>https://replit.com/new/python3</u> 		
Teaching Environment	⊠Classroom □ laboratory □Learning platform □Other		

Meetings and Subjects Timetable

Week	Торіс	Learning Methods	Tasks	Learning Material
	Explanation of the study plan for the course, and			Course
	what is expected to be accomplished by the			Syllabus
1	students.	Lecture		
	Mathematical Preliminaries & Error Analysis			Chapter 1
	1.1 Review of Calculus (Taylor Polynomial)			
	1.2 Round-off Errors and Computer Arithmetic			Chapter 1
2	Solutions of Equations in One Variable	Lecture		Chapter 2
	2.1 The Bisection Method			
3	2.2 Fixed-Point Iteration	Lecture		Chapter 2
4	2.2 Fixed-Point Iteration (cont.)	Lecture		Chapter 2
5	2.3 Newton's Method and Its Extensions	Lecture	Quiz 1	Chapter 2
6	Interpolation and Polynomial Approximation 3.1 Interpolation and the Lagrange Polynomial	Lecture		Chapter 3
7	3.3 Divided Differences	Lecture		Chapter 3
8	Numerical Differentiation and Integration 4.1 Numerical Differentiation	Lecture	Midterm	Chapter 4
9	4.3 Elements of Numerical Integration	Lecture		Chapter 4
10	4.4 Composite Numerical Integration	Lecture		Chapter 4
11	4.4 Composite Numerical Integration (cont.)	Lecture		Chapter 4
	Initial-Value Problems for ODEs			
12	5.1 The Elementary Theory of IVPs	Lecture	Quiz 2	Chapter 5
	5.2 Euler's Method			
13	5.4 Runge-Kutta Methods	Lecture		Chapter 5
14	Iterative Techniques in Matrix Algebra	Lecture		Chapter 7
	7.1 Norms of Vectors and Matrices			
15	7.3 The Jacobi and Gauss-Siedel Iterative	Lecture	Quiz 3	Chapter 7
	Techniques		X *** 2	Simpler /
16	Final Exam			

* Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Sen-Keview Exercises and Froblem-solving from the Textboo			
Chapter	Section	Exercises	
1	1	8, 9, 19	
	2	1(c, d, g), 2(a, b, c, d), 5(e, f), 19(a)	
2	1	1, 2, 5(b), 6(c), 11, 13, 16, 18	
	2	1(a, d), 2(a, b), 5, 8, 9, 16, 17	
	3	1, 2, 4a	
3	1	1(a, b), 6(a), 8(a), 9, 13(a)	
	3	4(a, b), 7(a, b), 9(a), 10, 13, 17	
4	1	2(a), 4(a), 18(a)	
	3	1(a), 3(a), 5(a), 7(a), 9(a), 11(a), 13, 14, 15, 17, 18, 19.	
	4	1, 3, 5, 7, 9, 10, 13	
5	1	1, 2, 3, 5, 9	
	2	1, 2, 3, 9	
	4	1, 2, 6, 10, 14, 30, 31	
7	1	1, 3, 5, 7, 9	
	3	1, 3, 5, 7, 9	

Self-Review Exercises and Problem-solving from the Textbook

Course Contributing to Learner Skill Development

Using Technology

- Utilize interactive simulations and visualization tools (e.g. Geogebra) to help students develop a deeper understanding of numerical concepts and algorithms.
- Integrate the use of computational tools and software such as Excel, Python with NumPy and SciPy libraries, or Mathematica to implement numerical algorithms and solve mathematical problems.

Communication Skills

• Encourage students to engage in peer discussions, group work, and online forums to exchange ideas, collaborate, and articulate mathematical solutions effectively.

Application of Concepts Learnt

• Assign problem-solving projects that require students to apply numerical methods concepts to novel problems and situations, helping them develop problem-solving and critical thinking skills.

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	30%	8	K1
Various Assessments *	30%	Continuous	S1, S2, C1
Final Exam	40%	16	K1
Total	100%		

Assessment Methods and Grade Distribution

* Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Methods*	Assessment Method	
	Knowledge			
K1	Recognize different numerical methods for solving equations, interpolation, differentiation, and integration, while evaluating the accuracy, stability, and efficiency of these algorithms in practical applications.	Lecture	Exam	
	Skills			
S1	Implement numerical algorithms using computational tools or programming languages to solve mathematical problems.	Lecture	Computer project	
S2	Apply appropriate numerical techniques to solve practical problems in science and engineering.	Case study	Homework	
	Competencies			
C1	Collaborate effectively in teams to solve numerical problems,	Case	Computer	
	analyze errors, and present findings clearly and concisely.	study	project	

* Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning
** Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Policy	Policy Requirements
Passing Grade	The minimum passing grade for the course is (50%) and the minimum final mark recorded on transcript is (35%).
Missing Exams	 Missing an exam without a valid excuse will result in a zero grade to be assigned to the exam or assessment. A Student who misses an exam or scheduled assessment, for a legitimate reason, must submit an official written excuse within a week from an exam or assessment due date. A student who has an excuse for missing a final exam should submit the excuse to the dean within three days of the missed exam date.
Attendance	The student is not allowed to be absent more than (15%) of the total hours prescribed for the course, which equates to six lectures days (M, W) and seven lectures (S, T, T). If the student misses more than (15%) of the total hours prescribed for the course without a satisfactory excuse accepted by the dean of the faculty, s/he will be prohibited from taking the final exam and the grade in that course is considered (zero), but if the absence is due to illness or a compulsive excuse accepted by the dean of the college, then withdrawal grade will be recorded.
Academic Honesty	Philadelphia University pays special attention to the issue of academic integrity, and the penalties stipulated in the university's instructions are applied to those who are proven to have committed an act that violates academic integrity, such as: cheating, plagiarism (academic theft), collusion, and violating intellectual property rights.

Course Polices

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
Sp2	The ability to apply mathematics in various real-life situations.	Numerical Analysis	Quiz	100% of the students get 80% or more on the rubric

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment				
Sp2	Students will select a real-life problem or scenario that requires numerical analysis for its solution. Then they will apply numerical methods and techniques learned in the course to solve the formulated mathematical model.				

Assessment Rubric of the Program Learning Outcome

	Excellent (4 pts)	Good (3 pts)	Fair (2 pts)	Poor (1 pt.)
	Student understands the concept perfectly.	Student is almost perfect in their understanding of the topic, with some minor confusion or mistakes.	Student has a decent grasp of the process but makes some major mistakes.	Student is very confused and does not understand the topic, nor is able to clearly grasp how to apply it or when to use it.
Problem Identification and Relevance	The problem is clearly identified with significant real-world relevance. The chosen problem demonstrates a deep understanding of its context and importance.	The problem is adequately identified with some real-world relevance. The chosen problem demonstrates a good understanding of its context and importance.	The problem identification lacks clarity or relevance to real-world situations. The chosen problem demonstrates a limited understanding of its context and importance.	The problem identification is unclear or irrelevant to real- world situations.
Mathematical Modeling	The mathematical model is sophisticated, accurately representing the real-life problem with appropriate equations and assumptions. The model demonstrates a deep understanding of the underlying mathematics.	The mathematical model is accurate, representing the real-life problem with appropriate equations and assumptions. The model demonstrates a good understanding of the underlying mathematics.	The mathematical model is somewhat accurate but lacks precision in representing the real-life problem. The model demonstrates a limited understanding of the underlying mathematics.	The mathematical model is inaccurate or incomplete in representing the real-life problem.
Numerical Analysis Techniques	A variety of advanced numerical techniques are correctly applied, demonstrating a deep understanding of their theoretical foundations and practical implementation.	Basic and intermediate numerical techniques are correctly applied, demonstrating a good understanding of their theoretical foundations and practical implementation.	Numerical techniques are attempted but with some errors or inaccuracies, indicating a limited understanding of their theoretical foundations and practical implementation.	Numerical techniques are not applied or are applied incorrectly.
Analysis and Interpretation	Results are thoroughly analyzed and interpreted with insightful conclusions drawn from the numerical solutions. The analysis demonstrates a deep understanding of the implications of the results.	Results are adequately analyzed and interpreted with logical conclusions drawn from the numerical solutions. The analysis demonstrates a good understanding of the implications of the results.	Results are analyzed but with limited depth or clarity in interpretation. The analysis demonstrates a basic understanding of the implications of the results.	Not Evident: Results are not analyzed or interpreted.