Philadelphia University

Faculty of Science

Department of Math

Academic year 2024/2025

Course Syllabus

Bachelor

Credit hours: 3

Issue:

Approval date: 22/02/2025

Course information

Course#	Course title			Prerequisite		
250102						ulus (1) 6111
Course type		Class t	ime	Room #		
🗆 University Requi	□ University Requirement □ Faculty Requirement		ST		(717	
🛛 Major Requirement		\Box Elective \boxtimes Compulsory		11:15 -	12:30	6717
Degree / NQF Level		Diploma degree (6)		□ Bachelo	r degree (7)

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Feras Awad	822	2132	SM 11:15 – 12:15 ST 12:30 – 13:30	fawad@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method			
☐ Physical ☐ Online ☐ Blended			
	Learning Model		
Ducconto ao	Synchronous	Asynchronous	Physical
Precentage	0%	0%	100%

Course Description

In this course, students will dive into three main areas of study: Techniques of integration, Sequences and Series, and Applications of the Definite Integrals in Geometry, Science, and Engineering.

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes		
	Knowledge			
K1	Students will learn advanced integration techniques, and study sequences and series for convergence.	K _p 1		
S1	Students will apply integration techniques and series analysis to solve complex problems, evaluating and selecting appropriate methods effectively.	S _p 2		
	Competencies			
C1	Students will develop the ability to communicate their mathematical reasoning and problem-solving processes effectively, both in writing and orally.	C _p 1		

Learning Resources

	0
Course textbook	Howard Anton, Irl C. Bivens, and Stephen Davis. (2016) Calculus: Early Transcendentals. (11 th ed.). Wiley.
Supporting References	 James Stewart. (2015) Calculus: Early Transcendentals. (8th ed.). Brooks Cole. Joel R. Hass, Christopher E. Heil, and Maurice D. Weir. (2017) Thomas' Calculus. (14th ed.). Pearson. Dennis G. Zill. (2009) Calculus: Early Transcendentals. (4th ed.). Jones and Bartlett. Ron Larson, Bruce H. Edwards. (2018) Calculus: Early Transcendental Functions. (7th ed.). Cengage Learning.
Supporting websites	GeoGebra: https://www.geogebra.org/
Teaching Environment	⊠Classroom □ laboratory □Learning platform □Other

Meetings and Subjects Timetable

Week	Торіс	Learning Methods	Tasks	Learning Material
	Explanation of the study plan for the course, and			Course
	what is expected to be accomplished by the			Syllabus
1	students.	Lecture		
	Principles of Integral Evaluation			Chapter 7
	7.1 An Overview of Integration Methods			
2	7.2 Integration by Parts	Lecture		Chapter 7
3	7.3 Integrating Trigonometric Functions	Lecture		Chapter 7
4	7.4 Trigonometric Substitutions	Lecture	Quiz	Chapter 7
5	Blessed Eid al-Fitr holiday			
	7.5 Integrating Rational Functions by Partial	T /		
6	Fractions	Lecture		Chapter 7
	7.8 Improper Integrals			
7	Infinite Series	Lecture		Chapter 9
8	9.1 Sequences 9.3 Infinite Series	Lecture	Midtama Exam	Chantan 0
<u>ð</u>	9.4 Convergence Tests	Lecture	Midterm Exam	Chapter 9
9	9.4 Convergence Tests 9.5 The Comparison, Ratio, and Root Tests	Lecture		Chapter 9
	9.6 Alternating Series; Absolute and Conditional			
10	Convergence	Lecture		Chapter 9
	9.8 Maclaurin and Taylor Series; Power Series			
11	9.10 Differentiating and Integrating Power Series;	Lecture		Chapter 9
	Modeling with Taylor Series	Lecture		Chapter
	Applications of Definite Integral in Geometry,			
10	Science, and Engineering	-		
12	6.1 Area Between Two Curves	Lecture	Quiz	Chapter 6
	6.2 Volumes by Slicing; Disks and Washers			
10	6.3 Volumes by Cylindrical Shells	T = =4		Chapter 6
13	6.4 Length of a Plane Curve	Lecture		-
14	6.5 Area of a Surface of Revolution	Lastura	Oria	Chapter 6
14	6.6 Work	Lecture	Quiz	
15	Blessed Eid al-Adha holiday			
16	Final Exam	Lecture		

* Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Using Technology

Students will use mathematical software (e.g., GeoGebra) to solve complex integration and series problems, enhancing their computational and analytical skills for academic and real-world applications.

Communication Skills

Group projects and discussions foster collaboration, communication, and teamwork skills.

Application of Concepts Learnt

Students apply calculus to real-world problems, strengthening their problem-solving skills.

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	30%	8	K1
Various Assessments *	30%	Continuous	S1, C1
Final Exam	40%	16	K1
Total	100%		

* Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Method*	Assessment Method**	
	Knowledge			
K1	Students will learn advanced integration techniques, and study sequences and series for convergence.	Lecture	Exam	
	Skills			
S1	Students will apply integration techniques and series analysis to solve complex problems, evaluating and selecting appropriate methods effectively.	Lecture	Quiz	
	Competencies			
C1	Students will develop the ability to communicate their mathematical reasoning and problem-solving processes effectively, both in writing and orally.	Collaborative learning	Homework	

* Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

** Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Course Polices

Policy	Policy Requirements
Passing Grade	The minimum passing grade for the course is (50%) and the minimum final mark recorded on transcript is (35%).
Missing Exams	 Missing an exam without a valid excuse will result in a zero grade to be assigned to the exam or assessment. A Student who misses an exam or scheduled assessment, for a legitimate reason, must submit an official written excuse within a week from an exam or assessment due date. A student who has an excuse for missing a final exam should submit the excuse to the dean within three days of the missed exam date.

Attendance	The student is not allowed to be absent more than (15%) of the total hours prescribed for the course, which equates to six lectures days (M, W) and seven lectures (S, T, T). If the student misses more than (15%) of the total hours prescribed for the course without a satisfactory excuse accepted by the dean of the faculty, s/he will be prohibited from taking the final exam and the grade in that course is considered (zero), but if the absence is due to illness or a compulsive excuse accepted by the dean of the college, then withdrawal grade will be recorded.	
Academic Honesty	Philadelphia University pays special attention to the issue of academic integrity, and the penalties stipulated in the university's instructions are applied to those who are proven to have committed an act that violates academic integrity, such as: cheating, plagiarism (academic theft), collusion, and violating intellectual property rights.	

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
Sp2	The ability to employ mathematics in various life problems.	Calculus 2	Homework	100% of the students get 60% or more on the rubric

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment
Sp4	The student selects a real-life problem or scenario that requires mathematical
Երե	analysis and provides a comprehensive solution.

Assessment Rubric of the Program Learning Outcome

	Excellent (4 pts)	Good (3 pts)	Fair (2 pts)	Poor (1 pt.)
Problem Selection	Relevant, complex, and mathematically rich problem chosen.	Relevant problem selected.	Basic problem with limited mathematical relevance.	Irrelevant or inappropriate problem chosen.
Problem Definition	Clear, thorough, and context-rich problem definition.	Adequate problem definition with context.	Basic problem definition, lacking depth.	Unclear or inadequate problem definition.
Mathematical Analysis	Skillful application of appropriate mathematical concepts.	Effective use of relevant mathematical concepts.	Some mathematical concepts applied with limited depth.	Inaccurate or incomplete mathematical analysis.
Solution Clarity	Highly detailed, organized, and clear solution.	Clear and organized solution.	Somewhat clear solution, lacking organization.	Unclear, disorganized, or incomplete solution.