Philadelphia University

Faculty of Science

Department of Math

Academic year 2024/2025

Course Syllabus

Bachelor

Credit hours: 3

Issue:

Approval date: 20/02/2025

Course information

Course#	Course title		Prere	equisite		
0250202		Calculus 3				culus 2 50102
	Course type			Class	time	Room #
□ University Requirement □ Faculty Requirement		uirement	SN	Λ	21002	
⊠ Major Requirement □ Elective		⊠ Compulsory	09:45-	11:00	21003	
Degree / NQF Level		🗆 Diploma d	legree (6)	⊠ Bachelo	r degree (7)

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Feras Awad	822	2132	SM 11:15 – 12:15 ST 12:30 – 13:30	fawad@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method				
⊠ Physical □ Online □ Blended				
	Learning Model			
Drecontogo	Synchronous	Asynchronous	Physical	
Precentage	0%	0%	100%	

Course Description

This second-year course, designed for math and engineering students, covers 3D coordinate systems, vectors, parametric equations, quadratic surfaces. Topics include vector-valued functions, limits, continuity, partial derivatives, the chain rule, gradients, optimization, and double and triple integrals in various coordinate systems.

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes *		
	Knowledge			
K1	Understand the concepts and operations of vectors and vector-valued functions and extend the principles of single-variable calculus to multivariable functions.	K _p 1		
К2	Recognize the methods of calculating limits, derivatives, gradients, and extremums of multivariable functions.	K _p 1		
	Skills			
S1	Utilize computer software, such as GeoGebra, to perform calculations and solve mathematical problems.	Sp4		
	Competencies			
C1	Demonstrate decision-making skills while collaborating effectively in a team to complete course tasks.	C _p 1		

* According to learning outcomes of the faculty of pharmacy.

Learning Resources

Course textbook	• Anton H., Bivens I., Davis S. (2016) Calculus: Early Transcendentals (11 th ed.). Wiley.		
Supporting References	• Stewart J. (2015) Calculus: Early Transcendentals (8 th ed.). Brooks Cole.		
Supporting websites	• GeoGebra: <u>https://www.geogebra.org/</u>		
Teaching Environment	⊠Classroom □ laboratory □Learning platform □Other		

Meetings and Subjects Timetable

Week	Торіс	Learning Methods	Tasks	Learning Material
	Explanation of the study plan for the course, and what is expected to be accomplished by the			Course Syllabus
1	students. Technology Preliminaries: Moodle. Microsoft Teams. Geogebra	Lecture		Software
2	Three-Dimensional Space; Vectors: 11.1 Rectangular Coordinates in 3-Space; Spheres; Cylindrical Surfaces 11.2 Vectors	Lecture		Chapter 11
3	11.3 Dot Product; Projections	Lecture		Chapter 11
4	11.4 Cross Product	Lecture	Quiz	Chapter 11
5	Blessed Eid al-Fitr holiday			
6	11.5 Parametric Equations of Lines11.6 Planes in 3-Space	Lecture		Chapter 11
7	11.7 Quadratic Surfaces 11.8 Cylindrical and Spherical Coordinates	Lecture		Chapter 11
8	Vector-Valued Functions: 12.1 Introduction to Vector-Valued Functions 12.2 Calculus of Vector-Valued Functions	Lecture	Midterm	Chapter 12
9	12.3 change of Parameter; Arc Length12.4 Unit Tangent, Normal, and Binormal Vectors12.5 Curvature	Lecture		Chapter 12
10	Partial Derivatives: 13.1 Functions of Two or More Variables 13.2 Limits and Continuity	Lecture		Chapter 13
11	13.3 Partial Derivatives	Lecture		Chapter 13
12	13.5 The Chain Rule13.6 Directional Derivatives and Gradients	Lecture	Quiz	Chapter 13
13	13.8 Maxima and Minima of Functions of Two Variables	Lecture		Chapter 13
14	13.9 Lagrange Multipliers	Lecture	Quiz	Chapter 13
15	Blessed Eid al-Adha holiday			
16	Final Exam	L	<u> </u>	

* Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Self-Review Exercises and Problem-solving from the Textbook

	Sen-r	keview Exercises and Problem-solving from the Textbook
Chapter	Section	Exercises
11	1	3, 9, 12, 13, 23, 29, 30, 31, 32, 19, 20, 21, 22
	2	1, 5, 9, 11, 13, 16, 21, 23, 25, 31, 33, 37, 17, 18, 19, 20
	3	1, 2, 8, 9, 12, 14, 15, 24, 25, 28, 29, 30, 31
	4	1, 3, 5, 11, 12, 17, 19, 21, 28, 34, 37, 13, 14, 15, 16
	5	1, 3, 15, 21, 23, 29, 31, 33, 37, 11, 12, 13, 14
	6	3, 5, 7, 11, 13, 15, 17, 19, 25, 26, 27, 28, 30, 32, 33, 35, 37, 41, 43, 49, 21, 22, 23, 24
	8	1, 3, 5, 7, 9, 11, 19, 21, 23, 24, 27, 28, 29, 31, 33, 37, 39, 41, 45, 15, 16, 17
12	1	2, 3, 17, 19, 31, 32, 33, 34
	2	1, 4, 5, 9, 10, 11, 13, 15, 19, 21, 27, 29, 32, 33, 35, 38, 39, 40, 45, 47, 41, 42, 43, 44
	3	1, 3, 5, 8, 9, 11
	4	5, 7, 9, 15, 19
	5	5, 6, 9
13	1	1, 17, 23, 25, 51, 53, 65
	2	1, 3, 7, 9, 10, 11, 13, 15, 16, 23, 25, 34
	3	3, 5, 9, 11, 25, 27, 31, 33, 43, 82, 83, 97, 99, 21, 22, 23, 24
	5	1, 3, 7, 13, 17, 21, 33, 52
	6	1, 5, 9, 11, 15, 19, 25, 26, 29, 33, 37, 41, 71, 72, 75
	7	3, 5, 9, 11, 15
	8	9, 11, 15, 31, 33
	9	5, 7, 25

Course Contributing to Learner Skill Development

Using Technology
• Use GeoGebra to draw vectors, curves, and surfaces in space.
Communication Skills
• Making a GeoGebra applet that do calculations of any main topic of the course and represents it to the students in class.
Application of Concepts Learnt
• Choose a physical model of any main topic of the course and briefly solve it.

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	30%	8	K1, C1
Various Assessments *	30%	Continuous	S1, C1
Final Exam	40%	16	K1, K2, C1
Total	100%		

* Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Methods*	Assessment Method
	Knowledge		
K1	Understand the concepts and operations of vectors and vector- valued functions and extend the principles of single-variable calculus to multivariable functions.	Lecture	Exam

K2	Recognize the methods of calculating limits, derivatives, gradients, and extremums of multivariable functions.	Lecture	Exam
	Skills		
S1	Utilize computer software, such as GeoGebra, to perform	Case	Computer
	calculations and solve mathematical problems	study	project
	Competencies		
C1	Demonstrate critical decision-making skills while collaborating	Case	Computer
	effectively in a team to complete course tasks.	study	project

* Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning ** Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

1 0	Course Polices	
Policy	Policy Requirements	
Passing Grade	The minimum passing grade for the course is (50%) and the minimum final mark recorded on transcript is (35%).	
Missing Exams	 Missing an exam without a valid excuse will result in a zero grade to be assigned to the exam or assessment. A Student who misses an exam or scheduled assessment, for a legitimate reason, must submit an official written excuse within a week from an exam or assessment due date. A student who has an excuse for missing a final exam should submit the excuse to the dean within three days of the missed exam date. 	
Attendance	The student is not allowed to be absent more than (15%) of the total hours prescribed for the course, which equates to six lectures days (M, W) and six lectures (S, T). If the student misses more than (15%) of the total hours prescribed for the course without a satisfactory excuse accepted by the dean of the faculty, s/he will be prohibited from taking the final exam and the grade in that course is considered (zero), but if the absence is due to illness or a compulsive excuse accepted by the dean of the college, then withdrawal grade will be recorded.	
Academic Honesty Philadelphia University pays special attention to the issue of ac applied to those who are proven to have committed an act that academic integrity, such as: cheating, plagiarism (academic collusion, and violating intellectual property rights.		

Program Learning Outcomes to be Assessed in this Course

N	lumber	Learning Outcome	Course Title	Assessment Method	Target Performance level
	K _p 1	The student has completed knowledge of the basic concepts, facts and theories in mathematics.	Calculus 3	Quiz	100% of the students get 75% or more on the rubric.

Description of Program Learning Outcome Assessment Method

Numbe	Detailed Description of Assessment				
K _p 1	 Students will be tasked with finding partial derivatives of a given function. They must first analyze the function's graph or contour plot to understand its behavior. Based on this visual representation, they will determine the appropriate differentiation technique and the variables with respect to which they should compute the derivatives. 				

Assessment Rubric of the Program Learning Outcome

	4 Points (Excellent)	3 Points (Good)	2 Points (Satisfactory)	1 Point (Needs Improvement)
Understanding of Partial Derivatives	Clearly identifies the concept and purpose of partial derivatives.	Demonstrates understanding but lacks minor details.	Shows partial understanding with some misconceptions.	Lacks understanding or has major misconceptions.
Use of Visual Representation	Clearly explains the role of graphs or contour plots in differentiation.	Mentions visual representation but lacks depth.	Briefly refers to visuals but with little connection to differentiation.	Does not mention or misinterprets visual representation.
Application of Differentiation Techniques	Accurately describes the selection of differentiation techniques.	Identifies techniques but with minor errors.	Attempts to describe techniques but lacks clarity.	Fails to identify or describe differentiation techniques.
Clarity and Organization	Well-structured and logically flows with precise language.	Mostly clear, with minor wording or organization issues.	Somewhat unclear or disorganized, making comprehension difficult.	Lacks clarity and organization, making it hard to understand.