Philadelphia University

Faculty of Science

Department of Math

Academic year 2024/2025

Bachelor

Credit hours: 3

Course information

PHILADELPHIA

UNIVERSITY E WAY TO THE FUTURE

Course#		Course title		Prerequisite	
0250232	0232 Probability Theory		Elementary Prob. & Stat. 0216121		
Course type			Class time	Room #	
□ University Requirement		□ Faculty Requirement		ST	2027
🛛 Major Requirement		\Box Elective \boxtimes Compulsory		09:45 - 11:30	2827
Degree / NQF Level		Diploma degree (6)		□ Bachelor degree (7	7)

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Feras Awad	822	2132	SM 11:15 – 12:15 ST 12:30 – 13:30	fawad@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method				
☐ Physical ☐ Online ☐ Blended				
Learning Model				
Dresentage	Synchronous	Asynchronous	Physical	
Precentage	0%	0%	100%	

Course Description

This course introduces the fundamentals of probability theory, covering sample spaces, probability axioms, counting techniques, conditional probability, and independent events. It explores random variables, distribution functions, expected values, and moments, alongside key probability laws such as Bernoulli, Binomial, Poisson, Uniform, Exponential, and Normal distributions. Students will gain a strong foundation in probability concepts and their applications.

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes
	Knowledge	
K1	Define key probability concepts, including sample spaces, probability axioms, and distribution functions.	K _p 1
	Skills	
S1	Apply probability axioms and counting techniques to solve real-world problems involving finite and infinite sample spaces.	S _p 2
	Competencies	
C1	Work in a team to implement one of the tasks of the course.	Cp2

Learning Resources

Course textbook	• Harold J. Larson (1991) Introduction to Probability Theory and Statistical Inference (3rd ed.). John Wiley and Sons		
	Statistical interence (sid ed.). John whey and Sons.		
Supporting References	• Irwin Miller, Marylees Miller (2012) John E. Freund's		
	Mathematical Statistics with Applications (8 th rd.). Pearson.		
Supporting websites	GeoGebra: <u>www.geogebra.org/</u>		
Teaching Environment	⊠Classroom □ laboratory □Learning platform □Other		

Meetings and Subjects Timetable

Week	Торіс	Learning Methods	Tasks	Learning Material
	Explanation of the study plan for the course, and what is			Course
	expected to be accomplished by the students.			Syllabus
1		Lecture		
	Chapter 1: Set Theory			Classifier 1
	1.1 Set Notations, Equality and Subsets			Chapter 1
	Chanter 2. Probability			
2	2.1 Sample Space: Events	Lecture		Chapter 2
	2.2 Probability Axioms	T.		
3	2.3 Finite Sample Spaces	Lecture		Chapter 2
4	2.4 Counting Techniques	Lecture	Quiz	Chapter 2
5	Blessed Eid al-Fitr holiday			
6	2.5 Some Particular Probability Problems	Lecture		Chapter 2
7	2.6 Conditional Probability	Lecture		Chapter 2
, 	2.7 Independent Events	Leeture		
	Chapter 3: Random Variables and Distribution			
8	Functions	Lecture	Midterm	Chapter 3
	3.1 Random Variables			r
0	3.2 Distribution Functions and Density Functions	Lastures		Chantan 2
<u> </u>	2.4 Moments and Concreting Functions	Lecture		Chapter 3
10	5.4 Moments and Generating Functions	Lecture		Chapter 5
11	4.1 The Bernoulli and Binomial Probability Law	Lecture		Chapter 4
	4.2 Geometric and Negative Binomial Probability Laws			
12	4.4 The Poisson Probability Law	Lecture	Quiz	Chapter 4
10	4.5 The Uniform, Exponential and Gamma Probability	Lest		<u>Ola a ra 4</u>
13	Laws	Lecture		Chapter 4
14	4.6 The Beta and Normal Probability Laws	Lecture	Quiz	Chapter 4
15	Blessed Eid al-Adha holiday			
16	Final Exam			

* Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Using Technology
• Use GeoGebra to perform probability calculations.
Communication Skills
• Select a probability problem, present it to the students, and explain the method for solving it.
Application of Concepts Learnt
• Select a well-known probability problem from YouTube and simulate its solution using GeoGebra.

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	30%	8	K1
Various Assessments *	30%	Continuous	S1, C1
Final Exam	40%	16	K 1
Total	100%		

Assessment Methods and Grade Distribution

* Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Method*	Assessment Method**
	Knowledge		
K1	Define key probability concepts, including sample spaces, probability axioms, and distribution functions.	Lecture	Exam
Skills			
S1	Apply probability axioms and counting techniques to solve real-world problems involving finite and infinite sample spaces.	Lecture	Quiz
Competencies			
C1	Work in a team to implement one of the tasks of the course.	Project	Homework

* Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

** Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Course Polices

Policy	Policy Requirements			
Passing Crada	The minimum passing grade for the course is (50%) and the minimum final mark			
Tassing Graue	recorded on transcript is (35%).			
	• Missing an exam without a valid excuse will result in a zero grade to be assigned to the exam or assessment.			
Missing Exams	• A Student who misses an exam or scheduled assessment, for a legitimate reason, must submit an official written excuse within a week from an exam or assessment due date.			
	• A student who has an excuse for missing a final exam should submit the excuse to the dean within three days of the missed exam date.			
	The student is not allowed to be absent more than (15%) of the total hours prescribed			
	for the course, which equates to six lectures days (M, W) and six lectures (S, T) . If the			
Attendance	student misses more than (15%) of the total nours prescribed for the course without a satisfactory excuse accepted by the deap of the faculty s/be will be prohibited from			
Attenuance	taking the final exam and the grade in that course is considered (zero) but if the			
	absence is due to illness or a compulsive excuse accepted by the dean of the college,			
	then withdrawal grade will be recorded.			
	Philadelphia University pays special attention to the issue of academic integrity, an			
Academic	the penalties stipulated in the university's instructions are applied to those who are			
Honesty	proven to have committed an act that violates academic integrity, such as: cheating,			
	plagiarism (academic theft), collusion, and violating intellectual property rights.			

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
Sp2	The ability to employ mathematics in various real-life problems.	Probability Theory	Homework	100% of the students get 70% or more on the rubric

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment
S.2	The student is presented with a real-life probability problem or puzzle and attempts
Sp2	to solve it by applying the concepts learned in the course.

Assessment Rubric of the Program Learning Outcome

	Poor (1 pt.)	Fair (2 pts)	Good (3 pts)
Problem Understanding	Misinterprets the problem or does not identify key components.	Understands the problem but may miss some key details.	Clearly understands the problem and identifies all relevant details.
Application of Concepts	Uses incorrect or irrelevant probability concepts.	Use appropriate probability concepts but with minor errors or gaps.	Apply correct probability concepts accurately and appropriately.
Mathematical Accuracy	Contains major calculation errors that affect the solution.	It has minor calculation errors but does not significantly impact the solution.	All calculations are correct and well-explained.
Clarity of Explanation	Solution is unclear, disorganized, or lacks reasoning.	Provides a mostly clear explanation but may have some gaps in reasoning.	Provides a well-structured, clear, and logical explanation.