Philadelphia University	PHILADELPHIA	Approval date: 20/02/2025
Faculty of Science	UNIVERSITY	Issue:
Department of Math	THE WAY TO THE FUTURE	Credit hours: 3
Academic year 2024/2025	Course Syllabus	Bachelor

Course information

Course#	Course title			Prere	equisite	
0250302	Calculus 4					culus 3 50202
Course type			Class	time	Room #	
☐ University Requi	University Requirement		SN	M	21002	
	Major Requirement ☐ Elective ☐ Compulsory		12:40 -	13:55	21003	
Degree / NQF Level		☐ Diploma d	legree (6)	⊠ Bachelo	r degree ('	7)

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Feras Awad	822	2132	SM 11:15 – 12:15 ST 12:30 – 13:30	fawad@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method				
□ Physical □ Online □ Blended				
	Learning Model			
Dunamtana	Synchronous	Asynchronous	Physical	
Precentage	0%	0%	100%	

Course Description

Calculus 4 explores advanced integration and vector fields, covering double and triple integrals, surface area, parametric surfaces, and change of variables using Jacobians. It includes vector calculus topics like line integrals, Green's Theorem, surface integrals, flux, the Divergence Theorem, and Stokes' Theorem, with real-world applications.

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes *	
	Knowledge		
K1	Analyze scalar and vector fields to determine if a vector field is conservative.	K _p 1	
K2	Compute line integrals over various paths and apply Green's and Stokes' Theorems correctly to solve related problems.	K_p1	
	Skills		
S1	Use computer software like GeoGebra to do calculations and graphs.	S _p 4	
	Competencies		
C1	Thinking reasonably and the ability to make decisions.	C _p 1	

^{*} According to learning outcomes of the faculty of pharmacy.

Learning Resources

Course textbook	Anton H., Bivens I., Davis S. (2011) Calculus: Early		
	Transcendentals (10 th ed.). Wiley.		
Supporting References	• Colley S. (2012) Vector Calculus (4 th Edition). Pearson.		
Supporting websites	✓ GeoGebra: https://www.geogebra.org/		
Teaching Environment	⊠Classroom □ laboratory □Learning platform □Other		

Meetings and Subjects Timetable

	Wicetings and Bublect			
Week	Торіс	Learning Methods	Tasks	Learning Material
	Explanation of the study plan for the course, and			Course
	what is expected to be accomplished by the			Syllabus
1	students.	Lecture		
	Technology Preliminaries:			Software
	Moodle. Microsoft Teams. Geogebra			
2	MULTIPLE INTEGRALS:	Lecture		Chapter 14
<i>L</i>	14.1 Double Integrals	Lecture		Chapter 14
3	14.2 Double Integrals over Nonrectangular	Lecture		Chapter 14
3	Regions	Lecture		
4	14.3 Double Integrals in Polar Coordinates	Lecture	Quiz	Chapter 14
5	Blessed Eid al-Fitr holiday			
6	14.4 Surface Area; Parametric Surfaces	Lecture		Chapter 14
	14.5 Triple Integrals			
7	14.6 Triple Integrals in Cylindrical and Spherical	Lecture		Chapter 14
	Coordinates			
Q	8 14.7 Change of Variables in Multiple Integrals;		Midterm	Chapter 14
0	Jacobians		Chapter 14	
TOPICS IN VECTOR CALCULUS:		Lecture		Chapter 15
	15.1 Vector Fields	Lecture		*
10	15.2 Line Integrals	Lecture		Chapter 15
11	15.3 Independence of Path; Conservative Vector			
	Fields			
12	15.4 Green's Theorem	Lecture	Quiz	Chapter 15
13	15.5 Surface Integrals	Lecture		Chapter 15
13	15.6 Applications of Surface Integrals; Flux	Lecture		Chapter 13
14	15.7 The Divergence Theorem Lecture Quiz		Chapter 15	
	15.8 Stokes' Theorem	Lecture		Chapter 13
15	Blessed Eid al-Adha holiday			
16	Final Exam			

^{*} Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Course Contributing to Learner Skin Development
Using Technology
 Use GeoGebra to draw curves and surfaces in space.
Communication Skills
 Making a GeoGebra applet that do calculations of any main topic of the course and represents it to the students in class.
Application of Concepts Learnt
 Recognize real life quantities that are scalar fields or vector fields such as the temperature of an object in space, the force, and the velocity

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	30%	4	K1, K2, C1
Various Assessments *	30%	Continuous	S1, C1
Final Exam	40%	8	K1, K2, C1
Total	100%		

^{*} Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Selected Exercises from the Textbook

Section	Exercises
Number	DACT CISCS
13.6	1, 5, 9, 11, 15, 19, 25, 29, 30, 33, 41, 43, 45, 53, 54, 57, 72, 75
14.1	4, 5, 11, 15, 24, 25, 26, 29
14.2	3, 5, 8, 9, 10, 11, 12, 13, 15, 16, 21, 23, 25, 29, 30, 33, 34, 35, 36, 37, 42, 47, 53,
14.2	54, 55, 56, 59
14.3	1, 10, 23, 26, 28, 29, 30, 39
14.4	1, 2, 3, 4, 5, 6. GeoGebra: 11, 12, 33, 34, 35, 36, 37, 38
14.5	1, 3, 5, 7, 15
14.7	1, 3, 5, 6, 7, 8, 17, 18, 19, 20, 21, 22, 23, 24, 31, 33
15.1	1, 2, 5, 6, 17, 19,
15.2	7, 9, 13, 19, 20, 23, 25, 33, 34, 37
15.3	1, 2, 3, 6, 7, 9, 11, 15, 23, 33
15.4	1, 3, 4, 7, 8, 9, 21, 22, 29

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Method*	Assessment Method**		
	Knowledge				
K1	Analyze scalar and vector fields to determine if a vector field is conservative.	Lecture	Exam		
K2	Compute line integrals over various paths and apply Green's and Stokes' Theorems correctly to solve related problems.	Lecture	Exam		
	Skills				
S1	Use computer software like GeoGebra to do calculations and graphs.	Case study	Computer project		
Competencies					
C1	Thinking reasonably and the ability to make decisions.	Discussion	Quiz		

^{*} Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Polices

Policy	Policy Requirements
Passing Grade	The minimum passing grade for the course is (50%) and the minimum
	final mark recorded on transcript is (35%).

^{**} Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Missing Exams	 be assigned to the exam or assessment. A Student who misses an exam or scheduled assessment, for a legitimate reason, must submit an official written excuse within a week from an exam or assessment due date. A student who has an excuse for missing a final exam should submit the excuse to the dean within three days of the missed exam date. 				
Attendance	The student is not allowed to be absent more than (15%) of the total hours prescribed for the course, which equates to six lectures days (M, W) and seven lectures (S, T, T). If the student misses more than (15%) of the total hours prescribed for the course without a satisfactory excuse accepted by the dean of the faculty, s/he will be prohibited from taking the final exam and the grade in that course is considered (zero), but if the absence is due to illness or a compulsive excuse accepted by the dean of the college, then withdrawal grade will be recorded.				
Academic Honesty	Philadelphia University pays special attention to the issue of academic integrity, and the penalties stipulated in the university's instructions are applied to those who are proven to have committed an act that violates academic integrity, such as: cheating, plagiarism (academic theft), collusion, and violating intellectual property rights.				

Missing an exam without a valid excuse will result in a zero grade to

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
K _p 1	The student has completed knowledge of the basic concepts, facts and theories in mathematics.	Calculus 4	Quiz	100% of the students get 60% or more on the rubric.

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment				
K _p 1	The student will be given a vector field F and he/she will (a) Show that F is a conservative vector field. (b) Find a potential function for F . (c) Find the work performed by the force field on a particle that moves along a curve represented by parametric equations.				

Assessment Rubric of the Program Learning Outcome

	Weak (1 pt.)	Not Bad (2 pts)	Good (3 pts)	Excellent (4 pts)
Conservative Field	C-11-4'	Calculations were	Calculations were	Calculations are
Student should proof that F is conservative.	Calculations are totally wrong.	done with major errors.	done with minor errors.	complete and correct.
Potential Function	Calculations are	Calculations were	Calculations were	Calculations are
Student should find the	totally wrong.	done with major	done with minor	complete and
potential function for F.		errors.	errors.	correct.
The Work Student should calculate the work performed by the force field on a particle that moves along curve.	Calculations are totally wrong.	Calculations were done with major errors.	Calculations were done with minor errors.	Calculations are complete and correct.