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Chapter 1

Functions

1.1 Introduction

Functions arise whenever one quantity depends on another.

Definition 1.1.1. A function f is a rule that assigns to each element x
in a set D exactly one element called f(x) in a set E.

• We usually consider functions for which the sets D and E are sets of
real numbers.

• The set D is called the domain of the function.

• The number f(x) is the value of f at x and is read f of x.

• The range of f is the set of all possible values of f(x) as x varies
throughout the domain

• A symbol that represents an arbitrary number in the domain of a
function f is called an independent variable.

• A symbol that represents a number in the range of f is called a de-
pendent variable.

Since the y−coordinate of any point (x, y) on the graph is y = f(x), we
can read the value of f(x) from the graph as being the height of the graph
above the point x (see Figure 1.1).
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6 CHAPTER 1. FUNCTIONS

Figure 1.1:

The graph of f also allows us to picture the domain of f on the x−axis
and its range on the y−axis as in Figure 1.2.

Figure 1.2:

Example 1.1. The graph of a function f is shown in Figure 1.3.

(a) Find the values of f(1) and f(7).

(b) What are the domain and range of f ?

Solution 1.1. a) We see from Figure 1.3 that the point (1, 3) lies on the
graph of f , so the value of f at 1 is f(1) = 3. (In other words, the
point on the graph that lies above x = 1 is 3 units above the x−axis.)
When x = 7, the graph lies on the x−axis, so we say that f(7) = 0.
(In other words, x = 7 is a real root of f(x).)
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Figure 1.3:

b) We see that f(x) is defined when 0 ≤ x ≤ 7, so the domain of f is
the closed interval [0, 7]. Notice that f takes on all values from −2 to
4, so the range of f is the closed interval [−2, 4].

�

Representations of Functions There are four possible ways to represent
a function:

1. verbally (by a description in words)

2. numerically (by a table of values)

3. visually (by a graph)

4. algebraically (by an explicit formula)

The Vertical Line Test The graph of a function is a curve in the xy−plane.
But the question arises: Which curves in the xy−plane are graphs of
functions? This is answered by the Vertical Line Test: A curve in
the xy−plane is the graph of a function of x if and only if no
vertical line intersects the curve more than once. The reason
for the truth of the Vertical Line Test can be seen in Figure 1.4. If
each vertical line x = a intersects a curve only once, at (a, b), then
exactly one functional value is defined by f(a) = b. But if a line
x = a intersects the curve twice, at (a, b) and (a, c), then the curve
cant represent a function because a function cant assign two different
values to a.
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Figure 1.4:

Symmetry If a function f satisfies f(−x) = f(x) for every number x in
its domain, then f is called an even function. For instance, the
function f(x) = x2 is even because f(−x) = (−x)2 = x2 = f(x). If f
satisfies f(−x) = −f(x) for every number x in its domain, then f is
called an odd function. For example, the function f(x) = x3 is odd
because f(−x) = (−x)3 = −x3 = f(x).

Figure 1.5: Even Function

Figure 1.6: Odd Function



1.2. ESSENTIAL FUNCTIONS 9

The geometric significance of an even function is that its graph is symmetric
with respect to the y−axis as in Figure 1.5, while the graph of an odd
function is symmetric about the origin, see Figure 1.6.

Example 1.2. Determine whether each of the following functions is even,
odd, or neither even nor odd.

(a) f(x) = x5 + x.

(b) g(x) = 1− x4.

(c) h(x) = 2x− x2.

Solution 1.2. (a) f(−x) = (−x)5+(−x) = (−1)5x5+(−x) = −x5−x =
−(x5 + x) = −f(x). Therefore f is an odd function.

(b) g(−x) = 1− (−x)4 = 1− x4 = g(x). So g is even.

(c) h(−x) = 2(−x) − (−x)2 = −2x − x2. Since h(−x) 6= h(x) and
h(−x) 6= −h(x), we conclude that h is neither even nor odd.

�

1.2 Essential Functions

There are many different types of functions that can be used to model
relationships observed in the real world. In what follows, we discuss the
behavior and graphs of these functions and give examples of situations
appropriately modeled by such functions.

Linear Function

When we say that y is a linear function of x, we mean that the graph
of the function is a line, so we can use the slope−intercept form of the
equation of a line (see Appendix C) to write a formula for the function as
y = f(x) = mx+b where m is the slope of the line and b is the y−intercept.

Example 1.3. As dry air moves upward, it expands and cools. If the
ground temperature is 20 ◦C and the temperature at a height of 1 km is
10 ◦C.
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(a) Express the temperature T (in ◦C) as a function of the height h (in
kilometers), assuming that a linear model is appropriate.

(b) Draw the graph of the function in part (a). What does the slope
represent?

(c) What is the temperature at a height of 2.5 km?

Solution 1.3. (a) Because we are assuming that T is a linear function of
h, we can write T = mh + b. We are given that T = 20 when h = 0,
so 20 = m× 0 + b = b. In other words, the y−intercept is b = 20. We
are also given that T = 10 when h = 1, so 10 = m×1+20. The slope
of the line is therefore m = 10 − 20 = −10 and the required linear
function is T = −10h+ 20.

(b) The graph is sketched in Figure 1.7. The slope is m = −10 ◦C/km,
and this represents the rate of change of temperature with respect to
height.

Figure 1.7:

(c) At a height of h = 2.5 km, the temperature is T = −10(2.5) + 20 =
−5 ◦C.

�

Polynomials

A function P is called a polynomial if P (x) = anx
n+an−1x

n−1 + ...+a2x
2 +

a1x+ a0 where n is a nonnegative integer and the numbers a0, a1, a2, ..., an
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are constants called the coefficients of the polynomial.

The domain of any polynomial is R = (−∞,∞). If the leading coefficient
an 6= 0, then the degree of the polynomial is n. For example,

- A polynomial of degree 1 is of the form P (x) = mx+ b and so it is a
linear function.

- A polynomial of degree 2 is of the form P (x) = ax2 + bx + c and is
called a quadratic function.

- A polynomial of degree 3 is of the form P (x) = ax3 + bx2 + cx + d
and is called a cubic function.

Remark 1.2.1. A polynomial of degree n has at most n zeros (roots).

Piecewise Defined Functions

Example 1.4. A function f is defined by

f(x) =

{
1− x : x ≤ −1
x2 : x > −1

Evaluate f(−2), f(−1), and f(0) and sketch the graph.

Solution 1.4. Remember that a function is a rule. For this particular
function the rule is the following: First look at the value of the input x.
If it happens that x ≤ −1, then the value of f(x) is 1 − x. On the other
hand, if x > −1, then the value of f(x) is x2. Since −2 ≤ −1, we have
f(−2) = 1 − (−2) = 3. Since −1 ≤ −1, we have f(−1) = 1 − (−1) = 2.
Since 0 > −1, we have f(0) = 02 = 0. The graph of this functions appears
in Figure 1.8.

�

The absolute value (see Appendix B) is an example of a piecewise defined
function.
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Figure 1.8:

Rational Functions

Definition 1.2.1. A function in the form

f(x) =
P (x)

Q(x)
,

where P and Q are polynomials, is called a rational function. The domain
of the rational function f(x) is the set

D = R− {x ∈ R : Q(x) = 0}

Example 1.5. Find the domain of f(x) = 2x4−x2+1
x2−4 .

Solution 1.5.

D = R−
{
x ∈ R : x2 − 4 = 0

}
= R− {−2, 2}

The graph of the function is shown in Figure 1.9.

�

Example 1.6. Find the domain of f(x) = x2−9
1−|x| .

Solution 1.6.

D = R− {x ∈ R : 1− |x| = 0}
= R− {−1, 1}

�
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Figure 1.9:

Exercise 1.1. What is the domain of each of the following functions.

(a) f(x) = 1
|1−x|

(b) g(x) = −4x
10+x2

Root Function

Definition 1.2.2. For any integer n ≥ 2,

f(x) = n
√
g(x)

is the nth root function of g(x). The domain of the root function depends
on the value of n if it is even or odd.

n is odd: The domain of f(x) in this case is the same as the domain of
g(x). The range of f(x) will be R.

n is even: In this case, the domain of f(x) is the set

D = {x ∈ R : g(x) ≥ 0} ∩ {g(x) domain}

The range of f is [0,∞).

Example 1.7. Find the domain of f(x) = 3
√
x2 − 4.

Solution 1.7. Since f is odd root function, then

D = domain (x2 − 4) = R
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Example 1.8. Find the domain of f(x) =
√
x2 − 4.

Solution 1.8. Since f is even root function, then

D =
{
x ∈ R : x2 − 4 ≥ 0

}
∩ { domain of x2 − 4}

= (−∞,−2] ∪ [2,∞) ∩ R
= (−∞,−2] ∪ [2,∞)

�

Example 1.9. Find the domain of f(x) = 6
√
|x|.

Solution 1.9. Since f is even root function, then

D = {x ∈ R : |x| ≥ 0} ∩ { domain of |x|}
= R ∩ R
= R

�

Example 1.10. Find the domain of f(x) = 1√
9−x2 .

Solution 1.10. This function is rational and its denominator is even
root. The root’s domain is the dominant here. The domain of f is

D =
{

domain of
√

9− x2
}
−
{
x ∈ R :

√
9− x2 = 0

}
=

{
x ∈ R : 9− x2 > 0

}
∩ { domain of 9− x2}

=
{
x ∈ R : x2 < 9

}
∩ R

= {x ∈ R : |x| < 3} ∩ R
= (−3, 3) ∩ R
= (−3, 3)

�

Example 1.11. Find the domain of f(x) = 1
1−
√
x
.
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Solution 1.11. This example is quite different from the previous example.
The function f here is rational but its denominator contains an even root.
The root’s domain is also the dominant here. So, the domain of f is

D =
{

domain of
√
x
}
−
{
x ∈ R : 1−

√
x = 0

}
= {x ∈ R : x ≥ 0} ∩ { domain of x} − {1}
= [0,∞) ∩ R− {1}
= [0,∞)− {1}
= [0, 1) ∪ (1,∞)

�

Example 1.12. Find the domain of f(x) =
√

2−
√
x.

Solution 1.12. Since f is even root function that contains an even root
function inside it, then both roots are dominant here. Hence, the domain
of f is

D =
{
x ∈ R : 2−

√
x ≥ 0

}
∩ { domain of 2−

√
x}

=
{
x ∈ R :

√
x ≤ 2

}
∩ {x ∈ R : x ≥ 0} ∩ { domain of x}

= {x ∈ R : 0 ≤ x ≤ 4} ∩ [0,∞) ∩ R
= [0, 4] ∩ [0,∞) ∩ R
= [0, 4]

�

Exercise 1.2. Find the domain of the following.

(a) f(x) = 1
1+
√
x

(b) g(x) =
√
−x

(c) h(x) =
√

1
x
− 1
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Figure 1.10:

Trigonometric Functions

In calculus the convention is that radian measure is always used (except
when otherwise indicated). Figure 1.10 shows a sector of a circle with
central angle θ and radius r subtending an arc with length s. Then the
radian measure of the central angle A′CB′ is the number θ = s

r
.

Example 1.13. Find the radian measure of 60◦.

Solution 1.13. To convert degrees to radians, multiply degrees by (π rad )/180◦.

60◦ = 60
( π

180

)
=
π

3
.

�

Example 1.14. Express 5π/4 in degrees.

Solution 1.14. To convert radians to degrees, multiply radians by 180◦/(π rad ).

5π

4
rad =

(
5π

4

)(
180◦

π

)
= 225◦.

�

Nonzero radians measures can be positive or negative and can go beyond
2π = 360◦. The standard position of an angle occurs when we place its
vertex at the origin of a coordinate system and its initial side on the positive
x−axis as in Figure 1.11. A positive angle is obtained by rotating the initial
side counterclockwise until it coincides with the terminal side. Likewise,
negative angles are obtained by clockwise rotation.
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Figure 1.11:

Figure 1.12:

Figure 1.12 shows several examples of angles in standard position.
For an acute angle θ the six trigonometric functions are defined as ratios

of lengths of sides of a right triangle as in Figure 1.13.

Figure 1.13:

This definition does not apply to obtuse or negative angles, so for a
general angle θ in standard position we let P (x, y) be any point on the
terminal side of θ and we let r be the distance |OP | as in Figure 1.14.

The signs of the trigonometric functions for angles in each of the four
quadrants can be remembered by means of the rule All Students Take
Calculus shown in Figure 1.15.

Example 1.15. Find the exact trigonometric ratios for θ = 2π/3.
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Figure 1.14:

Figure 1.15:

Solution 1.15. From Figure 1.16 we see that a point on the terminal line

for θ = 2π/3 is P
(
−1
2
,
√
3
2

)
. Therefore, taking x = −1

2
and y =

√
3
2

in the

definitions of the trigonometric ratios, we have

sin
2π

3
=

√
3

2
cos

2π

3
= −1

2
tan

2π

3
= −
√

3

csc
2π

3
=

2√
3

sec
2π

3
= −2 cot

2π

3
=
−1√

3

�

The following table gives some values of sin θ, cos θ and tan θ.
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Figure 1.16:

Reference Angles The values of trigonometric functions of angles greater
than 90◦ = π/2 or less than 0◦ can be determined from their values
at corresponding acute angles called reference angles.

Definition 1.2.3. Let θ be an angle in standard position. Its refer-
ence angle is the acute angle θ′ formed by the terminal side of θ and
the x−axis.

Example 1.16. Find the reference angle of θ = 5π/3.
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Solution 1.16. Because 5π/3 = 300◦ lies in quadrant 4, the angle it
makes with the x−axis is

θ′ = 2π − 5π/3 = π/3 = 60◦.

�

Example 1.17. Find the reference angle of θ = −3π/4.

Solution 1.17. First, note that −3π/4 = 135◦ is coterminal with
5π/4 = 225◦ which lies in quadrant 3. So, the reference angle is

θ′ = 5π/4− π = π/4 = 45◦.

�

Example 1.18. Evaluate each of the following.

a) cos (4π/3)

b) tan (−210◦)

c) csc (11π/4)

Solution 1.18. a) Because θ = 4π/3 = 240◦ lies in quadrant 3,
the reference angle is θ′ = 4π/3−π = π/3. Moreover, the cosine
is negative in quadrant 3, so

cos (4π/3) = (−) cos (π/3) = −1/2

b) Because −210◦+360◦ = 150◦, it follows that −210◦ is coterminal
with the second-quadrant angle 150◦. Therefore, the reference
angle is θ′ = 180◦ − 150◦ = 30◦. Finally, because the tangent is
negative in quadrant 2, you have

tan (−210◦) = (−) tan (30◦) = −
√

3/3 = −1/
√

3

c) Because 11π/4− 2π = 3π/4, it follows that 11π/4 is coterminal
with the second-quadrant angle 3π/4. Therefore, the reference
angle is θ′ = π − 3π/4 = π/4. Because the cosecant is positive
in quadrant 2, you have

csc (11π/4) = (+) csc (π/4) = 1/ sin (π/4) =
√

2
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Trigonometric Identities A trigonometric identity is a relationship among
the trigonometric functions. The most identities are the following.

Part 1 The following identities are immediate consequences of the
definitions of the trigonometric functions.

csc θ =
1

sin θ
, sec θ =

1

cos θ
, cot θ =

1

tan θ

tan θ =
sin θ

cos θ
, cot θ =

cos θ

sin θ

Part 2 The following are the most useful of all trigonometric identi-
ties:

sin2 θ + cos2 θ = 1

tan2 θ + 1 = sec2 θ

1 + cot2 θ = csc2 θ

Part 3 The following identities show that sin θ is an odd function
and cos θ is an even function.

sin(−θ) = − sin θ, cos(−θ) = cos θ

Part 4 The next identities show that the sine and cosine functions
are periodic with period 2π Since the angles θ and θ+ 2π have
the same terminal side.

sin(θ + 2π) = sin θ, cos(θ + 2π) = cos θ

Part 5 The addition and subtracting formulas are the following
identities.

sin(x+ y) = sinx cos y + cosx sin y

sin(x− y) = sinx cos y − cosx sin y

cos(x+ y) = cosx cos y − sinx sin y

cos(x− y) = cosx cos y − sinx sin y

tan(x+ y) =
tanx+ tan y

1− tanx tan y

tan(x− y) =
tanx− tan y

1 + tan x tan y
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Part 6 The double-angle formulas are:

sin(2x) = 2 sinx cosx

cos(2x) = cos2 x− sin2 x

cos(2x) = 2 cos2 x− 1

cos(2x) = 1− 2 sin2 x

Part 7 The following are the half-angle formulas, which are useful
in integral calculus:

cos2 x =
1 + cos(2x)

2
, sin2 x =

1− cos(2x)

2

Part 8 Finally, we state the product formulas, which are:

sinx cos y =
1

2
[sin(x+ y) + sin(x− y)]

cosx cos y =
1

2
[cos(x+ y) + cos(x− y)]

sinx sin y =
1

2
[cos(x− y)− cos(x+ y)]

There are many other trigonometric identities, but those we have
stated are the ones used most often in calculus.

Graphs of Trigonometric Functions Graphs of the six basic trigono-
metric functions using radian measure are shown in Figure 1.17. The
shading for each trigonometric function indicates its periodicity.

The graph of the function f(x) = sinx, shown in Figure 1.17(b), is
obtained by plotting points for 0 ≤ x ≤ 2π and then using the periodic
nature of the function to complete the graph. Notice that the zeros
of the sine function occur at the integer multiples of π, that is,

sinx = 0 whenever x = nπ, n = 0,±1,±2,±3, · · ·

Because of the identity

cosx = sin
(
x+

π

2

)
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Figure 1.17:

the graph of cosine is obtained by shifting the graph of sine by an
amount π/2 to the left [see Figure 1.17(a)]. Therefore, the zeros of
the cosine function occur at the integer multiples of π plus π/2, that
is,

cosx = 0 whenever x =
π

2
+ nπ, n = 0,±1,±2,±3, · · ·

Note that for both the sine and cosine functions the domain is R =
(−∞,∞) and the range is the closed interval [−1, 1]. Thus, for all
values of x, we have

−1 ≤ sinx ≤ 1 or we write | sinx| ≤ 1

−1 ≤ cosx ≤ 1 or we write | cosx| ≤ 1

The tangent and cotangent have range R = (−∞,∞), whereas cose-
cant and secant have range (−∞,−1]∪ [1,∞). All four functions are
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periodic: tangent and cotangent have period π, whereas cosecant and
secant have period 2π. Since

tanx =
sinx

cosx
, cotx =

cosx

sinx
, secx =

1

cosx
, cscx =

1

sinx

then the zeros of the tangent function is the same as of the sine func-
tion, and the zeros of the cotangent function is the same as of the
cosine function, while the secant and cosecant functions have no ze-
ros.

Example 1.19. Solve the following equations.

a) sinx = 1

b) cos x = −1

Solution 1.19. a) sinx equals 1 when x = π/2 plus multiples of
2π, see Figure 1.17(b). So,

sinx = 1 whenever x =
π

2
+ 2nπ where n = 0,±1,±2,±3, · · ·

b) cos x equals −1 when x = π plus multiples of 2π, see Figure
1.17(a). So,

cosx = 1 whenever x = π + 2nπ where n = 0,±1,±2,±3, · · ·

�

Exercise 1.3. Solve the following equations.

a) sinx = −1

b) secx = 1

c) tan x = 1

d) cos x = 1/2

e) cos(2x) = 0

Example 1.20. Find the domain of the following.

a) f(x) = 1/(1 + sin x)
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b) f(x) = 1/(1− 2 cosx)

c) f(x) = cscx/
√

2− x
d) f(x) = sin

√
x

e) f(x) =
√

sinx

Solution 1.20. a) Since f is rational function, then

The domain of f = R− {x ∈ R : 1 + sinx = 0}
= R− {x ∈ R : sinx = −1}

= R−
{
x =

3π

2
+ 2nπ

}
where n = 0,±1,±2, · · ·

b) Note that f is also rational function. So

The domain of f = R− {x ∈ R : 1− 2 cosx = 0}

= R−
{
x ∈ R : cosx =

1

2

}
= R−

{
x =

π

3
+ 2nπ or x = −π

3
+ 2nπ

}
where n = 0,±1,±2, · · ·

c) First, we write

f(x) =
cscx√
2− x

=
1

sinx
√

2− x
.

Therefore,

The domain of f = {domain
√

2− x} −
{
x ∈ R : sinx

√
2− x = 0

}
= {x ∈ R : 2− x > 0} ∩ {domain 2− x}

−{x ∈ R : sinx = 0}
= (−∞, 2) ∩ R− {x = nπ}
= (−∞, 2)− {x = nπ}

where n = 0,±1,±2, · · ·
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d) In this example, the domain of sin
√
x is the domain of

√
x since

the root function is the dominant here. So

The domain of f = {x ∈ R : x ≥ 0} ∩ { domain x}
= [0,∞) ∩ R
= [0,∞)

e) This example is quite different from the previous one in part (d).

The domain of f = {x ∈ R : sinx ≥ 0} ∩ { domain sinx}.

Note that, sinx ≥ 0 in quadrants I and II, i.e., when x ∈
[0, π]. Since sinx is periodic with period 2π, then it is greater
than or equals to 0 when x ∈ [0 + 2nπ, π + 2nπ] where n =
0,±1,±2, · · · . Hence

The domain of f = [0 + 2nπ, π + 2nπ] ∩ R
= [0 + 2nπ, π + 2nπ]

= [2nπ, (1 + 2n) π]

where n = 0,±1,±2, · · · .

�

Exercise 1.4. Find the domain of the following.

a) g(x) = 1/(1 + sin2 x)

b) g(x) =
√

tanx

c) g(x) = x/(1− | secx|)

1.3 Combinations of Functions

Just as two real numbers can be combined by the operations of addition,
subtraction, multiplication, and division to form other real numbers, two
functions can be combined to create new functions.

Definition 1.3.1. Let f and g be two functions with overlapping domains.
Then, for all x common to both domains, the sum, difference, product, and
quotient of f and g are defined as follows.



1.3. COMBINATIONS OF FUNCTIONS 27

Sum: (f + g) (x) = f (x) + g (x); x ∈ domain f ∩ domain g

Difference: (f − g) (x) = f (x)−g (x) ; x ∈ domain f∩ domain g

Product: (f × g) (x) = f (x)× g (x) ; x ∈ domain f ∩ domain g

Quotient: (f/g) (x) = f (x) /g (x) ; x ∈ domain f ∩ domain g
and g(x) 6= 0.

Example 1.21. Find (f/g) (x) and (g/f) (x) for the functions given by
f(x) =

√
x and g(x) =

√
4− x2. Then find the domains of f/g and g/f .

Solution 1.21. The quotient of f and g is(
f

g

)
(x) =

f(x)

g(x)
=

√
x√

4− x2
.

The quotient of g and f is(
g

f

)
(x) =

g(x)

f(x)
=

√
4− x2√
x

.

The domain of f is [0,∞) and the domain of g is [−2, 2]. The intersection
of these domains is [0, 2]. So, the domains for f/g and g/f are as follows.

Domain of (f/g) is [0, 2)

Domain of (g/f) is (0, 2]

�

Exercise 1.5. Given f(x) = 2x+ 1 and g(x) = 1
x

+ 2x− 1, find (f − g)(x)
and its domain. Then evaluate the difference when x = 2.

Definition 1.3.2. The composition of the function f with the function g
is

(f ◦ g) (x) = f (g(x)) .

The domain of f ◦ g is the set of all x in the domain of g such that g(x) is
in the domain of f (See Figure 1.18.)
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Figure 1.18:

The domain of f ◦ g is the set of all x in the domain of g such that g(x)
is in the domain of f . In other words, (f ◦ g)(x) is defined whenever both
g and f(g(x)) are defined.

Example 1.22. Find the domain of the composition (f ◦ g)(x) for the
functions given by f(x) = x2 − 9 and g(x) =

√
9− x2.

Solution 1.22. The composition of the functions is as follows.

(f ◦ g)(x) = f(g(x))

= f
(√

9− x2
)

=
(√

9− x2
)2
− 9

=
(
9− x2

)
− 9

= −x2

From this, it might appear that the domain of the composition is the set
of all real numbers. This, however, is not true.Because the domain of −x2
is the set of all real numbers and the domain of g is [−3, 3], the domain of
(f ◦ g) is [−3, 3].

�
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Example 1.23. Let g(x) =
√

2− x. Find g ◦ g and its domain.

Solution 1.23.

(g ◦ g)(x) = g(g(x))

= g
(√

2− x
)

=

√
2−
√

2− x

This expression is defined when both 2 − x ≥ 0 and 2 −
√

2− x ≥ 0. The
first inequality means x ≤ 2, and the second is equivalent to

√
2− x ≤ 2

2− x ≤ 4

x ≥ −2

Thus −2 ≤ x ≤ 2, so the domain of g ◦ g is the closed interval [−2, 2].

�

It is possible to take the composition of three or more functions. For
instance, the composite function f ◦ g ◦ h is found by first applying h, then
g, and then f as follows:

(f ◦ g ◦ h)(x) = f(g(h(x)))

Example 1.24. Find f ◦ g ◦ h if f(x) = x/(x + 1), g(x) = x10, and
h(x) = x+ 3.

Solution 1.24.

(f ◦ g ◦ h)(x) = f(g(h(x)))

= f(g(x+ 3))

= f
(
(x+ 3)10

)
=

(x+ 3)10

(x+ 3)10 + 1

�
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So far we have used composition to build complicated functions from
simpler ones. But in calculus it is often useful to be able to decompose a
complicated function into simpler ones, as in the following example.

Example 1.25. Given F (x) = cos2(x+ 9), find functions f , g, and h such
that F = f ◦ g ◦ h.

Solution 1.25. Since F (x) = [cos(x+ 9)]2, the formula for F says: First
add 9, then take the cosine of the result, and finally square. So we let

h(x) = x+ 9

g(x) = cosx

f(x) = x2

Then

(f ◦ g ◦ h)(x) = f(g(h(x)))

= f(g(x+ 9))

= f(cos(x+ 9))

= cos2(x+ 9) = F (x).

�

1.4 Inverse Functions

Remember that, a function can be represented by a set of ordered pairs.
For instance, the function f(x) = x+ 4 from the set A = {1, 2, 3, 4} to the
set B = {5, 6, 7, 8} can be written as follows.

f(x) = x+ 4 : {(1, 5), (2, 6), (3, 7), (4, 8)}.

In this case, by interchanging the first and second coordinates of each of
these ordered pairs, you can form the inverse function of f , which is denoted
by f−1. It is a function from the set B to the set A, and can be written as
follows.

f−1(x) = x− 4 : {(5, 1), (6, 2), (7, 3), (8, 4)}.

Note that the domain of f is equal to the range of f−1, and vice versa, as
shown in Figure 1.19. Also note that the functions f and f−1 have the effect
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of ”undoing” each other. In other words, when you form the composition
of f with f−1 or the composition of f−1 with f , you obtain the identity
function.

f
(
f−1(x)

)
= f(x− 4) = (x− 4) + 4 = x

f−1 (f(x)) = f−1(x+ 4) = (x+ 4)− 4 = x

Figure 1.19:

Definition 1.4.1. A function is called a one−to−one function if it never
takes on the same value twice; that is,

f (x1) 6= f (x2) whenever x1 6= x2

We have the following geometric method for determining whether a func-
tion is one-to-one.

Definition 1.4.2. Horizontal Line Test: A function is one-to-one if and
only if no horizontal line intersects its graph more than once.

Example 1.26. Is the function f(x) = x3 one-to-one?

Solution 1.26. If x1 6= x2, then x31 6= x32 (two different numbers cant have
the same cube). Therefore, by Definition 1.4.1, f(x) = x3 is one-to-one.
From Figure 1.20 we see that no horizontal line intersects the graph of
f(x) = x3 more than once. Therefore, by the Horizontal Line Test, f is
one-to-one.

�

Example 1.27. Is the function g(x) = x2 one-to-one?
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Figure 1.20:

Solution 1.27. This function is not one-to-one because, for instance, g(1) =
1 = g(−1) and so 1 and −1 have the same output. From Figure 1.21 we
see that there are horizontal lines that intersect the graph of g more than
once. Therefore, by the Horizontal Line Test, g is not one-to-one.

Figure 1.21:

�

Not all functions possess inverses. Only function that has the one-to-one
property has inverse function according to the following definition.

Definition 1.4.3. Let f be a one-to-one function with domain A and
range B. Then its inverse function f−1 has domain B and range A and
is defined by

f−1(y) = x⇔ f(x) = y

for any y ∈ B.
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Remark 1.4.1. Do not mistake the power −1 in f−1 for an exponent. Thus
f−1(x) does not mean 1

f(x)
. The reciprocal 1

f(x)
could, however, be written

as [f(x)]−1.

Remark 1.4.2. The letter x is traditionally used as the independent variable,
so when we concentrate on f−1 rather than on f , we usually reverse the
roles of x and y in Definition 1.4.3 and write

f−1(x) = y ⇔ f(y) = x

By this formula and Definition 1.4.3 we get the following cancelation
equations:

f−1 (f (x)) = x for every x ∈ A

f
(
f−1 (x)

)
= x for every x ∈ B

Algorithm 1.1. How To Find The Inverse Function Of A One-To-One
Function f :

Step 1 Write y = f(x).

Step 2 Solve this equation for x in terms of y (if possible).

Step 3 To express f−1 as a function of x, interchange x and y. The result-
ing equation is y = f−1(x).

Example 1.28. Find the inverse function of f(x) = x3 + 2.

Solution 1.28. Note that f(x) = x3 + 2 is one-to-one function (why?).
According to Algorithm 1.1, first we write

y = x3 + 2

Then we solve this equation for x:

x3 = y − 2

x = 3
√
y − 2

Finally, we interchange x and y

y = 3
√
x− 2 = f−1(x).
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Exercise 1.6. Show that f(x) = x/(x+ 1); x 6= −1 is one-to-one function,
then find its inverse.

Remark 1.4.3. The graph of f−1 is obtained by reflecting the graph of f
about the line y = x as illustrated by Figure 1.22.

Figure 1.22:

Inverse Trigonometric Functions

When we try to find the inverse trigonometric functions, we have a slight
difficulty: Because the trigonometric functions are not one-to-one, they do
not have inverse functions. The difficulty is overcome by restricting the
domains of these functions so that they become one-to-one.

You can see from Figure 1.23 that the sine function is not one-to-one (use
the Horizontal Line Test). But the function f(x) = sin x, −π/2 ≤ x ≤ π/2,
is one-to-one (see Figure 1.23). The inverse function of this restricted sine
function exists and is denoted by sin−1 or arcsin. It is called the inverse
sine function or the arcsine function.

The following table summarizes the definitions of the three most com-
mon inverse trigonometric functions.

Function Domain Range
y = sin−1 x↔ sin y = x x ∈ [−1, 1] y ∈

[
−π

2
, π
2

]
y = cos−1 x↔ cos y = x x ∈ [−1, 1] y ∈ [0, π]
y = tan−1 x↔ tan y = x x ∈ R y ∈

(
−π

2
, π
2

)
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Figure 1.23:

Exercise 1.7. Find the domain of f(x) = sin−1 (x2 − 4)

Example 1.29. If possible, find the exact value of

1. sin−1
(
−1

2

)
2. sin−1

(√
3
2

)
3. sin−1 (2)

4. cos−1
(√

2
2

)
5. cos−1 (−1)

6. tan−1 (0)

7. tan−1 (1)

Solution 1.29. 1. Because sin
(
−π

6

)
= −1

2
and −π

6
∈
[
−π

2
, π
2

]
, it follows

that sin−1
(
−1

2

)
= −π

6
.

2. Because sin
(
π
3

)
=
√
3
2

and π
3
∈
[
−π

2
, π
2

]
, it follows that sin−1

(√
3
2

)
=

π
3
.

3. It is not possible to evaluate y = sin−1 x at x = 2 because there is no
angle whose sine is 2. Remember that the domain of the inverse sine
function is [−1, 1].

4. Because cos
(
π
4

)
=
√
2
2

and π
4
∈ [0, π], it follows that cos−1

(√
2
2

)
= π

4
.
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5. Because cos (π) = −1 and π ∈ [0, π], it follows that cos−1 (−1) = π.

6. Because tan (0) = 0 and 0 ∈
(
−π

2
, π
2

)
, it follows that tan−1 (0) = 0.

7. Because tan
(
−π

4

)
= −1 and−π

4
∈
(
−π

2
, π
2

)
, it follows that tan−1 (−1) =

−π
4
.

�

The following are some important identities of inverse trigonometric
functions.

1. sin−1 (−x) = − sin−1 (x) for all x ∈ [−1, 1]

2. tan−1 (−x) = − tan−1 (x) for all x ∈ R

3. cos−1 (−x) = π − cos−1 (x) for all x ∈ [−1, 1]

4. sin−1 (x) + cos−1 (x) = π
2

for all x ∈ [−1, 1]

5. sin
(
sin−1 x

)
= x for all x ∈ [−1, 1], and sin−1 (sinx) = x for all

x ∈
[
−π

2
, π
2

]
6. cos (cos−1 x) = x for all x ∈ [−1, 1], and cos−1 (cosx) = x for all
x ∈ [0, π]

7. tan (tan−1 x) = x for all x ∈ R, and tan−1 (tanx) = x for all x ∈(
−π

2
, π
2

)
8. sin−1 (sinx) =

{
π − x : π

2
≤ x ≤ 3π

2

x− 2nπ : x ≥ 3π
2

where n = 0,±1,±2, · · · .

9. cos−1 (cosx) = 2nπ − x if x ≥ π where n = 0,±1,±2, · · · .

10. cos
(
sin−1 x

)
= sin (cos−1 x) =

√
1− x2 for all x ∈ [−1, 1].

11. tan
(
sin−1 x

)
= x√

1−x2 for all x ∈ [−1, 1].

Example 1.30. If possible, find the exact value of

1. tan (tan−1 (−5))
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2. sin−1
(
sin
(
5π
3

))
3. cos (cos−1 (π))

4. cos−1
(
cos
(
17π
4

))
5. tan

(
cos−1

(
2
3

))
6. cos

(
sin−1

(
−3

5

))
Solution 1.30. 1. Because −5 ∈ R , the inverse property applies, and

you have tan (tan−1 (−5)) = −5.

2. In this case, 5π
3

does not lie within the range of the arcsine function[
−π

2
, π
2

]
. However, 5π

3
is coterminal with 5π

3
− 2π = −π

3
∈
[
−π

2
, π
2

]
,

and you have

sin−1
(

sin

(
5π

3

))
= sin−1

(
sin
(
−π

3

))
= −π

3

3. The expression cos (cos−1 (π)) is not defined because cos−1 (π) is not
defined. Remember that the domain of the inverse cosine function is
[−1, 1].

4. In this case, 17π
4

does not lie within the range of the cosine function
[0, π]. However, 17π

4
is coterminal with 2(2)π − 17π

4
= −π

4
, and you

have

cos−1
(

cos

(
17π

4

))
= cos−1

(
cos
(
−π

4

))
= cos−1

(
cos
(π

4

))
=
π

4

5. If you let u = cos−1
(
2
3

)
then cosu = 2

3
. Because cosu is positive, u is

a first-quadrant angle. You can sketch and label angle u as shown in
Figure 1.24. Consequently

tan

(
cos−1

(
2

3

))
= tanu =

opp

adj
=

√
5

2
.
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Figure 1.24:

6. If you let u = sin−1
(
−3

5

)
then sinu = 3

5
. Because sinu is negative,

u is a fourth-quadrant angle. You can sketch and label angle u as
shown in Figure 1.25. Consequently

cos

(
sin−1

(
−3

5

))
= cosu =

adj

hyp
=

4

5
.

Figure 1.25:

�

Exercise 1.8. If possible, find the exact value of

1. sin−1
(
sin π

16

)
2. sin−1

(
sin −5π

2

)
3. cos−1

(
cos 4π

3

)
4. tan

(
sin−1 5

13

)
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5. sec
(
sin−1 3

4

)
6. cos (tan−1 2)

7. sin
(
2 cos−1 3

5

)
Exponential and Logarithmic Functions

In this part you will study two types of non−algebraic functions: exponen-
tial functions and logarithmic functions. These functions are examples of
transcendental functions.

Definition 1.4.4. The exponential function f with base a is denoted by
f(x) = ax where a > 0, a 6= 1, and x is any real number. The domain of
the exponential function f(x) = ag(x) is the same as the domain of g(x).

Note that in the definition of an exponential function, the base a = 1
is excluded because it yields f(x) = 1x = 1. This is a constant function,
not an exponential function. You already know how to evaluate ax for
integer and rational values of x. For example, you know that 43 = 64 and
41/2 =

√
4 = 2.

The exponential function f(x) = ax, a > 0, a 6= 1 is different from all the
functions you have studied so far because the variable x is an exponent. A
distinguishing characteristic of an exponential function is its rapid increase
as x increases (for a > 1). Many real-life phenomena with patterns of rapid
growth (or decline) can be modeled by exponential functions. The basic
characteristics of the exponential function are summarized below in Figure
1.26.

Figure 1.26:
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Example 1.31. In the same coordinate plane, sketch the graph of f(x) =
2x and g(x) = 4x by hand.

Solution 1.31. The table below lists some values for each function. By
plotting these points and connecting them with a smooth curve, you obtain
the graphs shown in Figure 1.27. Note that both graphs are increasing.
Moreover, the graph of g(x) = 4x is increasing more rapidly than the graph
of f(x) = 2x.

x −2 −1 0 1 2 3
2x 1

4
1
2

1 2 4 8
4x 1

16
1
4

1 4 16 64

Figure 1.27:

�

Example 1.32. In the same coordinate plane, sketch the graph of f(x) =
2−x and g(x) = 4−x by hand.

Solution 1.32. The table below lists some values for each function. By
plotting these points and connecting them with a smooth curve, you obtain
the graphs shown in Figure 1.28. Note that both graphs are decreasing.
Moreover, the graph of g(x) = 4−x is decreasing more rapidly than the
graph of f(x) = 2−x.

x −3 −2 −1 0 1 2
2x 8 4 2 1 1

2
1
4

4x 64 16 4 1 1
4

1
16
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Figure 1.28:

�

The properties of exponents can also be applied to real-number expo-
nents. For review, these properties are listed below.

• axay = ax+y

• ax

ay
= ax−y

• a−x = 1
ax

=
(
1
a

)x
• a0 = 1

• n
√
am = am/n

• (ab)x = axbx

• (ax)y = axy

•
(
a
b

)x
= ax

bx

• |a2| = |a|2 = a2

Example 1.33. Find the exact value of the following.

1. (−8)2/3

2. 9−1/2

Solution 1.33. 1. (−8)2/3 = 3
√

(−8)2 =
(

3
√
−8
)2

= (−2)2 = 4



42 CHAPTER 1. FUNCTIONS

2. 9−1/2 = 1
91/2

=
(
1
9

)1/2
=
√

1
9

= 1
3

�

The Natural Base e: For many applications, the convenient choice for a
base is the irrational number e ≈ 2.7182. This number is called the
natural base. The function f(x) = ex is called the natural exponen-
tial function and its graph is shown in Figure 1.29. The graph of the
exponential function has the same basic characteristics as the graph
of the function f(x) = ax. Be sure you see that for the exponential
function f(x) = ex, e is the constant 2.7182, whereas x is the variable.

Figure 1.29:

The number e can be approximated by the expression(
1 +

1

x

)x
for large values of x.

We learned that if a function is one-to-one-that is, if the function has
the property such that no horizontal line intersects its graph more than
once-the function must have an inverse function. By looking back at the
graphs of the exponential functions introduced in Figure 1.26, you will see
that every function of the form

f(x) = ax, a > 0, a 6= 1

passes the Horizontal Line Test and therefore must have an inverse func-
tion. This inverse function is called the logarithmic function with base
a.
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Definition 1.4.5. For x > 0, a > 0, and a 6= 1,

y = loga x if and only if x = ay.

The function given by f(x) = loga x (read as log base a of x) is called the
logarithmic function with base a. The domain of the logarithmic function
f(x) = loga g(x) is

{x ∈ R : g(x) > 0} ∩ the domain of g(x)

The equations y = loga x and x = ay are equivalent. The first equa-
tion is in logarithmic form and the second is in exponential form. When
evaluating logarithms, remember that a logarithm is an exponent. This
means that loga x is the exponent to which a must be raised to obtain x.
For instance, logz 8 = 3 because 2 must be raised to the third power to get 8.

Example 1.34. Use the definition of logarithmic function to evaluate each
logarithm at the indicated value of x.

1. f(x) = log2 x, at x = 32

2. f(x) = log3 x, at x = 1

3. f(x) = log4 x, at x = 2

4. f(x) = log10 x, at x = 1
100

Solution 1.34. 1. f(32) = log2 32 = 5 because 25 = 32

2. f(1) = log3 1 = 0 because 30 = 1

3. f(2) = log4 2 = 1
2

because 4
1
2 =
√

4 = 2

4. f
(

1
100

)
= log10

1
100

= −2 because 10−2 = 1
102

= 1
100

�

The following properties follow directly from the definition of the loga-
rithmic function with base a.
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1. loga 1 = 0 because a0 = 1

2. loga a = 1 because a1 = a

3. loga b
x = x loga b

4. loga a
x = x and aloga x = x

5. loga(x× y) = loga x+ loga y

6. loga(x÷ y) = loga x− loga y

7. If loga x = loga y, then x = y

Example 1.35. Find the exact value of the following.

1. log2 16

2. log9 3

3. 5−2 log5 2

4. log10 0.001

5. log6 9− log6 5 + log6 20

Solution 1.35. 1. log2 16 = log2 24 = 4 log2 2 = 4× 1 = 4

2. log9 3 = log9 9
1
2 = 1

2
log9 9 = 1

2
× 1 = 1

2

3. 5−2 log5 2 = 5log5 2
−2

= 2−2 = 1
22

= 1
4

4. log10 0.001 = log10
1

1000
= log10

1
103

= log10 10−3 = −3 log10 10 = −3×
1 = −3

5. log6 9−log6 5+log6 20 = log6

(
9
5

)
+log6 20 = log6

(
9
5
× 20

)
= log6 36 =

log6 62 = 2 log6 6 = 2× 1 = 2

�
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The Natural logarithmic Function By looking back at the graph of
the natural exponential function in Figure 1.29, you will see that
f(x) = ex is one-to-one and so has an inverse function. This inverse
function is called the natural logarithmic function and is denoted
by the special symbol lnx, read as: the natural log of x.

Definition 1.4.6. For x > 0,

y = lnx if and only if x = ey.

The function given by f(x) = loge x = lnx is called the natural log-
arithmic function. The domain of the natural logarithmic function
f(x) = ln g(x) is

{x ∈ R : g(x) > 0} ∩ the domain of g(x)

From the above definition, you can see that every logarithmic equation
can be written in an equivalent exponential form and every exponen-
tial equation can be written in logarithmic form. Note that the natural
logarithm lnx is written without a base. The base is understood to
be e.

Because the functions f(x) = ex and g(x) = ln x are inverse functions
of each other, their graphs are reflections of each other in the line
y = x. This reflective property is illustrated in Figure 1.30.

Figure 1.30:

The properties of logarithms previously listed are also valid for natural
logarithms.
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1. ln 1 = 0 because e0 = 1

2. ln e = 1 because e1 = e

3. ln ax = x ln a

4. ln ex = x and elnx = x

5. ln(x× y) = lnx+ ln y

6. ln(x÷ y) = lnx− ln y

7. If lnx = ln y, then x = y

8. loga b = ln b/ ln a

Exercise 1.9. Find the exact value of (log2 3) (log3 4) (log4 5) · · · (log31 32).

So far in this part, you have studied the definitions, graphs, and prop-
erties of exponential and logarithmic functions. Now, you will study proce-
dures for solving equations involving exponential and logarithmic functions.
There are two basic strategies for solving exponential or logarithmic equa-
tions. The first is based on the One-to-One Properties and the second is
based on the Inverse Properties.

For a > 0 and a 6= l, the following properties are true for all x and y for
which loga x and loga y are defined.

One-to-One Properties ax = ay if and only if x = y, and loga x = loga y
if and only if x = y.

Inverse Properties aloga x = x and loga a
x = x.

Example 1.36. Solve the following equations.

1. 2x = 32

2. lnx− ln 3 = 0

3.
(
1
3

)x
= 9

4. ex = 7
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5. ln x = −3

6. log10 x = −1

Solution 1.36.

Original Equation Rewritten Equation Solution Property
2x = 32 2x = 25 x = 5 One-to-One
lnx− ln 3 = 0 lnx = ln 3 x = 3 One-to-One(
1
3

)x
= 9 3−x = 32 x = −2 One-to-One

ex = 7 ln ex = ln 7 x = ln 7 Inverse
lnx = −3 elnx = e−3 x = e−3 Inverse
log10 x = −1 10log10 x = 10−1 x = 10−1 = 1

10
Inverse

�

Example 1.37. Solve the equation log10 x
3
2 − log10

√
x = 1.

Solution 1.37.

log10 x
3
2 − log10

√
x = 1

log10 x
3
2 − log10 x

1
2 = 1

3

2
log10 x−

1

2
log10 x = 1

log10 x = 1

10log10 x = 101

x = 10

�

Example 1.38. Solve the equation ex − 2xex = 0.

Solution 1.38.

ex − 2xex = 0

ex (1− 2x) = 0

1− 2x = 0⇒ x =
1

2
ex 6= 0
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Example 1.39. Solve the equation e2x − 3ex + 2 = 0.

Solution 1.39.

e2x − 3ex + 2 = 0

(ex)2 − 3ex + 2 = 0

(ex − 2) (ex − 1) = 0

ex − 2 = 0⇒ ex = 2⇒ x = ln 2

ex − 1 = 0⇒ ex = 1⇒ x = ln 1 = 0

�

Example 1.40. Solve the equation ln(x− 2) + ln(2x− 3) = 2 lnx.

Solution 1.40.

ln(x− 2) + ln(2x− 3) = 2 lnx

ln[(x− 2)(2x− 3)] = lnx2

(x− 2)(2x− 3) = x2

2x2 − 7x+ 6 = x2

x2 − 7x+ 6 = 0

(x− 1)(x− 6) = 0

x− 1 = 0⇒ x = 1

x− 6 = 0⇒ x = 6

You can conclude that x = 1 is not valid. This is because when x = 1,
ln(x− 2) + ln(2x− 3) = ln(−1) + ln(−1), which is invalid because −1 is not
in the domain of the natural logarithmic function. So, the only solution is
x = 6.

�

Example 1.41. Solve the inequality e2−3x ≥ 4.
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Solution 1.41.

e2−3x ≥ 4

ln e2−3x ≥ ln 4

2− 3x ≥ ln 4

−3x ≥ −2 + ln 4

x ≤ 2

3
− 1

3
ln 4

x ∈
(
−∞, 2

3
− 1

3
ln 4

]
�

Example 1.42. Solve the inequality 2 ≤ log2 x < 3.

Solution 1.42.

2 ≤ log2 x < 3 ⇒ 22 ≤ 2log2 x < 23

⇒ 4 ≤ x < 8

⇒ x ∈ [4, 8)

�

Exercise 1.10. Solve the equation.

1. ln x2 = 4

2. log3(5x− 1) = log3(x+ 7)

3. log5 25x = 8

4. ln
(
1
x

)
+ ln (2x3) = ln 3

5. e2x − ex = 6

6. ln (lnx) = 1

Example 1.43. Find the domain of f(x) = 5−
√
x.
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Solution 1.43.

The domain of 5−
√
x = The domain of

√
x

= {x ∈ R : x ≥ 0} ∩ The domain of x

= [0,∞) ∩ R
= [0,∞)

�

Example 1.44. Find the domain of f(x) = 1− e 1
x .

Solution 1.44.

The domain of 1− e
1
x = The domain of

1

x
= R− {x ∈ R : x = 0}
= R− {0}

�

Example 1.45. Find the domain of f(x) =
√
ex.

Solution 1.45.

The domain of
√
ex = {x ∈ R : ex ≥ 0} ∩ The domain of ex

= R ∩ R
= R

�

Example 1.46. Find the domain of f(x) = ln x2.

Solution 1.46.

The domain of lnx2 = {x ∈ R : x2 > 0} ∩ The domain of x2

= (R− {0}) ∩ R
= R− {0}

�
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Example 1.47. Find the domain of f(x) = 2 lnx.

Solution 1.47.

The domain of 2 lnx = {x ∈ R : x > 0} ∩ The domain of x

= (0,∞) ∩ R
= (0,∞)

�

Example 1.48. Find the domain of f(x) = log4 (9− 16x2).

Solution 1.48.

The domain of log4

(
9− 16x2

)
=

{
x ∈ R : 9− 16x2 > 0

}
∩Domain of 9− 16x2

=

{
x ∈ R : x2 <

9

16

}
∩ R

=

{
x ∈ R :

√
x2 <

√
9

16

}
∩ R

=

{
x ∈ R : |x| < 3

4

}
∩ R

=

{
x ∈ R : −3

4
< x <

3

4

}
∩ R

=

(
−3

4
,
3

4

)
∩ R

=

(
−3

4
,
3

4

)
�

Example 1.49. Find the domain of f(x) = log3(1−
√
x).

Solution 1.49.

The domain of log3(1−
√
x) =

{
x ∈ R : 1−

√
x > 0

}
∩ The domain of

√
x

=
{
x ∈ R :

√
x < 1

}
∩ {x ∈ R : x ≥ 0} ∩ R

= {x ∈ R : 0 ≤ x < 1} ∩ [0,∞) ∩ R
= [0, 1) ∩ [0,∞) ∩ R
= [0, 1)
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Exercise 1.11. Find the domain of the following.

1. f(x) = e4+x
2

2. f(x) = ln cosx

3. f(x) = log10 (1− ex)

4. f(x) = 1
1−ex

5. f(x) = ln (1 + ln x)

6. f(x) =
√

2− 2x

7. f(x) = ln(4− x)

Example 1.50. Find a formula for the inverse of the function.

1. f(x) = e2x−1

2. f(x) = ln(x+ 3)

Solution 1.50. 1. First, let y = e2x−1. By inverse property we have
ln y = ln e2x−1 and then ln y = 2x − 1. So, x = (1 + ln y)/2. Hence,
f−1(x) = (1 + lnx)/2.

2. Let y = ln(x+ 3). By inverse property we have ey = eln(x+3) and then
ey = x+ 3. So, x = ey − 3. Hence, f−1(x) = ex − 3.

�

Exercise 1.12. Find a formula for the inverse of the function.

1. g(t) = 32t−1

2. g(t) = log10(t+ 3)
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1.5 Hyperbolic Functions

Certain even and odd combinations of the exponential functions ex and e−x

arise so frequently in mathematics and its applications that they deserve to
be given special names. In many ways they are analogous to the trigono-
metric functions, and they have the same relationship to the hyperbola that
the trigonometric functions have to the circle. For this reason they are col-
lectively called hyperbolic functions and individually called hyperbolic
sine, hyperbolic cosine, and so on.

Definition of the Hyperbolic Functions

sinhx =
ex − e−x

2
sechx =

1

coshx
=

2

ex + e−x

coshx =
ex + e−x

2
cschx =

1

sinhx
=

2

ex − e−x

tanhx =
sinhx

coshx
=
ex − e−x

ex + e−x
cothx =

1

tanhx
=
ex + e−x

ex − e−x

The graphs of hyperbolic sine, cosine, and tangent can be sketched
using graphical addition as in Figures 1.31. Note that sinh has do-

Figure 1.31:

main R and range R, while cosh has domain R and range [1,∞). The
graph of tanh has the horizontal asymptotes y = ±1.

Example 1.51. Find the numerical value of each expression.
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1. sinh 0

2. cosh(ln 3)

3. tanh 1

Solution 1.51. 1. sinh 0 = (e0 − e0) /2 = 0

2. cosh(ln 3) =
(
eln 3 + e− ln 3

)
/2 = (3 + 1/3)/2 = 5/3

3. tanh 1 = (e1 − e−1) / (e1 + e−1) = (e2 − 1) / (e2 + 1)

�

Exercise 1.13. Find the numerical value of each expression.

1. cosh 0

2. sinh(ln 2)

3. sech 0

Exercise 1.14. If tanh x = 12
13

, find the values of the other hyperbolic
functions at x.

Hyperbolic Identities The hyperbolic functions satisfy a number of iden-
tities that are similar to well-known trigonometric identities. We list
some of them here.

1. sinh(−x) = − sinh(x)

2. cosh(−x) = cosh(x)

3. cosh2 x− sinh2 x = 1

4. coshx+ sinhx = ex

5. coshx− sinhx = e−x

6. sinh(2x) = 2 sinhx coshx

7. cosh(2x) = sinh2 x+ cosh2 x

8. (sinhx+ coshx)n = sinh(nx) + cosh(nx) where n ∈ R
9. 1− tanh2 x = sech2x

10. coth2x− 1 = csch2x

11. sinh(x+ y) = sinh x cosh y + sinh y coshx

12. cosh(x+ y) = cosh x cosh y + sinhx sinh y
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13. tanh(x+ y) =
tanhx+ tanh y

1 + tanh x tanh y

14. tanh(lnx) =
x2 − 1

x2 + 1

15.
1 + tanhx

1− tanhx
= e2x

Example 1.52. Prove the identity cosh2 x− sinh2 x = 1.

Solution 1.52.

cosh2 x− sinh2 x = 1 =

(
ex + e−x

2

)2

−
(
ex − e−x

2

)2

=
e2x + 2 + e−2x

4
− e2x − 2 + e−2x

4

=
4

4
= 1

�

Exercise 1.15. If coshx = 5
3

and x > 0, find the values of the other
hyperbolic functions at x.

Inverse Hyperbolic Functions You can see from Figure 1.31 that sinh
and tanh are one-to-one functions and so they have inverse functions
denoted by sinh−1 and tanh−1. Also, Figure 1.31 shows that cosh is
not one-to-one, but when restricted to the domain [0,∞) it becomes
one-to-one. The inverse hyperbolic cosine function is defined as the
inverse of this restricted function.

Since the hyperbolic functions are defined in terms of exponential
functions, its not surprising to learn that the inverse hyperbolic func-
tions can be expressed in terms of logarithms. In particular, we have:

sinh−1 x = ln
(
x+
√
x2 + 1

)
x ∈ R

cosh−1 x = ln
(
x+
√
x2 − 1

)
x ≥ 1

tanh−1 x =
1

2
ln

(
1 + x

1− x

)
− 1 < x < 1
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Example 1.53. Show that sinh−1 x = ln
(
x+
√
x2 + 1

)
.

Solution 1.53. Let y = sinh−1 x. Then x = sinh y = (ey − e−y) /2,
so ey− 2x− e−y = 0, or, multiplying by ey, we get e2y− 2xey− 1 = 0.
This is really a quadratic equation in ey:

(ey)2 − 2x (ey)− 1 = 0

Solving by the quadratic formula, we get

ey =
2x±

√
4x2 + 4

2
= x±

√
x2 + 1

Note that ey > 0, but x −
√
x2 + 1 < 0 (because x <

√
x2 + 1).

Thus the minus sign is inadmissible and we have ey = x +
√
x2 + 1.

Therefore,

y = ln (ey) = ln
(
x+
√
x2 + 1

)
�

Example 1.54. Find the numerical value of each expression.

1. cosh−1 1

2. sinh−1 1

Solution 1.54. 1. cosh−1 1 = ln
(
1 +
√

12 − 1
)

= ln 1 = 0

2. sinh−1 1 = ln
(
1 +
√

12 + 1
)

= ln
(
1 +
√

2
)

�



Chapter 2

Limits and Continuity

2.1 An Introduction to Limits

We could begin by saying that limits are important in calculus, but that
would be a major understatement. Without limits, calculus would not
exist. Every single notion of calculus is a limit in one sense or another.
For example: What is the slope of a curve? It is the limit of slopes of
secant lines. What is the length of a curve? It is the limit of the lengths
of polygonal paths inscribed in the curve. What is the area of a region
bounded by a curve? It is the limit of the sum of areas of approximating
rectangles.

The informal description of a limit is as follows: If f(x) becomes arbi-
trarily close to a single number L as x approaches a from either side, the
limit of f(x), as x approaches a, is L. The existence or nonexistence of
f(x) at x = a has no bearing on the existence of the limit of f(x) as x
approaches a, see Figure 2.1.

The notation for a limit is

lim
x→a

f(x) = L

which is read as the limit of f(x) as x approaches a is L.

Example 2.1. Guess the value of

lim
x→1

x− 1

x2 − 1

57
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Figure 2.1:

Solution 2.1. Notice that the function f(x) = x−1
x2−1 is not defined when

x = 1, but that does not matter because the definition of limx→a f(x) says
that we consider values of x that are close to a but not equal to a.

The table below gives values of f(x) (correct to six decimal places) for
values of x that approach 1 (but are not equal to 1). On the basis of the
values in the table, we make the guess that

lim
x→1

x− 1

x2 − 1
=

1

2

x < 1 f(x) x > 1 f(x)
0.5 0.666667 1.5 0.400000
0.9 0.526316 1.1 0.476190
0.99 0.502513 1.01 0.497512
0.999 0.500250 1.001 0.499750
0.9999 0.500025 1.0001 0.499975

�

Definition 2.1.1. We write

lim
x→a−

f(x) = L

and say the left-hand limit of f(x) as x approaches a [or the limit of f(x)
as x approaches a from the left] is equal to L if we can make the values of
f(x) arbitrarily close to L by taking x to be sufficiently close to a and x
less than a. Similarly, if we require that x be greater than a, we get the
right-hand limit of f(x) as x approaches a is equal to L, and we write

lim
x→a+

f(x) = L
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Thus the symbol x → a− means that we consider only x < a, and the
symbol x → a+ means that we consider only x > a. These definitions are
illustrated in Figure 2.2.

Figure 2.2:

The relationship between ordinary (two-sided) limits and one-sided lim-
its can be stated as follows:

Theorem 2.1.1. Let L ∈ R. We say

lim
x→a

f(x) exists and equals to L

if and only if

lim
x→a−

f(x) = lim
x→a+

f(x) = L.

Limits That Fail to Exist 1. If a function f(x) approaches a different
number from the right side of x = c than it approaches from the
left side, then the limit of f(x) as x approaches a does not exist.

lim
x→a+

f(x) 6= lim
x→a−

f(x)

Illustration Example 2.1. The Heaviside functionH is defined
by

H(t) =

{
0 if t < 0
1 if t ≥ 0

Its graph is shown in Figure 2.3. As t approaches 0 from the
left, H(t) approaches 0. As t approaches 0 from the right, H(t)
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approaches 1. There is no single number that H(t) approaches
as t approaches 0. Therefore,

lim
t→0

H(t) does not exist.

Figure 2.3:

�

2. If f(x) is not approaching a real number L−that is, if f(x) in-
creases or decreases without bound−as x approaches a, you can
conclude that the limit does not exist.

lim
x→a

f(x) =∞ or lim
x→a

f(x) = −∞

Illustration Example 2.2. As x becomes close to 0, x2 also
becomes close to 0, and 1

x2
becomes very large. (See the table

below.) In fact, it appears from the graph of the function f(x) =
1
x2

shown in Figure 2.4 that the values of f(x) can be made
arbitrarily large by taking x close enough to 0. Thus the values
of f(x) do not approach a number, so

lim
x→0

1

x2
does not exist.
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Figure 2.4:

x 1/x2

±1 1
±0.5 4
±0.2 25
±0.1 100
±0.05 400
±0.01 10000
±0.001 1000000

3. The limit of f(x) as x approaches a also does not exist if f(x)
oscillates between two fixed values as x approaches a.

Illustration Example 2.3. The values of sin
(
π
x

)
oscillate be-

tween 1 and −1 infinitely often as approaches 0, see Figure 2.5.
Since the values of f(x) do not approach a fixed number as x
approaches 0, then

lim
x→0

sin
(π
x

)
does not exist.

�

Example 2.2. The graph of a function g is shown in Figure 2.6. Use it to
state the values (if they exist) of the following.

1. limx→2− g(x)

2. limx→2+ g(x)

3. limx→2 g(x)
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Figure 2.5:

4. limx→5− g(x)

5. limx→5+ g(x)

6. limx→5 g(x)

Figure 2.6:

Solution 2.2. From the graph we see that the values of g(x) approach 3 as
x approaches 2 from the left, but they approach 1 as x approaches 2 from
the right. Therefore

lim
x→2−

g(x) = 3 and lim
x→2+

g(x) = 1

Since the left and right limits are different, we conclude that

lim
x→2

g(x)
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does not exist. The graph also shows that

lim
x→5−

g(x) = 2 and lim
x→5+

g(x) = 2

This time the left and right limits are the same and so, we have

lim
x→5

g(x) = 2.

Despite this fact, notice that g(5) 6= 2.

�

Exercise 2.1. For the function f whose graph is given below, state the
value of each quantity, if it exists. If it does not exist, explain why.

1. limx→0 f(x)

2. limx→3− f(x)

3. limx→3+ f(x)

4. limx→3 f(x)

5. f(3)

Figure 2.7:
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2.2 Calculating Limits using the Limit

Laws

In this section we use the following properties of limits, called the Limit
Laws, to calculate limits.

Theorem 2.2.1. Suppose that c is a constant and the limits limx→a f(x)
and limx→a g(x) exist. Then

1. limx→a [f(x) + g(x)] = limx→a f(x) + limx→a g(x)

2. limx→a [f(x)− g(x)] = limx→a f(x)− limx→a g(x)

3. limx→a [cf(x)] = c limx→a f(x)

4. limx→a [f(x)× g(x)] = limx→a f(x)× limx→a g(x)

5. limx→a

[
f(x)
g(x)

]
= limx→a f(x)

limx→a g(x)
if limx→a g(x) 6= 0

6. limx→a [f(x)]n = [limx→a f(x)]n where n is a positive integer.

7. limx→a c = c

8. limx→a x = a

9. limx→a x
n = an where n is a positive integer.

10. limx→a
n
√
x = n

√
a where n is a positive integer, and if n is even, we

assume that a > 0.

11. limx→a
n
√
f(x) = n

√
limx→a f(x) where n is a positive integer, and if

n is even, we assume that limx→a f(x) > 0.

Example 2.3. Given that

lim
x→0.5

f(x) = 2 and lim
x→0.5

g(x) = −1

find

lim
x→0.5

[f(x)− 2g(x)]
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Solution 2.3.

lim
x→0.5

[f(x)− 2g(x)] = lim
x→0.5

f(x)− lim
x→0.5

[2g(x)]

= lim
x→0.5

f(x)− 2 lim
x→0.5

[g(x)]

= 2− 2(−1) = 4

�

Example 2.4. Evaluate

lim
x→−2

x3 + 2x2 − 1

5− 3x

Solution 2.4.

lim
x→−2

x3 + 2x2 − 1

5− 3x
=

limx→−2 (x3 + 2x2 − 1)

limx→−2 (5− 3x)

=
limx→−2 (x3) + limx→−2 (2x2)− limx→−2(1)

limx→−2(5)− limx→−2(3x)

=
(−2)3 + 2(−2)2 − 1

5− 3(−2)

= = − 1

11

Note that if we let f(x) = x3+2x2−1
5−3x , then f(−2) = − 1

11
. In other words, we

would have gotten the correct answer by directly substituting −2 for x.

�

Remark 2.2.1. Direct Substitution Property: If f is a polynomial or a
rational function and a is in the domain of f , then

lim
x→a

f(x) = f(a)

For example,

lim
x→1

(
x7 − 3x5 + 1

)19
=
[
17 − 3

(
15
)

+ 1
]19

= (−1)19 = −1
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because f(x) = (x7 − 3x5 + 1)
19

is a polynomial whose domain is R and
1 ∈ R.

Functions with the Direct Substitution Property are called continuous
at a and will be studied in Section 2.5. However, not all limits can be
evaluated by direct substitution. The next examples show various ways
algebraic manipulations can be used to evaluate limx→a f(x) in situations
where f(a) is undefined. This usually happens when f(x) is a fraction with
denominator equal to 0 at x = a. Note, each of these limits involves a
fraction whose numerator and denominator are both 0 at the point where
the limit is taken.

Example 2.5. Evaluate

lim
x→3

x2 − 9

x− 3

Solution 2.5. Let f(x) = x2−9
x−3 . We can not find the limit by substituting

x = 3 because f(3) is not defined. Nor can we apply the Quotient Law,
because the limit of the denominator is 0. Instead, we need to do some
preliminary algebra. We factor the numerator as a difference of squares:

(x− 3)(x+ 3)

x− 3

The numerator and denominator have a common factor of x− 3. When we
take the limit as approaches 3, we have x 6= 3 and so x− 3 6= 0. Therefore
we can cancel the common factor and compute the limit as follows:

lim
x→3

x2 − 9

x− 3
= lim

x→3

(x− 3)(x+ 3)

x− 3
= lim

x→3
(x+ 3) = 6

�

Exercise 2.2. Evaluate the limit, if it exists.

1. limx→−2
x2+3x+2
x3+8

2. limx→−1
x2+2x+1
x4−1
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Example 2.6. Find

lim
t→0

√
t2 + 9− 3

t2

Solution 2.6. We can not apply the Quotient Law immediately, since the
limit of the denominator is 0. Here the preliminary algebra consists of
rationalizing the numerator:

lim
t→0

√
t2 + 9− 3

t2
= lim

t→0

√
t2 + 9− 3

t2
·
√
t2 + 9 + 3√
t2 + 9 + 3

= lim
t→0

(t2 + 9)− 9

t2
(√

t2 + 9 + 3
)

= lim
t→0

t2

t2
(√

t2 + 9 + 3
)

= lim
t→0

1√
t2 + 9 + 3

=
1

6

�

Exercise 2.3. Evaluate the limit, if it exists.

1. limx→16
4−
√
x

16x−x2

2. limx→8
x−8
3√x−2

Example 2.7. Find

lim
x→1

√
x− 1

3
√
x− 1

Solution 2.7. We can not apply the Quotient Law immediately, since the
limit of the denominator is 0. Here the preliminary algebra consists of
rationalizing both the numerator and the denominator by multiplying

√
x+ 1√
x+ 1

·
3
√
x2 + 3

√
x+ 1

3
√
x2 + 3

√
x+ 1
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which takes long time in calculations. The Substitution method is much
better in this example. The idea is: write the problem using other variable
y so that the problem will transform to nice form that can easily solve. So,
let

x = y6 where 6 = LCM(2, 3)

Also, as x→ 1 we have y → 6
√

1 = 1. Hence,

lim
x→1

√
x− 1

3
√
x− 1

= lim
y→1

√
y6 − 1

3
√
y6 − 1

= lim
y→1

y3 − 1

y2 − 1

= lim
y→1

(y − 1)(y2 + y + 1)

(y − 1)(y + 1)

= lim
y→1

y2 + y + 1

y + 1

=
3

2

�

Exercise 2.4. Evaluate

lim
t→0

e2t − 1

et − 1

Example 2.8. Find

lim
x→−4

1
4

+ 1
x

x+ 4

Solution 2.8. We can not apply the Quotient Law immediately, since the
limit of the denominator is 0. Here the preliminary algebra consists of
simplifying the numerator:

lim
x→−4

1
4

+ 1
x

x+ 4
= lim

x→−4

(
1

4
+

1

x

)
÷ (x+ 4)

= lim
x→−4

x+ 4

4x
· 1

x+ 4

= lim
x→−4

1

4x

= − 1

16
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Exercise 2.5. Evaluate

lim
t→0

(
1

t
√

1 + t
− 1

t

)

A function f may be defined on both sides of x = a but still not have a
limit at x = a. The following example shows that even if f(x) is defined at
x = a, the limit of f(x) as x approaches a may not be equal to f(a).

Example 2.9. Find limx→1 g(x) where

g(x) =

{
x+ 1 if x 6= 1
π if x = 1

Solution 2.9. Here g is defined at x = 1 and g(1) = π, but the value of
a limit as approaches 1 does not depend on the value of the function at 1.
Since g(x) = x+ 1 for x 6= 1, we have

lim
x→1

g(x) = lim
x→1

(x+ 1) = 2

�

Some limits are best calculated by first finding the left− and right−hand
limits as shown in the following examples.

Example 2.10. If

f(x) =

{ √
x− 4 if x > 4

8− 2x if x < 4

determine whether limx→4 f(x) exists.

Solution 2.10. Since f(x) =
√
x− 4 for x > 4, we have

lim
x→4+

f(x) = lim
x→4+

√
x− 4 =

√
4− 4 = 0

Since f(x) = 8− 2x for x < 4, we have

lim
x→4−

f(x) = lim
x→4−

(8− 2x) = 8− 2× 4 = 0

The right− and left−hand limits are equal. Thus the limit exists and

lim
x→4

f(x) = 0
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Example 2.11. If

f(x) =
|x− 2|

x2 + x− 6

find: limx→2+ f(x), limx→2− f(x), and limx→2 f(x)

Solution 2.11. Observe that

|x− 2| =
{

x− 2 if x ≥ 2
−(x− 2) if x < 2

Therefore,

lim
x→2+

|x− 2|
x2 + x− 6

= lim
x→2+

x− 2

(x+ 3)(x− 2)

= lim
x→2+

1

x+ 3

=
1

5

lim
x→2−

|x− 2|
x2 + x− 6

= lim
x→2−

−(x− 2)

(x+ 3)(x− 2)

= lim
x→2−

−1

x+ 3

= −1

5

Since limx→2+ f(x) 6= limx→2− f(x), then the limit limx→2 f(x) does not
exist.

�

Exercise 2.6. Let

f(x) =
x2 − 1

|x− 1|

find: limx→1+ f(x), limx→1− f(x), and limx→1 f(x)

Example 2.12. Let g(x) =
√

1− x2 find limx→1 g(x).
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Solution 2.12. The domain of g is [−1, 1], so g(x) is defined only to the
right of x = −1 and to the left of x = 1. As can be seen in Figure 2.8,

lim
x→1−

g(x) = 0 and lim
x→1+

g(x) = 0 does not exist

Therefore,

lim
x→1

g(x) = 0 does not exist

Figure 2.8:

Exercise 2.7. In the previous example, find

lim
x→−1

g(x)

The following theorem will enable us to calculate some very important
limits. It is called the Squeeze Theorem because it refers to a function
g whose values are squeezed between the values of two other functions f
and h that have the same limit L at a point a. Being trapped between the
values of two functions that approach L, the values of f must also approach
L. (See Figure 2.9.)

Theorem 2.2.2. If f(x) ≤ g(x) ≤ h(x) when x is near a (except possibly
at a) and

lim
x→a

f(x) = lim
x→a

h(x) = L

then

lim
x→a

g(x) = L
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Figure 2.9:

Example 2.13. Show that

lim
x→0

x2 sin
1

x
= 0

Solution 2.13. First note that we cannot use

lim
x→0

x2 sin
1

x
= lim

x→0
x2 · lim

x→0
sin

1

x

because limx→0 sin 1
x

does not exist. However, since

−1 ≤ sin
1

x
≤ 1

we have, as illustrated by Figure 2.10,

−x2 ≤ sin
1

x
≤ x2

We know that
lim
x→0

x2 = 0 and lim
x→0

(
−x2

)
= 0

Taking f(x) = −x2, g(x) = x2 sin 1
x
, and h(x) = x2 in the Squeezing

Theorem, we obtain

lim
x→0

x2 sin
1

x
= 0

�

Exercise 2.8. If 4x− 9 ≤ f(x) ≤ x2 − 4x+ 7 for x ≥ 0, find

lim
x→4

f(x)
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Figure 2.10:

Example 2.14. If

lim
x→1

f(x)− 8

x− 1
= 10

find limx→1 f(x).

Solution 2.14. Since limx→1
f(x)−8
x−1 = 10 then the limit exists, and since

limx→1(x− 1) = 0 then limx→1[f(x)− 8] = 0. Therefore,

lim
x→1

f(x) = 8

�

Exercise 2.9. If

lim
x→0

f(x)

x2
= 5

find

lim
x→0

f(x) and lim
x→0

f(x)

x

2.3 Limits at Infinity and Infinite Limits

In this section we will extend the concept of limit to allow for two situations:

1. limits at infinity, where x becomes arbitrarily large, positive or nega-
tive;

2. infinite limits, which are not really limits at all but provide useful sym-
bolism for describing the behavior of functions whose values become
arbitrarily large, positive or negative.
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Definition 2.3.1. If the function f is defined on an interval (a,∞) and if
we can ensure that f(x) is as close as we want to the number L by taking x
large enough, then we say that f(x) approaches the limit L as x approaches
infinity, and we write

lim
x→∞

f(x) = L

If the function f is defined on an interval (−∞, b) and if we can ensure that
f(x) is as close as we want to the number M by taking x negative and large
enough, then we say that f(x) approaches the limit M as x approaches
negative infinity, and we write

lim
x→−∞

f(x) = M

Illustration Example 2.4. Consider the function

f(x) =
x√
x2 + 1

whose graph is shown in Figure 2.11 and for which some values (rounded
to 7 decimal places) are given in the table below. The values of f(x) seem
to approach 1 as x takes on larger and larger positive values, and −1 as x
takes on negative values that get larger and larger in absolute value. We
express this behavior by writing

lim
x→∞

f(x) = 1 and lim
x→−∞

f(x) = −1

x f(x) = x/
√
x2 + 1

−1000 −0.9999995
−100 −0.9999500
−10 −0.9950372
−1 −0.7071068
0 0
1 0.7071068
10 0.9950372
100 0.9999500
1000 0.9999995

The graph of f conveys this limiting behavior by approaching the horizontal
lines y = 1 as x moves far to the right and y = −1 as x moves far to the left.
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Figure 2.11:

These lines are called horizontal asymptotes of the graph. In general,
if a curve approaches a straight line as it recedes very far away from the
origin, that line is called an asymptote of the curve.

�

Definition 2.3.2. A line y = b is a horizontal asymptote of the graph
of a function f(x) if either

lim
x→∞

f(x) = b or lim
x→−∞

f(x) = b

Example 2.15 (Polynomial behavior at infinity). Find:

1. limx→∞ (3x3 − x2 + 2)

2. limx→−∞ (3x3 − x2 + 2)

3. limx→∞ (x4 − 5x3 − x)

4. limx→−∞ (x4 − 5x3 − x)

Solution 2.15. The highest−degree term of a polynomial dominates the
other terms as |x| grows large, so the limits of this term at ∞ and −∞
determine the limits of the whole polynomial. So,

1. limx→∞ (3x3 − x2 + 2) = limx→∞ (3x3) = 3×∞3 = 3×∞ =∞

2. limx→−∞ (3x3 − x2 + 2) = limx→−∞ (3x3) = 3×(−∞)3 = 3×(−∞) =
−∞

3. limx→∞ (x4 − 5x3 − x) = limx→∞ (x4) =∞4 =∞
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4. limx→−∞ (x4 − 5x3 − x) = limx→−∞ (x4) = (−∞)4 =∞

�

The only polynomials that have limits at ±∞ are constant ones, P (x) =
c. The situation is more interesting for rational functions. Recall that a
rational function is a quotient of two polynomials. The following examples
show how to render such a function in a form where its limits at infinity
and negative infinity (if they exist) are apparent. The way to do this is: to
divide the numerator and denominator by the highest power of x
appearing in the denominator, then use the following theorem.

Theorem 2.3.1. If r > 0 is a rational number such that xr is defined for
all x, then

lim
x→±∞

1

xr
= 0

Remark 2.3.1. The limits of a rational function at infinity and negative in-
finity either both fail to exist or both exist and are equal.

Example 2.16. Evaluate

lim
x→±∞

2x2 − x+ 3

3x2 + 5

Solution 2.16. Divide the numerator and the denominator by x2 , the
highest power of x appearing in the denominator:

lim
x→±∞

2x2 − x+ 3

3x2 + 5
= lim

x→±∞

2− (1/x) + (3/x2)

3 + (5/x2)

= lim
x→±∞

2− 0 + 0

3 + 0

=
2

3

Therefore, y = 2
3

is horizontal asymptote of 2x2−x+3
3x2+5

.

�
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Example 2.17. Evaluate

lim
x→±∞

5x+ 2

2x3 − 1

Solution 2.17. Divide the numerator and the denominator by the largest
power of x in the denominator, namely, x3.

lim
x→±∞

5x+ 2

2x3 − 1
= lim

x→±∞

(5/x2) + (2/x3)

2− (1/x3)

= lim
x→±∞

0 + 0

2− 0
= 0

Therefore, y = 0 (the x−axis) is horizontal asymptote of 5x+2
2x3−1 .

�

Example 2.18. Evaluate

lim
x→∞

x3 + 1

x2 + 1

Solution 2.18. Divide the numerator and the denominator by x2, the
largest power of x in the denominator:

lim
x→∞

x3 + 1

x2 + 1
= lim

x→∞

x+ (1/x2)

1 + (1/x2)

= lim
x→∞

∞+ 0

1 + 0
= ∞

Also,

lim
x→−∞

x3 + 1

x2 + 1
= −∞

Therefore the limits are not exist, and the function x3+1
x2+1

has no horizontal
asymptotes.

�
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Summary of limits at ±∞ for rational functions Let

Pm(x) = amx
m + · · ·+ a0

and Qn(x) = bnx
n + · · ·+ b0

be polynomials of degree m and n, respectively, so that am 6= 0 and
bn 6= 0. Then

lim
x→±∞

Pm(x)

Qn(x)

1. equals 0 if m < n,

2. equals am
bn

if m = n,

3. does not exist if m > n.

The technique used in the previous examples can also be applied to
more general kinds of functions. The function in the following example is
not rational, and the limit seems to produce a meaningless∞−∞ until we
resolve matters by rationalizing the numerator.

Example 2.19. Evaluate

lim
x→∞

(√
x2 + x− x

)
Solution 2.19. We are trying to find the limit of the difference of two
functions, each of which becomes arbitrarily large as x increases to infin-
ity. We rationalize the expression by multiply ing the numerator and the
denominator (which is 1) by the conjugate expression,

√
x2 + x+ x:

lim
x→∞

(√
x2 + x− x

)
= lim

x→∞

(√
x2 + x− x

) (√
x2 + x+ x

)
√
x2 + x+ x

= lim
x→∞

x2 + x− x2√
x2
(
1 + 1

x

)
+ x

= lim
x→∞

x

x
√

1 + 1
x

+ x
= lim

x→∞

1√
1 + 1

x
+ 1

=
1

2

Here
√
x2 = |x| = x because x > 0 as x→∞.
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Exercise 2.10. Evaluate

lim
x→−∞

(√
x2 + x− x

)
Example 2.20. Using the Squeezing Theorem, find the horizontal asymp-
tote of the curve

f(x) = 2 +
sinx

x

Solution 2.20. We are interested in the behavior as x→ ±∞. Since

0 ≤
∣∣∣∣sinxx

∣∣∣∣ ≤ ∣∣∣∣1x
∣∣∣∣

and

lim
x→±∞

∣∣∣∣1x
∣∣∣∣ = 0,

we have

lim
x→±∞

∣∣∣∣sinxx
∣∣∣∣ = 0

by the Squeezing Theorem. Hence,

lim
x→±∞

(
2 +

sinx

x

)
= 2 + 0 = 2,

and the line y = 2 is a horizontal asymptote of the curve on both left and
right.

�

Example 2.21. Find the horizontal asymptotes (if any) of the following
functions.

1. f(x) = tan−1 x

2. g(x) = ex

Solution 2.21. 1. In fact,

lim
x→∞

tan−1 x =
π

2
and lim

x→−∞
tan−1 x = −π

2

so both of the lines y = −π
2

and y = π
2

are horizontal asymptotes.
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2. The graph of the natural exponential function ex has the line y = 0
(the x−axis) as a horizontal asymptote. (The same is true of any
exponential function with base a > 1.) In fact

lim
x→−∞

ex = 0 while lim
x→∞

ex =∞

so the line y = 0 is horizontal asymptote of g(x) = ex.

�

Example 2.22. Use the definitions of the hyperbolic functions to find each
of the following limits.

1. lim
x→∞

tanhx

2. lim
x→−∞

sinhx

Solution 2.22. 1. limx→∞ tanhx = limx→∞
ex−e−x

ex−e−x = limx→∞
ex

ex
= 1

2. limx→−∞ sinhx = limx→∞
ex−e−x

2
= limx→∞

−e−x

2
= −∞

�

Exercise 2.11. Use the definitions of the hyperbolic functions to find each
of the following limits.

1. lim
x→−∞

tanhx

2. lim
x→∞

sinhx

3. lim
x→∞

sech x

Oblique Asymptotes If the degree of the numerator of a rational function
is one greater than the degree of the denominator, the graph has
an oblique (slanted) asymptote. We find an equation for the
asymptote by dividing numerator by denominator to express f as a
linear function plus a remainder that goes to zero as x→ ±∞ Heres
an example.

Example 2.23. Find the oblique asymptote for the graph of

f(x) =
2x2 − 3

7x+ 4
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Figure 2.12:

Solution 2.23. By long division, we find

f(x) =
2x2 − 3

7x+ 4

=

(
2

7
x− 8

49

)
︸ ︷︷ ︸

linear function g(x)

+
−115

49(7x+ 4)︸ ︷︷ ︸
remainder

As x → ±∞ the remainder, whose magnitude gives the vertical
distance between the graphs of f and g, goes to zero, making the
(slanted) line

g(x) =
2

7
x− 8

49
an asymptote of the graph of f (Figure 2.12). The line is an asymptote
both to the right and to the left.

�

Infinite Limits and Vertical Asymptotes Infinite limits provide useful
symbols and language for describing the behavior of functions whose
values become arbitrarily large, positive or negative. We continue our
analysis of graphs of rational functions using vertical asymptotes and
dominant terms for numerically large values of x.
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Figure 2.13:

Illustration Example 2.5. Let us look again at the function f(x) =
1
x
. As x→ 0+ the values of f grow without bound, eventually reach-

ing and surpassing every positive real number. That is, given any
positive real number B, however large, the values of f become larger
still (Figure 2.13). Thus, f has no limit as x → 0+. It is never-
theless convenient to describe the behavior of f by saying that f(x)
approaches ∞ as x→ 0+. We write

lim
x→0+

f(x) = lim
x→0+

1

x
=∞

In writing this, we are not saying that the limit exists. Nor are we
saying that there is a real number ∞, for there is no such number.
Rather, we are saying that limx→0+

1
x

does not exist because 1
x

becomes
arbitrarily large and positive as x → 0+. As x → 0−, the values of
f(x) = 1

x
become arbitrarily large and negative. Given any negative

real number −B, the values of f eventually lie below −B. (See Figure
2.13.) We write

lim
x→0−

f(x) = lim
x→0−

1

x
= −∞

Again, we are not saying that the limit exists and equals the number
−∞. There is no real number −∞. We are describing the behavior



2.3. LIMITS AT INFINITY AND INFINITE LIMITS 83

of a function whose limit as x→ 0− does not exist because its values
become arbitrarily large and negative.

�

Example 2.24. Find

lim
x→1+

1

x− 1
and lim

x→1−

1

x− 1

Solution 2.24. Think about the number x−1 and its reciprocal. As
x → 1+, we have (x − 1) → 0+ and 1

x−1 → ∞. As x → 1−, we have

(x− 1)→ 0− and 1
x−1 → −∞.

�

Rational functions can behave in various ways near zeros of their
denominators. See the following illustration example.

Illustration Example 2.6.

(a) lim
x→2

(x− 2)2

x2 − 4
= lim

x→2

(x− 2)2

(x− 2)(x+ 2)
= lim

x→2

x− 2

x+ 2
= 0

(b) lim
x→2

x− 2

x2 − 4
= lim

x→2

x− 2

(x− 2)(x+ 2)
= lim

x→2

1

x+ 2
=

1

4

(c) lim
x→2+

x− 3

x2 − 4
= lim

x→2+

x− 3

(x− 2)(x+ 2)
= −∞

(d) lim
x→2−

x− 3

x2 − 4
= lim

x→2−

x− 3

(x− 2)(x+ 2)
=∞

(e) lim
x→2

x− 3

x2 − 4
= lim

x→2

x− 3

(x− 2)(x+ 2)
does not exist

(f) lim
x→2

2− x
(x− 2)3

= lim
x→2

−(x− 2)

(x− 2)3
= lim

x→2

−1

(x− 2)2
= −∞

In parts (a) and (b) the effect of the zero in the denominator at x = 2
is canceled because the numerator is zero there also. Thus a finite
limit exists. This is not true in part (f), where cancelation still leaves
a zero in the denominator.
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�

Definition 2.3.3. A line x = a is a vertical asymptote of the graph
of a function f(x) if either

lim
x→a+

f(x) = ±∞ or lim
x→a−

f(x) = ±∞

Example 2.25. Find the horizontal and vertical asymptotes of the
curve

f(x) =
x+ 3

x+ 2

Solution 2.25. We are interested in the behavior as x → ±∞ and
as x→ −2 where the denominator is zero. Since

lim
x→±∞

x+ 3

x+ 2
= lim

x→±∞

1 + 3
x

1 + 2
x

= 1

and

lim
x→−2+

x+ 3

x+ 2
=∞ and lim

x→−2+

x+ 3

x+ 2
= −∞

then: the horizontal asymptote is y = 1 and the vertical asymptote is
x = −2.

�

Example 2.26. Find the horizontal and vertical asymptotes of the
curve

g(x) =
−8

x2 − 4

Solution 2.26. We are interested in the behavior as x → ±∞ and
as x → ±2 where the denominator is zero. Notice that g is an even
function of x, so its graph is symmetric with respect to the y−axis.
Since

lim
x→±∞

−8

x2 − 4
= 0

the line y = 0 is a horizontal asymptote of the graph of g. Since

lim
x→2+

−8

x2 − 4
= −∞ and lim

x→2−

−8

x2 − 4
=∞
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and

lim
x→−2+

−8

x2 − 4
=∞ and lim

x→−2−

−8

x2 − 4
= −∞

then the lines x = −2 and x = 2 are vertical asymptotes of the graph
of g.

�

Example 2.27. Find the asymptotes of the graph of

f(x) =
x2 − 3

2x− 4

Solution 2.27. We are interested in the behavior as x → ±∞ and
as x → 2 where the denominator is zero. First, we divide (2x − 4)
into (x2 − 3) to obtain

f(x) =
x

2
+ 1︸ ︷︷ ︸

linear

+
1

2x− 4︸ ︷︷ ︸
remainder

Since

lim
x→2+

f(x) =∞ and lim
x→2+

f(x) = −∞

the line x = 2 is a vertical asymptote. As x → ±∞, the remainder
approaches 0 and

f(x)→ x

2
+ 1

The line y = x
2

+ 1 is an oblique asymptote, see Figure 2.14.

�

Exercise 2.12. Find the asymptotes of the function.

1. f(x) = x2+x−6
x2−9

2. g(x) = x3+1
x2
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Figure 2.14:

Figure 2.15:

2.4 Limits Involving (sin θ) /θ

A central fact about (sin θ) /θ is that in radian measure its limit as θ → 0
is 1. We can see this in Figure 2.15 and confirm it algebraically using the
Squeezing Theorem.

Theorem 2.4.1.

lim
θ→0

sin θ

θ
= 1 (θ in radians.)

Corollary 2.4.2.

lim
θ→0

tan θ

θ
= 1 (θ in radians.)
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Corollary 2.4.3.

(1) lim
θ→0

sin aθ

bθ
= lim

θ→0

aθ

sin bθ
= lim

θ→0

sin aθ

sin bθ
=
a

b

(2) lim
θ→0

tan aθ

bθ
= lim

θ→0

aθ

tan bθ
= lim

θ→0

tan aθ

tan bθ
=
a

b

(3) lim
θ→0

tan aθ

sin bθ
= lim

θ→0

sin aθ

tan bθ
=
a

b

Example 2.28. Show that

lim
x→0

1− cosx

x
= 0

Solution 2.28. Using the half−angle formula cos x = 1 − 2 sin2 (x/2), we
calculate

lim
x→0

1− cosx

x
= lim

x→0

1−
[
1− 2 sin2 (x/2)

]
x

= lim
x→0

[
2 sin

(
1
2
x
)

x
sin

(
1

2
x

)]

= 2× lim
x→0

sin
(
1
2
x
)

x
× lim

x→0
sin

(
1

2
x

)
= 2× 1/2

1
× 0 = 0

Exercise 2.13. Show that

lim
θ→0

1− cos θ

θ sin θ
=

1

2

by:

a) using the half−angle formula as in the previous example,

b) multiplying both the nominator and denominator by 1 + cos θ.

Example 2.29. Evaluate

lim
x→0

5 sin 3x+ tan 7x

3x+ x2
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Solution 2.29.

lim
x→0

5 sin 3x+ tan 7x

3x+ x2
= lim

x→0

5 sin 3x
x

+ tan 7x
x

3x
x

+ x2

x

= lim
x→0

5 sin 3x
x

+ tan 7x
x

3 + x

=
5× 3

1
+ 7

1

3 + 0
=

22

3

�

Exercise 2.14. Evaluate

lim
x→0

4x

tan 3x+ sin 2x

Example 2.30. Evaluate

lim
t→0

sin (t2)

t

Solution 2.30.

lim
t→0

sin (t2)

t
= lim

t→0

[
sin (t2)

t2
× t
]

= lim
t→0

sin (t2)

t2
× lim

t→0
t

= 1× 0 = 0

Example 2.31. Evaluate

lim
t→0

sin2 t

3t2

Solution 2.31.

lim
t→0

sin2 t

3t2
=

1

3
lim
t→0

[
sin t

t

]2
=

1

3

[
lim
t→0

sin t

t

]2
=

1

3
× (1)2 =

1

3

�
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Example 2.32. Evaluate

lim
t→5

tan(t− 5)

t2 − 25

Solution 2.32.

lim
t→5

tan(t− 5)

t2 − 25
= lim

t→5

tan(t− 5)

(t− 5)(t+ 5)

= lim
t→5

tan(t− 5)

t− 5
× lim

t→5

1

t+ 5
= 1× 1

5 + 5
=

1

10

�

Exercise 2.15. Evaluate

lim
x→1

sin(πx)

x− 1
and lim

x→0

tanx

|x|

2.5 Continuous Functions

We noticed in Section 2.2 that the limit of a function as x approaches a can
often be found simply by calculating the value of the function at a. Func-
tions with this property are called continuous at a. We will see that the
mathematical definition of continuity corresponds closely with the meaning
of the word continuity in everyday language. (A continuous process is one
that takes place gradually, without interruption or abrupt change.)

Definition 2.5.1. A function f is continuous at a number a if

lim
x→a

f(x) = f(a)

Notice that Definition 2.5.1 implicitly requires three things if f is con-
tinuous at a:

1. f(a) is defined (that is, a is in the domain of f)

2. limx→a f(x) exists

3. limx→a f(x) = f(a).
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We say that f is discontinuous at a (or has a discontinuity at a) if f is
not continuous at a.

Example 2.33. Figure 2.16 shows the graph of a function f . At which
numbers is f discontinuous? Why?

Figure 2.16:

Solution 2.33. It looks as if there is a discontinuity when a = 1 because
the graph has a break there. The official reason that f is discontinuous
at 1 is that f(1) is not defined. The graph also has a break when a = 3,
but the reason for the discontinuity is different. Here, f(3) is defined, but
limx→3 f(x) does not exist (because the left and right limits are different).
So f is discontinuous at 3. What about a = 5? Here, f(5) is defined and
limx→5 f(x) exists (because the left and right limits are the same). But
limx→5 f(x) 6= f(5). So f is discontinuous at 5.

Exercise 2.16. From the graph of g in Figure 2.17 below, state the intervals
on which g is continuous.

Example 2.34. Where are each of the following functions discontinuous?

(a) f(x) =
x2 − x− 2

x− 2
(b) g(x) =

{
x2−x−2
x−2 if x 6= 2

1 if x = 2

Solution 2.34. (a) Notice that f(2) is not defined, so f is discontinuous
at 2. Later we will see why f is continuous at all other numbers.
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Figure 2.17:

(b) Here f(2) = 1 is defined and

lim
x→2

f(x) = lim
x→2

x2 − x− 2

x− 2
= lim

x→2

(x− 2)(x+ 1)

x− 2
= lim

x→2
(x+ 1) = 3

exists. But

lim
x→2

f(x) 6= f(2)

so f is not continuous at 2.

�

Exercise 2.17. Explain why the function

f(x) =


cosx if x < 0

0 if x = 0
1− x2 if x > 0

is discontinuous at a = 0?

Definition 2.5.2. A function f is continuous from the right at a num-
ber a if

lim
x→a+

f(x) = f(a)

and f is continuous from the left at a if

lim
x→a−

f(x) = f(a)
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Definition 2.5.3. A function f is continuous on an interval if it is
continuous at every number in the interval. (If f is defined only on one side
of an endpoint of the interval, we understand continuous at the endpoint
to mean continuous from the right or continuous from the left.)

Example 2.35. Show that the function f(x) = 1−
√

1− x2 is continuous
on the interval [−1, 1].

Solution 2.35. If −1 < a < 1, then using the Limit Laws, we have

lim
x→a

f(x) = lim
x→a

(
1−
√

1− x2
)

= 1− lim
x→a

√
1− x2

= 1−
√

1− a2

= f(a)

Thus, by Definition 2.5.1, f is continuous at a if −1 < a < 1. Similar
calculations show that

lim
x→−1+

f(x) = 1 = f(−1) and lim
x→1−

f(x) = 1 = f(1)

so f is continuous from the right at −1 and continuous from the left at 1.
Therefore, according to Definition 2.5.3, f is continuous on [−1, 1].

�

Instead of always using Definitions 2.5.1, 2.5.2, and 2.5.3 to verify the
continuity of a function as we did in the previous example, it is often con-
venient to use the next two theorems, which shows how to build up com-
plicated continuous functions from simple ones.

Theorem 2.5.1. If f and g are continuous at a and c is a constant, then
the following functions are also continuous at a:

1. f + g 2. f − g 3. cf

4. f × g 5. f
g

if g(a) 6= 0

Note that if f and g are continuous on an interval, then so are the
functions f + g, f − g, fg, and f/g (if g is never 0).
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Theorem 2.5.2. All functions, except possibly piecewise functions, are con-
tinuous on its domain.

Example 2.36. Find the points of discontinuity of the following.

1. f(x) = 1
3−|x|

2. f(x) = 2 ln
√

1− x

3. f(x) = 5 + 21/x

4. f(x) =

{
2x− 3 if x ≤ 4
1 + 16

x
if x > 4

Solution 2.36. 1. Since the domain of f(x) = 1
3−|x| is R−{−3, 3} then

f is continuous on R− {−3, 3} and discontinuous on {−3, 3}.

2. Since the domain of f(x) = 2 ln
√

1− x is (−∞, 1) then f is continu-
ous on (−∞, 1) and discontinuous on R− (−∞, 1) = [1,∞).

3. Since the domain of f(x) = 5 + 21/x is R − {0} then f is continuous
on R− {0} and discontinuous only when x = 0.

4. Note that f is piecewise function. Since f(x) = 2x−3 when x < 4 then
it is continuous because 2x−3 is a polynomial continuous everywhere
and has no discontinuity point. When x > 4, f(x) = 1 + 16

x
also

continuous, although it is discontinuous at x = 0 but 0 ≯ 4. So, the
only possible discontinuity points of f(x) is x = 4. However, f(x) is
continuous at x = 4 because:

a) f(4) = 2× 4− 3 = 5 is defined,

b) Since

lim
x→4+

f(x) = lim
x→4+

(
1 +

16

x

)
= 5

lim
x→4−

f(x) = lim
x→4−

(2x− 3) = 5

then limx→4 f(x) exists and equals 5.

c) f(4) = limx→4 f(x) = 5.
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Hence, f(x) is continuous on R and has no discontinuity point.

�

Exercise 2.18. Where is the function

g(x) =
lnx+ tan−1 x

x2 − 1

continuous?

Example 2.37. For what value of the constant c is the function continuous
on (−∞,∞)?

f(x) =

{
cx2 + 2x if x < 2
x3 − cx if x ≥ 2

Solution 2.37. Because f is continuous on R = (−∞,∞) then it is con-
tinuous at x = 2 the piecewise point of f . Therefore, limx→2 f(x) exists,
and

lim
x→2+

f(x) = lim
x→2−

f(x)

lim
x→2+

(
x3 − cx

)
= lim

x→2−

(
cx2 + 2x

)
8− 2c = 4c+ 4

6c = 4

c =
4

6
=

2

3

�

Exercise 2.19. Find the values of a and b that make the function contin-
uous everywhere.

(a) f(x) =

{
(sin ax)/5x if x 6= 0

2 if x = 0

(b) g(x) =


(x2 − 4)/(x− 2) if x < 2
ax2 − bx+ 3 if 2 ≤ x < 3
2x− a+ b if x ≥ 3
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Another way of combining continuous functions f and g to get a new
continuous function is to form the composite function f ◦ g. This fact is a
consequence of the following theorem.

Theorem 2.5.3. If g is continuous at a and f is continuous at g(a), then
the composite function (f ◦ g) (x) = f(g(x)) is continuous at a.

Theorem 2.5.4. If f is continuous at b and limx→a g(x) = b then

lim
x→a

f (g(x)) = f(b)

In other words,

lim
x→a

f (g(x)) = f
(

lim
x→a

g(x)
)

Example 2.38. Evaluate

lim
x→1

sin−1
(

1−
√
x

1− x

)
Solution 2.38. Because sin−1 is a continuous function, we can apply The-
orem 2.5.4:

lim
x→1

sin−1
(

1−
√
x

1− x

)
= sin−1

(
lim
x→1

1−
√
x

1− x

)
= sin−1

(
lim
x→1

1− x
(1−

√
x) (1 +

√
x)

)
= sin−1

(
lim
x→1

1

1 +
√
x

)
= sin−1

(
1

2

)
=
π

6

Exercise 2.20. Use continuity to evaluate limx→π sin (x+ sinx).





Chapter 3

The Derivative

The derivative is a limit measures the rate at which a function changes
and is one of the most important ideas in calculus. Derivatives are used
widely in science, economics, medicine, and computer science to calculate
velocity and acceleration, to explain the behavior of machinery, to estimate
the drop in water levels as water is pumped out of a tank, and to predict
the consequences of making errors in measurements. Finding derivatives
by evaluating limits can be lengthy and difficult. We develop techniques to
make calculating derivatives easier.

3.1 The Derivative as a Function

The problem of finding the tangent line to a curve involves finding a type
of limit. This special type of limit is called a derivative.

Definition 3.1.1. The derivative of the function f(x) with respect to the
variable x is the function f ′ whose value at x is

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
w→x

f(w)− f(x)

w − x
provided the limit exists.

The domain of f ′ is the set of points in the domain of f for which the
limit exists, and the domain may be the same or smaller than the domain

97
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of f . If f ′ exists at a particular x, we say that f is differentiable (has a
derivative) at x. If f ′ exists at every point in the domain of f , we call f
differentiable.

Notations There are many ways to denote the derivative of a function
y = f(x) where the independent variable is x and the dependent
variable is y. Some common alternative notations for the derivative
are

f ′(x) = y′ =
dy

dx
=
df

dx
=

d

dx
f(x) = D(f)(x) = Dxf(x)

The symbols d/dx and D indicate the operation of differentiation
and are called differentiation operators. We read dy/dx as the
derivative of y with respect to x, and df/dx and (d/dx)f(x) as the
derivative of f with respect to x. The prime notations y′ and f ′ come
from notations that Newton used for derivatives. The d/dx notations
are similar to those used by Leibniz. The dy/dx symbol should not
be regarded as a ratio.

Be careful not to confuse the notation D(f) as meaning the domain
of the function f instead of the derivative function f ′. The distinction
should be clear from the context.

To indicate the value of a derivative at a specified number x = a, we
use the notation

f ′(a) =
dy

dx

∣∣∣∣
x=a

=
df

dx

∣∣∣∣
x=a

=
d

dx
f(x)

∣∣∣∣
x=a

Calculating Derivatives from the Definition The process of calculat-
ing a derivative is called differentiation. To emphasize the idea that
differentiation is an operation performed on a function y = f(x) we
use the notation

d

dx
f(x)

as another way to denote the derivative f ′(x).

Example 3.1. Differentiate f(x) = x2.
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Solution 3.1.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)2 − x2

h

= lim
h→0

x2 + 2xh− h2 − x2

h

= lim
h→0

2xh− h2

h

= lim
h→0

h(2x− h)

h
= lim

h→0
(2x− h) = 2x

�

Example 3.2. Find the derivative of g(x) =
√
x at x = 4.

Solution 3.2.

g′(x) = lim
w→x

f(w)− f(x)

w − x

= lim
w→x

√
w −
√
x

w − x

= lim
w→x

√
w −
√
x

(
√
w −
√
x) (
√
w +
√
x)

= lim
w→x

1√
w +
√
x

=
1

2
√
x

g′(4) =
1

2×
√

4
=

1

4

�

Exercise 3.1. Find the derivative of f(t) = 1/t at t = 5.

Differentiable on an Interval; One-Sided Derivatives A function y =
f(x) is differentiable on an open interval (finite or infinite) if it has
a derivative at each point of the interval. It is differentiable on a
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closed interval [a, b] if it is differentiable on the interior (a, b) and if
the limits

f ′+(a) = lim
h→0+

f(a+ h)− f(a)

h
Right−hand derivative at a

f ′−(b) = lim
h→0−

f(b+ h)− f(b)

h
Left−hand derivative at b

exist at the endpoints.

Right−hand and left−hand derivatives may be defined at any point of
a function’s domain. The usual relation between one-sided and two-
sided limits holds for these derivatives. A function has a deriva-
tive at a point if and only if it has left-hand and right-hand
derivatives there, and these one-sided derivatives are equal.

f ′ (x0) exists ⇔ f ′+ (x0) = f ′− (x0) and both are exist.

Example 3.3. Show that the function g(x) = |x| is not differentiable
at x = 0.

Solution 3.3. There can be no derivative at the origin because the
one−sided derivatives differ there:

g′+(0) = lim
h→0+

g(0 + h)− g(0)

h

= lim
h→0+

|0 + h| − |0|
h

= lim
h→0+

|h|
h

= lim
h→0+

h

h
= lim

h→0+
1 = 1

g′−(0) = lim
h→0−

g(0 + h)− g(0)

h

= lim
h→0−

|0 + h| − |0|
h

= lim
h→0−

|h|
h

= lim
h→0−

−h
h

= lim
h→0−

−1 = −1

�

Exercise 3.2. Show that the function f(x) =
√
x is not differentiable

at x = 0.
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When Does a Function Not Have a Derivative at a Point?
Differentiability is a smoothness condition on the graph of f . A
function whose graph is otherwise smooth will fail to have a derivative
at a point for several reasons, such as at points where the graph has
(see Figure 3.1)

1. a corner, where the one-sided derivatives differ.

2. a cusp, where the derivative approaches ∞ from one side and
−∞ from the other.

3. a vertical tangent, where the derivative approaches∞ from both
sides or −∞ from both sides.

4. a discontinuity.

Figure 3.1:

Differentiable Functions Are Continuous A function is continuous at
every point where it has a derivative.

Theorem 3.1.1. If f has a derivative at x = c, then f is continuous
at x = c.

Corollary 3.1.2. If f is discontinuous at x = c, then f is not differ-
entiable at x = c.

Note that a function need not have a derivative at a point where it is
continuous. Also, a function that is not differentiable at a point need
not be discontinuous at that point. For example, |x| is continuous at
x = 0 but it is not differentiable at x = 0.



102 CHAPTER 3. THE DERIVATIVE

Example 3.4. The figure below shows the graph of a function over
a closed interval D. At what domain points does the function appear
to be

1. differentiable?

2. continuous but not differentiable?

3. neither continuous nor differentiable?

Figure 3.2:

Solution 3.4. 1. f is differentiable on [−2, 3]− {−1, 0, 2}
2. f is continuous but not differentiable at x = 1 because

f(−1) = lim
x→−1

f(x) = 0

but there is a corner at x = 1.

3. (c) f is neither continuous nor differentiable at x = 0 because

lim
x→0

f(x)

does not exist, and x = 2 because

f(2) 6= lim
x→2

f(x)

�
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3.2 Differentiation Rules and Higher

Derivatives

This section introduces rules that allow us to differentiate a great variety
of functions. By these rules, we can differentiate functions without having
to apply the definition of the derivative each time.

Rule 1 If f has the constant value f(x) = c then

df

dx
=

d

dx
(c) = 0.

The first rule of differentiation is that the derivative of every constant
function is zero. For example,

d

dx
(8) = 0,

d

dx
(π) = 0,

d

dx

(√
e
)

= 0.

Rule 2 If n is a real number, then

d

dx
xn = nxn−1.

The second rule tells how to differentiate xn if n is a real number. For
example,

(1)
d

dx
(x) = 1

(2)
d

dx

(
x2
)

= 2x

(3)
d

dx

(
x3
)

= 3x2

(4)
d

dx

(
x4
)

= 4x3

(5)
d

dx

(
1

x2

)
=

d

dx

(
x−2
)

= −2x−3 =
−2

x3

(6)
d

dx

(
3
√
x4
)

=
d

dx

(
x4/3

)
=

4

3
x1/3 =

4

3
3
√
x
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Rule 3 If u is a differentiable function of x, and c is a constant, then

d

dx
(cu) = c

du

dx
.

The third rule says that when a differentiable function is multiplied
by a constant, its derivative is multiplied by the same constant. For
example,

d

dx

(
3x2
)

= 3
d

dx

(
x2
)

= 3× (2x) = 6x.

Rule 4 If u and v are differentiable functions of x, then their sum (or
difference) u ± v is differentiable at every point where u and v are
both differentiable. At such points,

d

dx
(u± v) =

du

dx
± dv

dx

This rule says that the derivative of the sum (or difference) of two
differentiable functions is the sum of their derivatives. For example,
if f(x) = x3 + 4

3
x2 − 5x+ 1 then

f ′(x) =
d

dx

(
x3 +

4

3
x2 − 5x+ 1

)
=

d

dx

(
x3
)

+
d

dx

(
4

3
x2
)
− d

dx
(5x) +

d

dx
(1)

=
d

dx

(
x3
)

+
4

3

d

dx

(
x2
)
− 5

d

dx
(x) +

d

dx
(1)

= 3x2 +
4

3
× 2x− 5× 1 + 0

= 3x2 +
8

3
x− 5

Rule 5 While the derivative of the sum of two functions is the sum of
their derivatives, the derivative of the product of two functions is not
the product of their derivatives. The derivative of a product of two
functions is the sum of two products, as we now explain. If u and v
are differentiable at x, then so is their product uv, and

d

dx
(uv) = u

dv

dx
+ v

du

dx
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For example,

d

dx

[
x
(
1− x2

)]
= x

d

dx

(
1− x2

)
+
(
1− x2

) d

dx
(x)

= x(−2x) +
(
1− x2

)
(1)

= −2x2 + 1− x2

= 1− 3x2

Rule 6 Just as the derivative of the product of two differentiable functions
is not the product of their derivatives, the derivative of the quotient of
two functions is not the quotient of their derivatives. What happens
instead is the Quotient Rule: If u and v are differentiable at x and if
v(x) 6= 0 then the quotient u/v is differentiable at x, and

d

dx

(u
v

)
=
v du
dx
− u dv

dx

v2
.

For example,

d

dt

(
t2 − 1

t2 + 1

)
=

(t2 + 1) d
dt

(t2 − 1)− (t2 − 1) d
dt

(t2 + 1)

(t2 + 1)2

=
(t2 + 1) (2t)− (t2 − 1) (2t)

(t2 + 1)2

=
2t3 + 2t− 2t3 + 2t

(t2 + 1)2

=
4t

(t2 + 1)2

Rule 7 The derivative of the sine function is the cosine function:

d

dx
(sinx) = cos x

The following is an example of derivative of function involving the
sine function.

d

dx

(
2x3 sinx

)
= 2x3

d

dx
(sinx) + sin x

d

dx
(2x3) = 2x3 cosx+ 6x2 sinx
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Rule 8 The derivative of the cosine function is the negative of the sine
function:

d

dx
(cosx) = − sinx

The following is an example of derivative of function involving the
cosine function.

d

dx

(
cosx

1− sinx

)
=

(1− sinx) d
dx

(cosx)− cosx d
dx

(1− sinx)

(1− sinx)2

=
(1− sinx)(− sinx)− cosx(− cosx)

(1− sinx)2

=
1− sinx

(1− sinx)2

=
1

1− sinx

Rule 9 Because sinx and cosx are differentiable functions of x, the related
functions

tanx =
sinx

cosx
, cotx =

cosx

sinx
, secx =

1

cosx
, and cscx =

1

sinx

are differentiable at every value of x at which they are defined. Their
derivatives, calculated from the Quotient Rule, are given by the fol-
lowing formulas. Notice the negative signs in the derivative formulas
for the cofunctions.

d

dx
(tanx) = sec2 x

d

dx
(cotx) = − csc2 x

d

dx
(secx) = secx tanx

d

dx
(cscx) = − cscx cotx

Rule 10 The Derivative Rule for Inverses: If f has an interval I as domain
and f ′(x) exists and is never zero on I, then f−1 is differentiable
at every point in its domain. The value of (f−1)

′
at a point b in
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the domain of f−1 is the reciprocal of the value of f ′ at the point
a = f−1(b): (

f−1
)′

(b) =
1

f ′ (f−1(b))

Example 3.5. Let f(x) = x3 − 2. Find the value of df−1/dx at
x = 6 = f(2) without finding a formula for f−1(x)

Solution 3.5.(
f−1
)′

(6) =
1

f ′ (f−1(6))
=

1

f ′(2)
=

1

3× 22
=

1

12

�

Exercise 3.3. Let f(x) = 2x+ 3. Find f−1(x), then evaluate df/dx
at x = −1 and df−1/dx at x = f(−1) to show that(

f−1
)′

(−1) =
1

f ′ (f−1(−1))

Rule 11 For every positive value of x, we have

d

dx
(lnx) =

1

x
, and in general

d

dx
(loga x) =

1

x ln a
.

For example,

d

dt
(t ln t) = t

d

dt
(ln t) + ln t

d

dt
(t) = t× 1

t
+ ln t = 1 + ln t

d

dt
(2 log10 t) = 2

d

dt
(log10 t) = 2× 1

t ln 10
=

2

t ln 10

Rule 12 The exponential function is differentiable because it is the inverse
of a differentiable function whose derivative is never zero. So, by Rule
10, we have

d

dx
(ex) = ex, and in general

d

dx
(ax) = ax ln a.

For example,

d

dt

(
tan t

10t

)
=

10t d
dt

(tan t)− tan t d
dt

(10t)

(10t)2

=
10t sec2 t− 10t(ln 10) tan t

102t
=

sec2 t− (ln 10) tan t

10t
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Rule 13 The derivatives of the inverse trigonometric functions are sum-
marized as follows.

(1)
d

dx
(sin−1 x) =

1√
1− x2

where |x| < 1

(2)
d

dx
(cos−1 x) =

−1√
1− x2

where |x| < 1

(3)
d

dx
(tan−1 x) =

1

1 + x2

(4)
d

dx
(cot−1 x) =

−1

1 + x2

(5)
d

dx
(sec−1 x) =

1

|x|
√
x2 − 1

where |x| > 1

(6)
d

dx
(csc−1 x) =

−1

|x|
√
x2 − 1

where |x| > 1

Rule 14 Derivatives of Hyperbolic Functions.

(1)
d

dx
(sinhx) = cosh x

(2)
d

dx
(coshx) = sinhx

(3)
d

dx
(tanhx) = sech2x

(4)
d

dx
(cothx) = −csch2x

(5)
d

dx
(sech x) = −sech x tanhx

(6)
d

dx
(csch x) = −csch x cothx

Rule 15 Derivatives of Inverse Hyperbolic Functions.

(1)
d

dx
(sinh−1 x) =

1√
1 + x2

(2)
d

dx
(cosh−1 x) =

1√
x2 − 1
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(3)
d

dx
(tanh−1 x) =

1

1− x2

(4)
d

dx
(coth−1 x) =

1

1− x2

(5)
d

dx
(sech−1x) =

−1

x
√

1− x2

(6)
d

dx
(csch−1x) =

−1

|x|
√

1 + x2

Exercise 3.4. Find the derivative f ′ with respect to x of the following
functions.

1. f(x) = (1 + x)
√
x

2. f(x) = 2x − x2

3. f(x) = ex tan−1 x

4. f(x) = 2x2/(7x+ 5)

5. f(x) = x sinhx− coshx

Example 3.6. If f(x) =
√
xg(x) where g(4) = 2 and g′(4) = 3, find f ′(4).

Solution 3.6.

f ′(x) =
d

dx

[√
xg(x)

]
=
√
xg′(x) + g(x)× 1

2
√
x

f ′(4) =
√

4g′(4) + g(4)× 1

2
√

4

= 2× 3 + 2× 1

4
=

13

2

�

Example 3.7. For what values of a and b such that

f(x) =

{
x2 + a if x ≤ 1
bx if x > 1

is differentiable at x = 1.
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Solution 3.7. Since f is differentiable at x = 1, then: f is continuous at
x = 1, and f ′(1) exists. Therefore,

f ′(1) exists ⇒ f ′+(1) = f ′−(1)

⇒ d

dx
(bx)

∣∣∣∣
x=1

=
d

dx

(
x2 + a

)∣∣∣∣
x=1

⇒ b = 2

f continuous at x = 1 ⇒ lim
x→1

f(x) exists

⇒ lim
x→1+

f(x) = lim
x→1−

f(x)

⇒ lim
x→1+

(bx) = lim
x→1−

(
x2 + a

)
⇒ b = 1 + a⇒ 2 = 1 + a⇒ a = 1

�

Exercise 3.5. For what values of m and b such that

g(x) =

{
x2 if x ≤ 2
mx+ b if x > 2

is differentiable at x = 2.

Remark 3.2.1.

lim
h→0

f(x+ ah)− f(x)

bh
=
a

b
f ′(x)

Example 3.8. If f(x) = x+ lnx, evaluate

lim
h→0

f(2− 2h)− f(2)

3h

Solution 3.8. Note that f ′(x) = 1 + 1/x. Therefore,

lim
h→0

f(2− 2h)− f(2)

3h
=
−2

3
f ′(2)

=
−2

3
×
(

1 +
1

2

)
=
−2

3
× 3

2
= −1
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Exercise 3.6. Each limit represents the derivative of some function f at
some number c. State such an f and c in each case and then evaluate the
limit.

(1) lim
x→1

x9 − 1

x− 1

(2) lim
h→0

4
√

16 + h− 2

h

Higher Derivatives If f(x) is a differentiable function, then its deriva-
tive f ′(x) is also a function. If f ′ is also differentiable, then we can
differentiate to get a new function of x denoted by f ′′. So f ′′ = (f ′)′.
The function f ′′ is called the second derivative of f because it is
the derivative of the first derivative. Notationally,

f ′′(x) =
d2

dx2
f(x) =

d

dx

[
d

dx
f(x)

]

If f ′′ is differentiable, its derivative

f ′′′(x) =
d3

dx3
f(x) =

d

dx

[
d2

dx2
f(x)

]

is the third derivative of f with respect to x. The names continue
as you imagine, with

f (n)(x) =
dn

dxn
f(x) =

d

dx

[
d(n−1)

dx(n−1)
f(x)

]

denoting the nth derivative of f with respect to x for any pos-
itive integer n.

Example 3.9. If f(x) = x3 − x, find f ′′′(x) and f (4)(x)



112 CHAPTER 3. THE DERIVATIVE

Solution 3.9.

f(x) = x3 − x

f ′(x) =
d

dx

(
x3 − x

)
= 3x2 − 1

f ′′(x) =
d

dx

(
3x2 − 1

)
= 6x

f ′′′(x) =
d

dx
(6x) = 6 = 3!

f (4)(x) =
d

dx
(6) = 0

�

Example 3.10. Find the 27th derivative of cosx.

Solution 3.10. The first few derivatives of f(x) = cos x are as follows:

f ′(x) = − sinx

f ′′(x) = − cosx

f ′′′(x) = sinx

f (4)(x) = cosx

f (5)(x) = − sinx

We see that the successive derivatives occur in a cycle of length 4 and,
in particular, f (n)(x) = cos x whenever n is a multiple of 4. Therefore

f (24)(x) = cos x

and, differentiating three more times, we have

f (27)(x) = sin x

�

Exercise 3.7. Let f(x) = (x+ 1)/x. Evaluate: f ′′(x) and f ′′′(2).

Exercise 3.8. Evaluate
d87

dx87
sinx
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Example 3.11. Find a formula of the general nth derivative of g(x) =
xex.

Solution 3.11. To find the nth derivative of a function, good idea
to start doing first few derivatives, and try to guess a formula from
these derivatives. For the function g(x) = xex we have

g′(x) = x
d

dx
(ex) + ex

d

dx
(x) = xex + ex = (x+ 1)ex

g′′(x) = (x+ 1)
d

dx
(ex) + ex

d

dx
(x+ 1) = (x+ 1)ex + ex = (x+ 2)ex

g′′′(x) = (x+ 2)
d

dx
(ex) + ex

d

dx
(x+ 2) = (x+ 2)ex + ex = (x+ 3)ex

g(4)(x) = (x+ 3)
d

dx
(ex) + ex

d

dx
(x+ 3) = (x+ 3)ex + ex = (x+ 4)ex

...

g(n)(x) = (x+ n)ex

�

Exercise 3.9. Find a formula of the general nth derivative of:

1. f(x) = xn

2. f(x) = 1/x

3.3 The Chain Rule

Suppose you are asked to differentiate the function F (x) =
√

1 + x2. The
differentiation formulas you learned in the previous sections of this chapter
do not enable you to calculate F ′(x). Observe that F is a composite func-
tion. In fact, if we let y = f(u) =

√
u and let u = g(x) = 1 + x2, then

we can write y = F (x) = f(g(x)), that is, F = f ◦ g. We know how to
differentiate both f and g, so it would be useful to have a rule that tells us
how to find the derivative of F = f ◦ g in terms of the derivatives of f and
g.

It turns out that the derivative of the composite function f ◦ g is the
product of the derivatives of f and g. This fact is one of the most important
of the differentiation rules and is called the Chain Rule.
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The Chain Rule If g is differentiable at x and f is differentiable at g(x),
then the composite function F = f ◦ g defined by F (x) = f(g(x)) is
differentiable at x and F ′ is given by the product

F ′(x) = f ′(g(x)) · g′(x)

In Leibniz notation, if y = f(u) and u = g(x) are both differentiable
functions, then

dy

dx
=
dy

du

du

dx

Example 3.12. Given that g(2) = 1/2, g′(2) = −1/4, and f ′(1/2) = 1,
find (f ◦ g)′(2).

Solution 3.12.

(f ◦ g)′(2) = f ′(g(2)) · g′(2) = f ′
(

1

2

)
× −1

4
= 1× −1

4
=
−1

4

�

Example 3.13. Let y = 5− et and t = 2x2 − 3. Find dy/dx at x = 1.

Solution 3.13. Here, y is a function of t and t is a function of x, so y is a
function of x. Note that when x = 1 we have t = 2× (1)2− 3 = −1. Hence,

dy

dx
=
dy

dt
· dt
dx

=
(
−et
)
× (4x)

and
dy

dx

∣∣∣∣
x=1
t=−1

=
(
−e−1

)
× (4) =

−4

e

�

When applying the Chain Rule, it is helpful to think of the composite
function f ◦ g as having two parts, an inner part and an outer part. The
Chain Rule tells you that the derivative of y = f(u) is the derivative of the
outer function (at the inner function u) times the derivative of the inner
function. That is,

y′ = f ′(u) · u′
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Example 3.14. Differentiate sin (x2 + x) with respect to x.

Solution 3.14.

d

dx
sin
(
x2 + x

)︸ ︷︷ ︸
inside

= cos
(
x2 + x

)︸ ︷︷ ︸
inside

left alone

× (2x+ 1)︸ ︷︷ ︸
derivative of
the inside

�

Example 3.15. Differentiate
√
x2 + 1 with respect to x.

Solution 3.15. Since

d

dx

√
x =

1

2
√
x

and
d

dx

(
x2 + 1

)
= 2x,

then
d

dx

√
x2 + 1 =

1

2
√
x2 + 1

× 2x =
x√
x2 + 1

�

Example 3.16. Differentiate (x3 − 1)
100

with respect to x.

Solution 3.16. Since

d

dx
x100 = 100x99 and

d

dx

(
x3 − 1

)
= 3x2,

then

d

dx

(
x3 − 1

)100
= 100

(
x3 − 1

)99 × 3x2 = 300x2
(
x3 − 1

)99
�

Example 3.17. Differentiate sin3 x with respect to x.

Solution 3.17. Note that sin3 x = (sinx)3. So, since

d

dx
x3 = 3x2 and

d

dx
(sinx) = cos x,

then

d

dx
sin3 x =

d

dx
(sinx)3 = 3 (sin x)2 × cosx = 3 sin2 x cosx
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�

Example 3.18. Differentiate 2x cosx with respect to x.

Solution 3.18. Since

d

dx
2x = 2x ln 2 and

d

dx
(x cosx) = cos x− x sinx,

then
d

dx
2x cosx = 2x cosx ln 2× (cosx− x sinx)

�

Example 3.19. Differentiate ln (cos (5x2)) with respect to x.

Solution 3.19. Since

d

dx
lnx =

1

x
,

d

dx
cosx = − sinx, and

d

dx
5x2 = 10x

then

d

dx
ln
(
cos
(
5x2
))

=
1

cos (5x2)
×− sin

(
5x2
)
× 10x

=
−10x sin (5x2)

cos (5x2)

= −10x tan
(
5x2
)

�

Example 3.20. Differentiate

ln

(
t2 sin t√
t+ 1

)
with respect to t.
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Solution 3.20. First simplify the expression as follows, then differentiate
with respect to t.

ln

(
t2 sin t√
t+ 1

)
= ln

(
t2
)

+ ln (sin t)− ln
(√

t+ 1
)

= 2 ln t+ ln (sin t)− ln (t+ 1)
1
2

= 2 ln t+ ln (sin t)− 1

2
ln (t+ 1)

d

dt

[
ln

(
t2 sin t√
t+ 1

)]
= 2

d

dt
(ln t) +

d

dt
[ln (sin t)]− 1

2

d

dt
[ln (t+ 1)]

=
2

t
+

cos t

sin t
− 1

2

1

t+ 1

= cot t+
4 + 3t

2t(1 + t)

�

Example 3.21. Find the derivative of f(x) = cosh (ln x). Simplify where
possible.

Solution 3.21.

f ′(x) = sinh (lnx)× d

dx
lnx

=
elnx − e− lnx

2
× 1

x

=
x− 1/x

2
× 1

x
=
x2 − 1

2x2

�

Example 3.22. Find the derivative of f(x) = sinh−1 (tanx). Simplify
where possible.

Solution 3.22.

f ′(x) =
1√

1 + tan2 x
× d

dx
tanx =

sec2 x√
sec2 x

= secx

�
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Exercise 3.10. Calculate f ′ of each of the following functions.

1. f(x) = (x4 − 3x2 + 5)
3

2. f(x) = sin−1 (tanx)

3. f(x) = 2x
√

1 + x2

4. f(x) = esin(2x)

5. f(x) = 3x lnx

6. f(x) = log10 (x2ex)

7. f(x) = [ln (x+ 2ex)]2

8. f(x) = ecosh(3x)

9. f(x) =sech−1 (e−x)

10. f(x) = x sinh−1 x+ ln
√

1− x2

Example 3.23. Find g′(9) if g(3x) = 6x2.

Solution 3.23. Since g(3x) = 6x2 then

d

dx
[g(3x)] =

d

dx

(
6x2
)

3× g′(3x) = 12x

g′(3x) = 4x

Now, let x = 3 to obtain g′(9) = 4× 3 = 12.

�

Example 3.24. Let
d

dx

[
f
(
x2
)]

= x2.

Find f ′ (x2).



3.4. IMPLICIT DIFFERENTIATION 119

Solution 3.24.

d

dx

[
f
(
x2
)]

= x2

2xf ′
(
x2
)

= x2

f ′
(
x2
)

=
x2

2x
=

1

2
x where x 6= 0

�

Exercise 3.11. Find
d2

dt2
tan−1

(
3x2
)

3.4 Implicit Differentiation

Most of the functions we have dealt with so far have been described by
an equation of the form that expresses y = f(x) explicitly in terms of the
variable x. Another situation occurs when we encounter equations like

x2 + y2 = 25 or y2 − x = 0.

These equations define an implicit relation between the variables x and
y. In some cases we may be able to solve such an equation for y as an
explicit function (or even several functions) of x. When we cannot put an
equation F (x, y) = 0 in the form y = f(x) to differentiate it in the usual
way, we may still be able to find dy/dx by implicit differentiation. This
consists of differentiating both sides of the equation with respect to x and
then solving the resulting equation for y′.

Implicit Differentiation Technique

1. Differentiate both sides of the equation with respect to x, treat-
ing y as a differentiable function of x.

2. Collect the terms with dy/dx on one side of the equation.

3. Solve for dy/dx.
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Example 3.25. Find dy/dx if y2 = x.

Solution 3.25. To find dy/dx, we simply differentiate both sides of the
equation y2 = x with respect to x, treating y = f(x) as a differentiable
function of x:

y2 = x
d

dx

(
y2
)

=
d

dx
(x)

2y
dy

dx
= 1

dy

dx
=

1

2y

�

Example 3.26. Find dy/dx of circle x2 + y2 = 25 at the point (3, 4).

Solution 3.26. The circle is not the graph of a single function of x. But we
can also solve the problem more easily by differentiating the given equation
of the circle implicitly with respect to x:

x2 + y2 = 25
d

dx

(
x2 + y2

)
=

d

dx
(25)

2x+ 2y
dy

dx
= 0

2y
dy

dx
= −2x

dy

dx
= −x

y
⇒ dy

dx

∣∣∣∣
(3,4)

= −3

4

�

Example 3.27. Find dy/dx if y2 = x2 + sin(xy).
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Solution 3.27.

y2 = x2 + sin(xy)

d

dx

(
y2
)

=
d

dx

(
x2 + sin(xy)

)
2y
dy

dx
= 2x+ cos(xy)

d

dx
(xy)

2y
dy

dx
= 2x+ cos(xy)

(
x
dy

dx
+ y

)
2y
dy

dx
= 2x+ x cos(xy)

dy

dx
+ y cos(xy)

2y
dy

dx
− x cos(xy)

dy

dx
= 2x+ y cos(xy)

[2y − x cos(xy)]
dy

dx
= 2x+ y cos(xy)

dy

dx
=

2x+ y cos(xy)

2y − x cos(xy)

�

Exercise 3.12. Find dy/dx of x = sin−1(2y) by implicit differentiation.

Implicit differentiation can also be used to find higher derivatives. Here
is an example.

Example 3.28. Find d2y/dx2 if 2x3 − 3y2 = 8.

Solution 3.28. To start, we differentiate both sides of the equation with
respect to x in order to find y′ = dy/dx.

d

dx

(
2x3 − 3y2

)
=

d

dx
(8)

6x2 − 6yy′ = 0

−6yy′ = −6x2

y′ =
x2

y
, when y 6= 0

We now apply the Quotient Rule to find y′′.

y′′ =
d

dx

(
dy

dx

)
=

d

dx

(
x2

y

)
=

2xy − x2y′

y2
=

2x

y
− x2

y2
· y′
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Finally, we substitute y′ = x2/y to express y′′ in terms of x and y.

y′′ =
2x

y
− x2

y2
x2

y2
=

2x

y
− x4

y3
, when y 6= 0

�

Exercise 3.13. Find d2y/dx2 of x3 +y3 = 16 at the point (2, 2) by implicit
differentiation.

The calculation of derivatives of complicated functions involving prod-
ucts, quotients, or powers can often be simplified by taking logarithms. The
method used in the following example is called logarithmic differentia-
tion.

Example 3.29. Differentiate

y = x
√
x

Solution 3.29. Using logarithmic differentiation, we have

ln y = ln
(
x
√
x
)

=
√
x lnx

d

dx
(ln y) =

d

dx

(√
x lnx

)
y′

y
=
√
x · 1

x
+ lnx · 1

2
√
x

y′ = y

(
1√
x

+
lnx

2
√
x

)
= x

√
x

(
2 + ln x

2
√
x

)
Exercise 3.14. Find dy/dx if y = (sinx)x.

3.5 Tangent Line

The problem of finding the tangent line to a curve involve calculating a
derivative. If a curve C has equation y = f(x) and we want to find the
tangent line to C at the point P (a, f(a)), then we consider a nearby point
Q(x, f(x)), where x 6= a, and compute the slope of the secant line PQ:

mPQ =
f(x)− f(a)

x− a
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Then we let Q approach P along the curve C by letting x approach a. If
mPQ approaches a number m, then we define the tangent t to be the line
through P with slope m. See Figure 3.3.

Figure 3.3:

Definition 3.5.1. The tangent line to the curve y = f(x) at the point
(a, f(a)) is the line through the point with slope

m = lim
x→a

f(x)− f(a)

x− a
= f ′(a)

provided that this limit exists.

Example 3.30. Find an equation of the tangent line to the parabola f(x) =
x2 at the point with x−coordinate is x = 1.

Solution 3.30. Here, the tangent point is

(1, f(1)) =
(
1, 12

)
= (1, 1)

Since f ′(x) = 2x then the slope is m = f ′(1) = 2 × 1 = 2. Using the
point−slope form of the equation of a line, we find the equation of the
tangent line at P (1, 1) as follows.

y − y0 = m (x− x0)
y − 1 = 2(x− 1)

y = 2x− 1

�
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Example 3.31. Find an equation of the tangent line to the hyperbola
g(x) = 3/x at the point (3, 1).

Solution 3.31. Since f ′(x) = −3/x2, then the slope of the tangent at (3, 1)
is

m = f ′(3) =
−3

9
= −1

3

Therefore an equation of the tangent at the point (3, 1) is

y − y0 = m (x− x0)

y − 1 = −1

3
(x− 3)

y = −1

3
x+ 2

�

Exercise 3.15. Find equations of the tangent line to the curve f(t) =
t4 + 2et at the point (0, 2).

Example 3.32. Find equations of the tangent line to the curve f(x) =
sin(sinx) at the point with x−coordinate is x = π.

Solution 3.32. Here, the tangent point is

(π, f(π)) = (π, sin(sinπ)) = (π, sin 0) = (π, 0)

Since f ′(x) = cos(sin x) cosx (by using Chain Rule), then the slope is

m = f ′(π) = cos(sin π) cosπ = cos(0)×−1 = 1×−1 = −1

Using the point−slope form of the equation of a line, we find the equation
of the tangent line at P (π, 0) as follows.

y − y0 = m (x− x0)
y − 0 = −1(x− π)

y = −x+ π

�
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Exercise 3.16. Find equations of the tangent line to the curve g(x) =
(1 + 2x)10 at the point with x−coordinate is x = 0.

Example 3.33.

1. Find y′ if x3 + y3 = 6xy.

2. Find the tangent to x3 + y3 = 6xy at the point (3, 3).

3. At what points in the first quadrant is the tangent line horizontal?

Solution 3.33. 1. Differentiating both sides of x3 + y3 = 6xy with re-
spect to x, regarding y as a function of x, and using the Chain Rule
on the term y3 and the Product Rule on the term 6xy, we get

3x2 + 3y2y′ = 6xy′ + 6y

y2y′ − 2xy′ = 2y − x2(
y2 − 2x

)
y′ = 2y − x2

y′ =
2y − x2

y2 − 2x

2. When x = y = 3,

y′ =
2× 3− 32

32 − 2× 3
= −1

this is a reasonable value for the slope at (3, 3). So, an equation of
the tangent to the curve at (3, 3) is

y − y0 = m (x− x0)
y − 3 = −1(x− 3)

y = −x+ 6

3. The tangent line is horizontal if y′ = 0. Using the expression for y′

from part the first part, we see that y′ = 0 when 2y−x2 = 0 (provided
that y2 − 2x 6= 0). Substituting y = 1

2
x2 in the equation of the curve,

we get

x3 +

(
1

2
x2
)3

= 6x

(
1

2
x2
)
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which simplifies to x6 = 16x3. Now, solve the last equation:

x6 = 16x3

x6 − 16x3 = 0

x3
(
x3 − 16

)
= 0

x3 = 0⇒ x = 0

x3 − 16 = 0⇒ x = 161/3

If x = 0 then y = 0, and if x = 161/3 = 24/3 then

y =
1

2

(
24/3

)2
= 25/3

Thus the tangent is horizontal at (0, 0) and at
(
24/3, 25/3

)
.

�

Exercise 3.17. The curve with equation y2 = 5x4−x2 is called a kampyle
of Eudoxus. Find an equation of the tangent line to this curve at the point
(1, 2).



Chapter 4

Applications of Differentiation

This chapter studies some of the important applications of derivatives. We
learn how derivatives are used to find extreme values of functions, to de-
termine and analyze the shapes of graphs, to calculate limits of fractions
whose numerators and denominators both approach zero or infinity, and to
find numerically where a function equals zero.

4.1 Indeterminate Forms and L’Hôspital’s

Rule

John Bernoulli discovered a rule for calculating limits of fractions whose
numerators and denominators both approach zero or +∞. The rule is
known today as l’Hôspital’s Rule, after Guillaume de l’Hôspital. He was a
French nobleman who wrote the first introductory differential calculus text,
where the rule first appeared in print.

Indeterminate Form 0/0,∞/∞ If the functions f(x) and g(x) are both
zero or both ±∞ at x = a then

lim
x→a

f(x)

g(x)

cannot be found by substituting x = a. The substitution produces
0/0 or ∞/∞, a meaningless expressions (indeterminate forms),
that we cannot evaluate. Sometimes, but not always, limits that lead

127
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to indeterminate forms may be found by cancelation, rearrangement
of terms, or other algebraic manipulations. L’Hôspital’s Rule enables
us to draw on our success with derivatives to evaluate limits that
otherwise lead to indeterminate forms.

Theorem 4.1.1. Suppose f and g are differentiable and g′(x) 6= 0 on
an open interval I that contains a (except possibly at a). Suppose that

lim
x→a

f(x)

g(x)
=

0

0
or

±∞
±∞

(In other words, we have an indeterminate form of type 0/0 or∞/∞.)
Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

if the limit on the right side exists or ±∞.

- L’Hôspital’s Rule says that the limit of a quotient of functions is
equal to the limit of the quotient of their derivatives, provided
that the given conditions are satisfied. It is especially important
to verify the conditions regarding the limits of and before using
L’Hôspital’s Rule.

- L’Hôspital’s Rule is also valid for one-sided limits and for limits
at infinity or negative infinity.

Example 4.1. Find

lim
x→1

lnx

x− 1

Solution 4.1. Since limx→1 lnx = 0 and limx→1(x− 1) = 0, then we
can apply L’Hôspital’s Rule:

lim
x→1

lnx

x− 1
= lim

x→1

d
dx

(lnx)
d
dx

(x− 1)
= lim

x→1

1/x

1
= lim

x→1

1

x
= 1

�

Example 4.2. Calculate

lim
x→∞

ex

x2
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Solution 4.2. We have limx→∞ e
x = ∞ and limx→∞ x

2 = ∞, so
L’Hôspital’s Rule gives:

lim
x→∞

ex

x2
= lim

x→∞

d
dx

(ex)
d
dx

(x2)
= lim

x→∞

ex

2x

Since ex → ∞ and 2x → ∞ as x → ∞, the limit on the right side
is also indeterminate, but a second application of L’Hôspital’s Rule
gives

lim
x→∞

ex

x2
= lim

x→∞

ex

2x
= lim

x→∞

ex

2
=∞

�

Example 4.3. Calculate

lim
x→∞

lnx
3
√
x

Solution 4.3. Since limx→∞ lnx = ∞ and limx→∞
3
√
x = ∞ as x →

∞, L’Hôspital’s Rule applies:

lim
x→∞

lnx
3
√
x

= lim
x→∞

1/x
1
3
x−2/3

Notice that the limit on the right side is now indeterminate of type
0
0
. But instead of applying L’Hôspital’s Rule a second time as we did

in the previous example, we simplify the expression and see that a
second application is unnecessary:

lim
x→∞

lnx
3
√
x

= lim
x→∞

1/x
1
3
x−2/3

= lim
x→∞

3
3
√
x

= 0

�

Example 4.4. Find

lim
x→0

tanx− x
x3
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Solution 4.4. Noting that both tanx−x→ 0 and x3 → 0 as x→ 0,
we use L’Hôspital’s Rule:

lim
x→0

tanx− x
x3

= lim
x→0

sec2 x− 1

3x2

Since the limit on the right side is still indeterminate of type 0
0
, we

apply L’Hôspital’s Rule again:

lim
x→0

tanx− x
x3

= lim
x→0

sec2 x− 1

3x2

= lim
x→0

2 sec2 x tanx

6x

=
2

6
× lim

x→0
sec2 x× lim

x→0

tanx

x

=
1

3
× 1× 1 =

1

1

�

Exercise 4.1. Find the limit.

(1) lim
t→0

et − 1

t3

(2) lim
t→∞

ln (ln t)

t

(3) lim
t→0

sin−1 t

t

(4) lim
t→∞

sinh t

et

Indeterminate Products 0 · ±∞ If limx→a f(x) = 0 and limx→a g(x) =
±∞, then it is not clear what the value of limx→a [f(x)g(x)], if any,
will be. There is a struggle between f and g. If f wins, the answer
will be 0; if g wins, the answer will be ±∞. Or there may be a
compromise where the answer is a finite nonzero number. This kind
of limit is called an indeterminate form of type 0 · ∞. We can
deal with it by writing the product as a quotient:

fg =
f

1/g
or fg =

g

1/f
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This converts the given limit into an indeterminate form of type 0
0

or
∞/∞ so that we can use L’Hôspital’s Rule.

Example 4.5. Evaluate

lim
x→0+

x lnx

Solution 4.5. The given limit is indeterminate because, as x→ 0+,
the first factor x approaches 0 while the second factor lnx approaches
−∞. Writing x as 1

1/x
we have 1/x→∞ as x→ 0+, so L’Hôspital’s

Rule gives:

lim
x→0+

x lnx = lim
x→0+

lnx

1/x
= lim

x→0+

1/x

−1/x2
= lim

x→0+
(−x) = 0

�

Exercise 4.2. Find the limit.

(1) lim
t→∞

t sin
(π
t

)
(2) lim

t→∞
t2e−t

(3) lim
t→0+

sin t ln t

Indeterminate Differences ∞−∞ If limx→a f(x) =∞ and limx→a g(x) =
∞, then the limit

lim
x→a

[f(x)− g(x)]

is called an indeterminate form of type ∞−∞. Again there is
a contest between f and g. Will the answer be ∞ (f wins) or will it
be ∞ (g wins) or will they compromise on a finite number? To find
out, we try to convert the difference into a quotient (for instance, by
using a common denominator, or rationalization, or factoring out a
common factor) so that we have an indeterminate form of type 0

0
or

∞/∞.
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Example 4.6. Evaluate

lim
x→(π/2)−

(secx− tanx)

Solution 4.6. First notice that sec x → ∞ and tanx → ∞ as
x → (π/2)−, so the limit is indeterminate. Here we use a common
denominator:

lim
x→(π/2)−

(secx− tanx) = lim
x→(π/2)−

(
1

cosx
− sinx

cosx

)
= lim

x→(π/2)−

1− sinx

cosx

= lim
x→(π/2)−

− cosx

− sinx
= 0

�

Exercise 4.3. Find the limit.

(1) lim
t→∞

(√
t2 + 1− t

)
(2) lim

t→∞

(
te1/t − t

)
(3) lim

t→∞
(t− ln t)

Indeterminate Powers 00,∞0,1∞ These several indeterminate forms arise
from the limit

lim
x→a

[f(x)]g(x)

Each of these three cases can be treated by writing the function as an
exponential:

[f(x)]g(x) = eg(x) ln f(x)

and then

lim
x→a

[f(x)]g(x) = elimx→a g(x) ln f(x)

where the indeterminate product g(x) ln f(x) is of type 0 · ∞.
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Example 4.7. Calculate

lim
x→0+

(1 + sin 4x)cotx

Solution 4.7. First notice that as x → 0+, we have 1 + sin 4x → 1
and cotx→∞, so the given limit is indeterminate. Let

(1 + sin 4x)cotx = ecotx ln(1+sin 4x)

Then
lim
x→0+

(1 + sin 4x)cotx = elimx→0+ cotx ln(1+sin 4x)

Since

lim
x→0+

cotx ln(1 + sin 4x) = lim
x→0+

ln(1 + sin 4x)

tanx

= lim
x→0+

4 cos 4x
1+sin 4x

sec2 x
= 4

then
lim
x→0+

(1 + sin 4x)cotx = e4

�

Example 4.8. Find
lim
x→0+

xx

Solution 4.8. Notice that this limit is indeterminate since 0x = 0 for
any x > 0 but x0 = 1 for any x 6= 0. We could proceed by writing the
function as an exponential

xx = ex lnx

and then
lim
x→0+

xx = elimx→0+ x lnx = e0 = 1

�

Exercise 4.4. Find the limit.

(1) lim
t→0

(1− 2t)1/t

(2) lim
t→∞

(
1 +

a

t

)bt
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4.2 The Mean Value Theorem

We know that constant functions have zero derivatives, but could there be a
complicated function, with many terms, the derivatives of which all cancel
to give zero? What is the relationship between two functions that have iden-
tical derivatives over an interval? What we are really asking here is what
functions can have a particular kind of derivative. These and many other
questions we study in this chapter are answered by applying the Mean
Value Theorem. To arrive at this theorem we first need Rolle’s Theo-
rem.

Rolle’s Theorem Drawing the graph of a function gives strong geometric
evidence that between any two points where a differentiable function
crosses a horizontal line there is at least one point on the curve where
the tangent is horizontal (Figure 4.1). More precisely,we have the
following theorem.

Theorem 4.2.1. Suppose that f is continuous at every point of the
closed interval [a, b] and differentiable at every point of its interior
(a, b). If

f(a) = f(b),

then there is at least one number c ∈ (a, b) at which

f ′(c) = 0.

Figure 4.1:
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Example 4.9. Verify that the function

f(x) =
x3

3
− 3x

satisfies the three hypotheses of Rolle’s Theorem on the interval [−3, 3].
Then find all numbers c that satisfy the conclusion of Rolle’s Theorem.

Solution 4.9. First, you can see that f(−3) = 0 = f(3). Since f is
a polynomial, it is differentiable on (−3, 3) and continuous on [−3, 3].
Thus, by Rolle’s Theorem, there is a number c ∈ (−3, 3) such that

f ′(c) = 0

c2 − 3 = 0

c2 = 3

c = ±
√

3 ∈ (−3, 3)

�

Exercise 4.5. Verify that the function

f(x) = cos 2t

satisfies the three hypotheses of Rolle’s Theorem on the interval
[
π
8
, 7π

8

]
.

Then find all numbers c that satisfy the conclusion of Rolle’s Theorem.

Mean Value Theorem The Mean Value Theorem, which was first stated
by Joseph Louis Lagrange, is a slanted version of Rolle’s Theorem
(Figure 4.2). There is a point where the tangent is parallel to chord
AB.

Theorem 4.2.2. Suppose that f is continuous on a closed interval
[a, b] and differentiable on the interval’s interior (a, b). Then there is
at least one number c ∈ (a, b) at which

f ′(c) =
f(b)− f(a)

b− a
.
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Figure 4.2:

Example 4.10. Verify that the function

f(x) = x3 − x

satisfies the hypotheses of the Mean Value Theorem on the interval
[0, 2]. Then find all numbers c that satisfy the conclusion of the Mean
Value Theorem.

Solution 4.10. Since f is a polynomial, it is continuous and differen-
tiable for all x, so it is certainly continuous on [0, 2] and differentiable
on (0, 2). Therefore, by the Mean Value Theorem, there is a number
c ∈ (0, 2) such that

f ′(c) =
f(2)− f(0)

2− 0

3c2 − 1 =
6− 0

2
3c2 − 1 = 3

c2 =
4

3

c = ± 2√
3

But must lie in (0, 2), so c = 2/
√

3 only since −2/
√

3 6∈ (0, 2).

�



4.2. THE MEAN VALUE THEOREM 137

Exercise 4.6. Verify that the function

f(x) = e−2x

satisfies the hypotheses of the Mean Value Theorem on the interval
[0, 3]. Then find all numbers c that satisfy the conclusion of the Mean
Value Theorem.

Example 4.11. Suppose that f(0) = −3 and f ′(x) ≤ 5 for all values
of x. How large can f(2) possibly be?

Solution 4.11. We are given that f is differentiable (and therefore
continuous) everywhere. In particular, we can apply the Mean Value
Theorem on the interval [0, 2]. There exists a number c ∈ (0, 2) such
that

f ′(c) =
f(2)− f(0)

2− 0
2f ′(c) = f(2)− (−3)

2f ′(c)− 3 = f(2)

We are given that f ′(x) ≤ 5 for all x, so in particular we know that
f ′(c) ≤ 5. Multiplying both sides of this inequality by 2, we have
2f ′(c) ≤ 10, so

f(2) = 2f ′(c)− 3 ≤ 10− 3 = 7.

Thus, the largest possible value for f(2) is 7.

�

Exercise 4.7. If g(1) = 10 and g′(t) ≥ 2 for 1 ≤ t ≤ 4, how small
can g(4) possibly be?

Mathematical Consequences At the beginning of the section, we asked
what kind of function has a zero derivative over an interval. The first
corollary of the Mean Value Theorem provides the answer.
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Corollary 4.2.3. If f ′(x) = 0 at each point x of an open interval
(a, b), then f(x) = C for all x ∈ (a, b), where C is a constant.

Example 4.12. Prove the identity tan−1 x+ cot−1 x = π/2.

Solution 4.12. Although calculus is not needed to prove this identity,
the proof using calculus is quite simple. If f(x) = tan−1 x + cot−1 x,
then

f ′(x) =
1

1 + x2
− 1

1 + x2
= 0

for all values of x. Therefore f(x) = C, a constant. To determine the
value of C, we put x = 1 because we can evaluate exactly. Then

C = f(1) = tan−1 1 + cot−1 1 =
π

4
+
π

4
=
π

2
.

Thus tan−1 x+ cot−1 x = π/2.

�

At the beginning of this section, we also asked about the relationship
between two functions that have identical derivatives over an inter-
val. The next corollary tells us that their values on the interval have
a constant difference.

Corollary 4.2.4. If f ′(x) = g′(x) at each point x in an open interval
(a, b), then there exists a constant C such that f(x) = g(x) + C for
all x ∈ (a, b). That is, f − g is a constant on (a, b).

Exercise 4.8. Prove the identity

2 sin−1 x = cos−1
(
1− 2x2

)
for x ≥ 0
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4.3 Extreme Values of Functions

This section shows how to locate and identify extreme values of a continuous
function from its derivative. Once we can do this, we can solve a variety
of optimization problems in which we find the optimal (best) way to do
something in a given situation.

Definition 4.3.1. Let f be a function with domain D. Then f has an
absolute maximum value on D at a point c if f(x) ≤ f(c) for all x ∈ D
and an absolute minimum value on D at c if f(x) ≥ f(c) for all x ∈ D.

Absolute maximum and minimum values are called absolute extrema
(plural of the Latin extremum). Absolute extrema are also called global
extrema, to distinguish them from local extrema defined later in this sec-
tion.

Illustration Example 4.1. For example, on the closed interval
[
−π

2
, π
2

]
the function f(x) = cosx takes on an absolute maximum value of 1 (once)
and an absolute minimum value of 0 (twice). On the same interval, the
function g(x) = sinx takes on a maximum value of 1 and a minimum value
of −1 (Figure 4.3).

Figure 4.3:

Illustration Example 4.2. The absolute extrema of the following func-
tions on their domains can be seen in Figure 4.4. Each function has the
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same defining equation y = x2, but the domains vary. Notice that a func-
tion might not have a maximum or minimum if the domain is unbounded
or fails to contain an endpoint.

Function rule Domain D Absolute extrema on D
y = x2 (−∞,∞) No absolute maximum.

Absolute minimum of 0 at x = 0
y = x2 [0, 2] Absolute maximum of 4 at x = 2

Absolute minimum of 0 at x = 0
y = x2 (0, 2] Absolute maximum of 4 at x = 2

No absolute minimum
y = x2 (0, 2) No absolute extrema

Figure 4.4:

The following theorem asserts that a function which is continuous at
every point of a closed interval [a, b] has an absolute maximum and an
absolute minimum value on the interval. We always look for these values
when we graph a function.

Theorem 4.3.1. If f is continuous on a closed interval [a, b], then f attains
both an absolute maximum value M and an absolute minimum value m in
[a, b]. That is, there are numbers x1 and x2 in [a, b] with f (x1) = m,
f (x2) = M and m ≤ f(x) ≤M for every other x in [a, b].

Local (Relative) Extreme Values Figure 4.5 shows a graph with five
points where a function has extreme values on its domain [a, b]. The
function’s absolute minimum occurs at a even though at e the func-
tion’s value is smaller than at any other point nearby. The curve rises
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to the left and falls to the right around c, making f(c) a maximum
locally. The function attains its absolute maximum at d.

Figure 4.5:

Definition 4.3.2. A function f has a local maximum value at an
interior point c of its domain if

f(x) ≤ f(c) for all x in some open interval containing c

A function f has a local minimum value at an interior point c of its
domain if

f(x) ≥ f(c) for all x in some open interval containing c

We can extend the definitions of local extrema to the endpoints of
intervals by defining f to have a local maximum or local minimum
value at an endpoint c if the appropriate inequality holds for all x in
some half-open interval in its domain containing c. In Figure 4.5, the
function f has local maxima at c and d and local minima at a, e, and
b. Local extrema are also called relative extrema.

An absolute maximum is also a local maximum. Being the largest
value overall, it is also the largest value in its immediate neighbor-
hood. Hence, a list of all local maxima will automatically include the
absolute maximum if there is one. Similarly, a list of all local minima
will include the absolute minimum if there is one.

The next theorem explains why we usually need to investigate only a
few values to find a function’s extrema.
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Theorem 4.3.2. If f has a local maximum or minimum value at an
interior point c of its domain, and if f ′ is defined at c, then

f ′(c) = 0.

The above Theorem says that a function’s first derivative is always
zero at an interior point where the function has a local extreme value
and the derivative is defined. Hence the only places where a function
f can possibly have an extreme value (local or global) are:

1. interior points where f ′ = 0,

2. interior points where f ′ is undefined,

3. endpoints of the domain of f .

The following definition helps us to summarize.

Definition 4.3.3. An interior point of the domain of a function f
where f ′ is zero or undefined is a critical point of f .

Thus the only domain points where a function can assume extreme
values are critical points and endpoints.

A differentiable function may have a critical point at x = c without
having a local extreme value there. For instance, the function f(x) =
x3 has a critical point at the origin and zero value there, but is positive
to the right of the origin and negative to the left. So it cannot have
a local extreme value at the origin (see Figure 4.6).

Figure 4.6:
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The question is: How to find the absolute extrema of a continuous
function f on a finite closed interval?

1. Evaluate f at all critical points and endpoints.

2. Take the largest and smallest of these values.

Example 4.13. Find the absolute maximum and minimum values of
f(x) = 10x (2− lnx) on the interval [1, e2].

Solution 4.13. Figure 4.7 suggests that f has its absolute maximum
value near x = 3 and its absolute minimum value of 0 at x = e2.
Let’s verify this observation. We evaluate the function at the critical
points and endpoints and take the largest and smallest of the resulting
values. The first derivative is

f ′(x) = 10 (2− lnx)− 10x

(
1

x

)
= 10 (1− lnx)

The only critical point in the domain [1, e2] is the point x = e, where
f ′(x) = 0. The values of f at this one critical point and at the
endpoints are:

f(e) = 10e, f(1) = 20, f
(
e2
)

= 0

We can see from this list that the function’s absolute maximum value
is 10e it occurs at the critical interior point x = e. The absolute
minimum value is 0 and occurs at the right endpoint x = e2.

Figure 4.7:
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Example 4.14. Find the absolute maximum and minimum values of
f(x) = x2/3 on the interval [−2, 3].

Solution 4.14. We evaluate the function at the critical points and
endpoints and take the largest and smallest of the resulting values.
The first derivative

f ′(x) =
2

3
x−1/3 =

2

3 3
√
x

has no zeros but is undefined at the interior point x = 0. The values
of f at this one critical point and at the endpoints are

f(0) = 0, f(−2) =
3
√

4, f(3) =
3
√

9

We can see from this list that the function’s absolute maximum value
is 3
√

9 and it occurs at the right endpoint x = 3. The absolute min-
imum value is 0, and it occurs at the interior point x = 0 where the
graph has a cusp (Figure 4.8).

Figure 4.8:

Exercise 4.9. Find the absolute maximum and minimum values of
g(t) = t2 on [−2, 1].

Example 4.15. If the function f(x) = x3 + ax2 + bx has the local
minimum value −2

9

√
3 at x = 1/

√
3, what are the values of a and b.
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Solution 4.15. Since f has the local minimum value −2
9

√
3 at x =

1/
√

3 then we know two things:

f

(
1√
3

)
= −2

9

√
3(

1√
3

)3

+ a

(
1√
3

)2

+ b

(
1√
3

)
= −2

9

√
3

1

3
√

3
+
a

3
+

b√
3

= −2

9

√
3

1 + a
√

3 + 3b = −2√
3a+ 3b = −3 this is equation 1

and

f ′
(

1√
3

)
= 0

3

(
1√
3

)2

+

(
2a√

3

)
+ b = 0

2a+
√

3b = −
√

3 this is equation 2

By solving equations 1 and 2 we obtain: a = 0 and b = −1.

�

Exercise 4.10. For what values of the numbers a and b does the
function

g(t) = atebt
2

have the maximum value g(2) = 1?

Exercise 4.11. Find the absolute maximum and minimum values of
each function on the given interval.

1. g(t) = −1/t; −2 ≤ t ≤ −1

2. g(t) = 3
√
t; −1 ≤ t ≤ 8

3. g(t) = sin t; −π
2
≤ t ≤ 5π

6
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4.4 Monotonic Functions

In sketching the graph of a differentiable function, it is useful to know where
it increases (rises from left to right) and where it decreases (falls from
left to right) over an interval. This section gives a test to determine where
it increases and where it decreases. We also show how to test the critical
points of a function to identify whether local extreme values are present.

Increasing Functions and Decreasing Functions If the graph of a func-
tion climbs or rises as you move from left to right, we say that the
function is increasing. If the graph descends or falls as you move from
left to right, the function is decreasing.

Definition 4.4.1. Let f be a function defined on an interval I and
let x1 and x2 be any two points in I.

1. If f (x2) > f (x1) whenever x1 < x2 then f is said to be increas-
ing on I.

2. If f (x2) < f (x1) whenever x1 < x2 then f is said to be de-
creasing on I.

It is important to realize that the definitions of increasing and de-
creasing functions must be satisfied for every pair of points x1 and
x2 in I with x1 < x2. Because we use the inequality < to compare
the function values, instead of it is sometimes said that f is strictly
increasing or decreasing on I. The interval I may be finite (also called
bounded) or infinite (unbounded) and never consists of a single point.

As another corollary to the Mean Value Theorem, functions with pos-
itive derivatives are increasing functions and functions with negative
derivatives are decreasing functions. A function that is increasing or
decreasing on an interval is said to be monotonic on the interval.

Corollary 4.4.1. Suppose that f is continuous on [a, b] and differen-
tiable on (a, b).

* If f ′(x) > 0 at each point x ∈ (a, b), then f is increasing on
[a, b].

* If f ′(x) < 0 at each point x ∈ (a, b), then f is decreasing on
[a, b].
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Example 4.16. Find the critical points of f(x) = x3 − 12x− 5 and
identify the intervals on which f is increasing and on which f is de-
creasing.

Solution 4.16. The function f is everywhere continuous and differ-
entiable. The first derivative

f ′(x) = 3x2 − 12 = 3
(
x2 − 4

)
= 3(x− 2)(x+ 2)

is zero at x = −2 and x = 2. These critical points subdivide the
domain of f to create non-overlapping open intervals (∞,−2), (−2, 2)
and (2,∞) on which f ′ is either positive or negative. We determine the
sign of f ′ by evaluating f ′ at a convenient point in each subinterval.
The behavior of f is determined then by applying Corollary 4.4.1 to
each subinterval. The results are summarized in the following Figure.

Figure 4.9:

First Derivative Test for Local Extrema In Figure 4.10, at the points
where f has a minimum value, f ′ < 0 immediately to the left and
f ′ > 0 immediately to the right. (If the point is an endpoint, there
is only one side to consider.) Thus, the function is decreasing on the
left of the minimum value and it is increasing on its right. Similarly,
at the points where f has a maximum value, f ′ > 0 immediately
to the left and f ′ < 0 immediately to the right. Thus, the function
is increasing on the left of the maximum value and decreasing on its
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Figure 4.10:

right. In summary, at a local extreme point, the sign of f ′(x) changes.

These observations lead to a test for the presence and nature of local
extreme values of differentiable functions.

First Derivative Test for Local Extrema: Suppose that c is a
critical point of a continuous function f , and that f is differentiable
at every point in some interval containing c except possibly at c itself.
Moving across this interval from left to right,

1. if f ′ changes from negative to positive at c, then f has a local
minimum at c;

2. if f ′ changes from positive to negative at c, then f has a local
maximum at c;

3. if f ′ does not change sign at c (that is, is positive on both sides
of c or negative on both sides), then f has no local extremum at
c.

Example 4.17. Find the critical points of

f(x) = x1/3(x− 4) = x4/3 − 4x1/3.

Identify the intervals on which f is increasing and decreasing. Find
the function’s local and absolute extreme values.
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Solution 4.17. The function f is continuous at all x since it is the
product of two continuous functions. The first derivative

f ′(x) =
d

dx

(
x4/3 − 4x1/3

)
=

4

3
x1/3 − 4

3
x−2/3

=
4

3
x−2/3(x− 1) =

4(x− 1)

3x2/3

is zero at x = 1 and undefined at x = 0. There are no endpoints in
the domain, so the critical points x = 0 and x = 1 are the only places
where f might have an extreme value. The critical points partition the
x−axis into intervals on which f ′ is either positive or negative. The
sign pattern of f ′ reveals the behavior of f between and at the critical
points, as summarized in the following Figure. Thus, f decreases on

Figure 4.11:

(−∞, 1] and increases on [1,∞). The First Derivative Test for Local
Extrema tells us that f does not have an extreme value at x = 0 (f ′

does not change sign) and that f has a local minimum at x = 1 (f ′

changes from negative to positive). The value of the local minimum
is f(1) = (1)1/3(1− 4) = −3. This is also an absolute minimum since
f is decreasing on (−∞, 1] and increases on [1,∞). Figure 4.11 shows
this value in relation to the function’s graph. Note that

lim
x→0

f ′(x) = −∞

so the graph of f has a vertical tangent at the origin.
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Example 4.18. Find the critical points of

f(x) =
(
x2 − 3

)
ex.

Identify the intervals on which f is increasing and decreasing. Find
the function’s local and absolute extreme values.

Solution 4.18. The function f is continuous and differentiable for
all real numbers, so the critical points occur only at the zeros of f ′.
Using the Derivative Product Rule, we find the derivative

f ′(x) =
(
x2 − 3

) d

dx
ex + ex

d

dx

(
x2 − 3

)
=

(
x2 − 3

)
ex + ex(2x)

=
(
x2 + 2x− 3

)
ex

Since ex is never zero, the first derivative is zero if and only if

x2 + 2x− 3 = 0

(x+ 3)(x− 1) = 0

The zeros x = −3 and x = 1 partition the x−axis into intervals
as follows. We can see from the Figure 4.12 that there is a local

Figure 4.12:

maximum at x = −3 and a local minimum at x = 1. The local
minimum value is also an absolute minimum. There is no absolute
maximum. The function increases on (−∞,−3]

⋃
[1,∞) and decreases

on [−3, 1]. Figure 4.12 also shows the graph.
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Exercise 4.12. For each of the following functions: Find the open in-
tervals on which the function is increasing and decreasing, and identify
the function’s local and absolute extreme values, if any, saying where
they occur.

(1) g(t) = t− 6
√
t− 1

(2) g(t) = t ln t

Exercise 4.13. Show that g(t) = t− ln t is increasing for t > 1.

4.5 Concavity and Curve Sketching

We have seen how the first derivative tells us where a function is increasing,
where it is decreasing, and whether a local maximum or local minimum
occurs at a critical point. In this section we see that the second deriva-
tive gives us information about how the graph of a differentiable function
bends or turns. With this knowledge about the first and second derivatives,
coupled with our previous understanding of symmetry and asymptotic be-
havior, we can now draw an accurate graph of a function. By organizing
all of these ideas into a coherent procedure, we give a method for sketching
graphs and revealing visually the key features of functions. Identifying and
knowing the locations of these features is of major importance in math-
ematics and its applications to science and engineering, especially in the
graphical analysis and interpretation of data.

Concavity As you can see in Figure 4.13, the curve y = x3 rises as x
increases, but the portions defined on the intervals (∞, 0) and (0,∞)
turn in different ways. As we approach the origin from the left along
the curve, the curve turns to our right and falls below its tangents.
The slopes of the tangents are decreasing on the interval (∞, 0). As we
move away from the origin along the curve to the right, the curve turns
to our left and rises above its tangents. The slopes of the tangents are
increasing on the interval (0,∞). This turning or bending behavior
defines the concavity of the curve.

Definition 4.5.1. The graph of a differentiable function y = f(x) is

1. concave up on an open interval I if f ′ is increasing on I;
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2. concave down on an open interval I if f ′ is decreasing on I.

Figure 4.13:

The Second Derivative Test for Concavity: Let y = f(x) be
twice-differentiable on an interval I.

1. If f ′′ > 0 on I, the graph of f over I is concave up.

2. If f ′′ < 0 on I, the graph of f over I is concave down.

Illustration Example 4.3. The curve y = x3 (Figure 4.13) is con-
cave down on (∞, 0) where y′′ = 6x < 0 and concave up on (0,∞)
where y′′ = 6x > 0. While, The curve y = x2 (Figure 4.14) is con-
cave up on (−∞,∞) because its second derivative y′′ = 2 is always
positive.

Figure 4.14:
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Example 4.19. Determine the concavity of y = 3 + sinx on [0, 2π].

Solution 4.19. The first derivative of y = 3 + sinx is y′ = cosx and
the second derivative is y′′ = − sinx. The graph of y = 3 + sin x is
concave down on (0, π) where y′′ = − sinx is negative. It is concave
up on (π, 2π) where y′′ = − sinx is positive (Figure 4.15).

Figure 4.15:

Points of Inflection The curve y = 3 + sinx in the previous example
changes concavity at the point (π, 3). Since the first derivative y = cos
exists for all x, we see that the curve has a tangent line of slope −1
at the point (π, 3). This point is called a point of inflection of the
curve. Notice from Figure 4.15 that the graph crosses its tangent line
at this point and that the second derivative y = − sinx has value 0
when x = π. In general, we have the following definition.

Definition 4.5.2. A point where the graph of a function has a tangent
line and where the concavity changes is a point of inflection.

Remark 4.5.1. At a point of inflection (c, f(c)), either f ′′(c) = 0 or
f ′′(c) fails to exist.

The next example illustrates a function having a point of inflection
where the first derivative exists, but the second derivative fails to
exist.

Example 4.20. Find the inflection points, if any, of the function
f(x) = x5/3.



154 CHAPTER 4. APPLICATIONS OF DIFFERENTIATION

Solution 4.20. The graph of f(x) = x5/3 has a horizontal tangent
at the origin because f ′(x) = 5

3
x2/3 = 0 when x = 0. However, the

second derivative

f ′′(x) =
d

dx

(
5

3
x2/3

)
=

10

9
x−1/3 =

10

9 3
√
x

fails to exist at x = 0. Nevertheless, f ′′(x) < 0 for x < 0 and f ′′(x) > 0
for x > 0, so the second derivative changes sign at x = 0 and there is
a point of inflection at the origin. The graph is shown in Figure 4.16.

Figure 4.16:

Here is an example showing that an inflection point need not occur
even though both derivatives exist and f ′′ = 0.

Example 4.21. Find the inflection points, if any, of the function
f(x) = x4.

Solution 4.21. The curve y = x4 has no inflection point at x = 0
(Figure 4.17). Even though the second derivative y′′ = 12x2 is zero
there, it does not change sign.

�

As our final illustration, we show a situation in which a point of
inflection occurs at a vertical tangent to the curve where neither the
first nor the second derivative exists.
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Figure 4.17:

Example 4.22. Find the inflection points, if any, of the function
f(x) = x1/3.

Solution 4.22. The graph of f(x) = x1/3 has a point of inflection
at the origin because the second derivative is positive for x < 0 and
negative for x > 0:

y′′ =
d2

dx2
(
x1/3

)
=

d

dx

(
1

3
x−2/3

)
= −2

9
x−5/3.

However, both y′ = 1
3
x−2/3 and y′′ fail to exist at x = 0, and there is

a vertical tangent there. See Figure 4.18.

Figure 4.18:

Second Derivative Test for Local Extrema Instead of looking for sign
changes in f ′ at critical points, we can sometimes use the following
test to determine the presence and nature of local extrema.
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Theorem 4.5.1. Suppose f ′′ is continuous on an open interval that
contains x = c.

1. If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at x = c.

2. If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at x = c.

3. If f ′(c) = 0 and f ′′(c) = 0, then the test fails. The function f
may have a local maximum, a local minimum, or neither.

This test requires us to know f ′′ only at c itself and not in an interval
about c. This makes the test easy to apply. That’s the good news.
The bad news is that the test is inconclusive if f ′′ = 0 or if f ′′ does
not exist at x = c. When this happens, use the First Derivative Test
for local extreme values.

Example 4.23. Discuss the curve y = x4 − 4x3 with respect to in-
creasing, decreasing, concavity, points of inflection, and local maxima
and minima. Use this information to sketch the curve.

Solution 4.23. The function f is continuous since it is a polynomial.
The domain of f is (−∞,∞) and the domain of f ′(x) = 4x3−12x2 is
also (−∞,∞). Thus, the critical points of f occur only at the zeros
of f ′. Since

f ′(x) = 4x3 − 12x2 = 4x2(x− 3),

the first derivative is zero at x = 0 and x = 3. We use these critical
points to define intervals where f is increasing or decreasing.

Interval x < 0 0 < x < 3 x > 3
Sign of f ′ − − +
Behavior of f decreasing decreasing increasing

• Using the First Derivative Test for local extrema and the table
above, we see that there is no extremum at x = 0 and a local
minimum at x = 3.

• Using the table above, we see that f is decreasing on (−∞, 3],
and increasing on [3,∞).

• f ′′(x) = 12x2 − 24x = 12x(x − 2) is zero at x = 0 and x = 2.
We use these points to define intervals where f is concave up or
concave down.
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Interval x < 0 0 < x < 2 x > 2
Sign of f ′′ + − +
Behavior of f concave up concave down concave up

We see that f is concave up on the intervals (∞, 0)
⋃

(2,∞) and
concave down on (0, 2). The general shape of the curve is shown
Figure 4.19.

Figure 4.19:

Exercise 4.14. Find the intervals of increasing, decreasing and con-
cavity, the extremum points and the points of inflections, of each of
the following functions. Use this information to sketch the curve.

(1) g(t) = tan−1 t (2) g(t) =
4 + t2

2t

Exercise 4.15. The accompanying figure shows a portion of the
graph of a twice-differentiable function y = f(x). At each of the
five labeled points, classify y′ and y′′ as positive, negative, or zero.

Example 4.24. The graph of the derivative f ′ of a function f is
shown in Figure 4.21. On what intervals is f increasing or decreasing,
concave up or down? At what values of x does f have a extreme and
inflection points?

Solution 4.24. Since f ′(x) > 0 on (1, 5), f is increasing on this
interval. Since f ′(x) < 0 on (0, 1) and (5, 6), f is decreasing on these
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Figure 4.20:

intervals. Since f ′(x) = 0 at x = 1 and f ′ changes from negative to
positive there, f changes from decreasing to increasing and has a local
minimum at x = 1. Since f ′(x) = 0 at x = 5 and f ′ changes from
positive to negative there, f changes from increasing to decreasing
and has a local maximum at x = 5.

Since f ′ increases on (0, 3) then f ′′(x) > 0 on this interval, and since
f ′ decreases on (3, 6) then f ′′(x) < 0 on this interval. Hence, f is
concave up on (0, 3) and concave down on (3, 6), where the point
(3, f(3)) is the inflection point of the graph of f .

Figure 4.21:

Exercise 4.16. The graph of the derivative f ′ of a function f is
shown in Figure 4.22. On what intervals is f increasing or decreasing,
concave up or down? At what values of x does f have a extreme and
inflection points?

Figure 4.22:



Chapter 5

Integration

The integral is of fundamental importance in statistics, the sciences, and
engineering. As with the derivative, the integral also arises as a limit, this
time of increasingly fine approximations. We use it to calculate quanti-
ties ranging from probabilities and averages to energy consumption and
the forces against a dams floodgates. In this chapter we focus on the inte-
gral concept and its use in computing areas of various regions with curved
boundaries.

5.1 Antiderivatives

We have studied how to find the derivative of a function. However, many
problems require that we recover a function from its known derivative. More
generally, starting with a function f , we want to find a function F whose
derivative is f . If such a function F exists, it is called an antiderivative
of f . We will see next that antiderivatives are the link connecting the two
major elements of calculus: derivatives and definite integrals.

Definition 5.1.1. A function F is an antiderivative of f on an interval
I if F ′(x) = f(x) for all x in I.

The process of recovering a function F (x) from its derivative f(x) is
called anti-differentiation. We use capital letters such as F to represent an
antiderivative of a function f , G to represent an antiderivative of g, and so
forth.

159



160 CHAPTER 5. INTEGRATION

Example 5.1. Find an antiderivative for f(x) = 2x.

Solution 5.1. We need to think backward here: What function do we know
has a derivative equal to 2x? It is not difficult to this question if we keep
the Power Rule in mind. In fact, if F (x) = x2, then F ′(x) = 2x = f(x).
But the function G(x) = x2− 5 also satisfies G′(x) = 2x = f(x). Therefore
both F and G are antiderivatives of f . Indeed, any function of the form
H(x) = x2 + C, where C is a constant, is an antiderivative of f(x) = x2.

�

Theorem 5.1.1. If F is an antiderivative of f on an interval I, then the
most general antiderivative of f on I is

F (x) + C

where C is an arbitrary constant.

Example 5.2. Find an antiderivative F of f(x) = 3x2 that satisfies F (1) =
−1.

Solution 5.2. Since the derivative of x3 is 3x2, the general antiderivative
F (x) = x3 + C gives all the antiderivatives of f(x). The condition F (1) =
−1 determines a specific value for C. Substituting x = 1 into F (x) gives

F (1) = 13 + C

−1 = 1 + C

C = −2

So, F (x) = x3 − 2 is the antiderivative satisfying F (1) = −1.

5.2 Indefinite Integrals

A special symbol is used to denote the collection of all antiderivatives of a
function f .

Definition 5.2.1. The collection of all antiderivatives of is called the
indefinite integral of f with respect to x, and is denoted by∫

f(x)dx.
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The symbol
∫

is an integral sign. The function f is the integrand of the
integral, and x is the variable of integration.

After the integral sign in the notation we just defined, the integrand
function is always followed by a differential to indicate the variable of inte-
gration. Using this notation, we have, for example:∫

2xdx = x2 + C∫
cosx = sin x+ C

Exercise 5.1. Verify the formula∫
tan−1 x

x2
dx = lnx− 1

2
ln
(
1 + x2

)
− tan−1 x

x
+ C.

In the following we list antiderivatives in the notation of indefinite in-
tegrals. Each formula is true because the derivative of the function in the
right appears in the left. In particular, these formulas are the rules of
integration.

Rule 1 The first formula says that the integration of a constant times a
function is the constant times the integration of the function.∫

cf(x)dx = c

∫
f(x)dx

Rule 2 The second formula says that the integration of a sum (difference)
is the sum (difference) of the integrations.∫

[f(x)± g(x)] dx =

∫
f(x)dx±

∫
g(x)dx

Rule 3 The integration of constant functions is the constant itself times x.∫
kdx = kx+ C where k is a constant

For example, ∫
1

2
dx =

1

2
x+ C∫

πdx = πx+ C
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Rule 4 The integration of power functions is given by∫
xndx =

xn+1

n+ 1
+ C where n 6= −1

In general,∫
(ax+ b)ndx =

(ax+ b)n+1

a(n+ 1)
+ C where n 6= −1

Example 5.3. Find the general indefinite integral∫ (
x2 +

1

x2

)
dx

Solution 5.3.∫ (
x2 +

1

x2

)
dx =

∫
x2dx+

∫
x−2dx

=
1

3
x3 +

1

−1
x−1 + C

=
1

3
x3 − 1

x
+ C

�

Example 5.4. Find the general indefinite integral∫
(x− 1)(x+ 3)dx

Solution 5.4.∫
(x− 1)(x+ 3)dx =

∫ (
x2 + 2x− 3

)
dx

=

∫
x2dx+ 2

∫
xdx−

∫
3dx

=
1

3
x3 + 2× 1

2
x2 − 3x+ C

=
1

3
x3 + x2 − 3x+ C
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Example 5.5. Find the general indefinite integral∫
3
√
x2dx

Solution 5.5.∫
3
√
x2dx =

∫
x2/3dx =

1

5/3
x5/3 + C

=
3

5

3
√
x5 + C

�

Example 5.6. Find the general indefinite integral∫
x2 − 3

√
x

x
dx

Solution 5.6.∫
x2 − 3

√
x

x
dx =

∫ (
x2

x
− 3
√
x

x

)
dx

=

∫ (
x− 3x−1/2

)
dx

=

∫
xdx− 3

∫
x−1/2dx

=
1

2
x2 − 3× 1

1/2
x1/2 + C

=
1

2
x2 − 6

√
x+ C

�

Example 5.7. Find the general indefinite integral∫
(1− 2x)99dx

Solution 5.7.∫
(1− 2x)99dx =

(1− 2x)100

−2× 100
+ C = −(1− 2x)100

200
+ C
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Rule 5 The fifth rule is the first rule we learn about the integration of the
division of two functions.∫

1

x
dx = ln |x|+ C

In general, ∫
f ′(x)

f(x)
dx = ln |f(x)|+ C

Example 5.8. Find the general indefinite integral∫
ex

9 + ex
dx

Solution 5.8. Since d
dx

(9 + ex) = ex, then∫
ex

9 + ex
dx = ln |9 + ex|+ C

�

Example 5.9. Find the general indefinite integral∫
x

1 + x2
dx

Solution 5.9. Note d
dx

(1 + x2) = 2x 6= x. So, multiply the integral
by 2

2
to obtain:∫

x

1 + x2
dx =

2

2

∫
x

1 + x2
dx =

1

2

∫
2x

1 + x2
dx

=
1

2
ln
∣∣1 + x2

∣∣+ C

�

Example 5.10. Find the general indefinite integral∫
tanxdx
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Solution 5.10. To evaluate this integral, write tanx as sinx/ cosx.
Thus, ∫

tanxdx =

∫
sinx

cosx
dx = −

∫
− sinx

cosx
dx

= − ln | cosx|+ C = ln | secx|+ C

�

Rule 6 The rules of integration of exponential functions are as follows.∫
exdx = ex + C and

∫
axdx =

ax

ln a
+ C

In general,∫
eαx+βdx =

1

α
eαx+β + C and

∫
aαx+βdx =

aαx+β

α ln a
+ C

Example 5.11. Find the general indefinite integral∫
28−6xdx

Solution 5.11. ∫
28−6xdx = − 28−6x

6× ln 2
+ C

�

Example 5.12. Find the general indefinite integral∫
e2 lnxdx

Solution 5.12.∫
e2 lnxdx =

∫
eln(x

2)dx =

∫
x2dx =

1

3
x3 + C

�
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Rule 7 The following rules represent the rules of integrations of some
trigonometric functions.

(1)

∫
sinxdx = − cosx+ C.∫
sin(αx+ β)dx = −cos(αx+ β)

α
+ C

(2)

∫
cosxdx = sinx+ C∫
cos(αx+ β)dx =

sin(αx+ β)

α
+ C

(3)

∫
sec2 xdx = tanx+ C∫
sec2(αx+ β)dx =

tan(αx+ β)

α
+ C

(4)

∫
csc2 xdx = − cotx+ C∫
csc2(αx+ β)dx = −cot(αx+ β)

α
+ C

(5)

∫
secx tanxdx = secx+ C∫
sec(αx+ β) tan(αx+ β)dx =

sec(αx+ β)

α
+ C

(6)

∫
cscx cotxdx = − cscx+ C∫
csc(αx+ β) cot(αx+ β)dx = −csc(αx+ β)

α
+ C

Example 5.13. Find the general indefinite integral

∫
secx(tanx+ cosx)dx
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Solution 5.13.∫
secx(tanx+ cosx)dx =

∫
secx tanxdx+

∫
secx cosxdx

=

∫
secx tanxdx+

∫
1

cosx
· cosxdx

=

∫
secx tanxdx+

∫
1dx

= sec x+ x+ C

�

Example 5.14. Find the general indefinite integral∫
secxdx

Solution 5.14.∫
secxdx =

∫
secx · secx+ tanx

secx+ tanx
dx

=

∫
sec2 x+ secx tanx

secx+ tanx
dx

= ln |secx+ tanx|+ C

�

Example 5.15. Find the general indefinite integral∫
sin(3x− 10)dx

Solution 5.15.∫
sin(3x− 10)dx = −1

3
cos(3x− 10) + C

�
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Example 5.16. Find the general indefinite integral∫
tan2 xdx

Solution 5.16.∫
tan2 xdx =

∫ (
sec2 x− 1

)
dx

=

∫
sec2 xdx−

∫
1dx

= tanx− x+ C

�

Example 5.17. Find the general indefinite integral∫
1

1 + sin x
dx

Solution 5.17.∫
1

1 + sin x
dx =

∫
1

1 + sin x
· 1− sinx

1− sinx
dx

=

∫
1− sinx

1− sin2 x
dx =

∫
1− sinx

cos2 x
dx

=

∫
1

cos2 x
dx−

∫
sinx

cos2 x
dx

=

∫
1

cos2 x
dx−

∫
sinx

cosx
· 1

cosx
dx

=

∫
sec2 xdx−

∫
tanx sec dx

= tan x− secx+ C

�
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Rule 8 The integration rules of the main inverse trigonometric functions
are:

(1)

∫
1

1 + x2
dx = tan−1 x+ C∫

1

a+ bx2
dx =

1√
ab

tan−1

(√
b

a
x

)
+ C

(2)

∫
1√

1− x2
dx = sin−1 x+ C∫

1√
a− bx2

dx =
1√
b

sin−1

(√
b

a
x

)
+ C

(3)

∫
1

|x|
√
x2 − 1

dx = sec−1 x+ C

Example 5.18. Find the general indefinite integral∫
1

25 + 4x2
dx

Solution 5.18.∫
1

25 + 4x2
dx =

1√
25× 4

tan−1

(√
4

25
x

)
+ C

=
1

10
tan−1

(
2

5
x

)
+ C

Example 5.19. Find the general indefinite integral∫
1√

16− 9x2
dx

Solution 5.19.∫
1√

16− 9x2
=

1√
9

sin−1

(√
9

16
x

)
+ C

=
1

3
sin−1

(
3

4
x

)
+ C
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Exercise 5.2. Evaluate the general indefinite integral.

(1)

∫
t
1
3

(
1 + t2

)2
dt

(2)

∫
t+ 1

t2 + 2t+ 5
dt

(3)

∫
et − e−t

et + e−t
dt

(4)

∫
csc tdt

(5)

∫
cot tdt

(6)

∫
sin 2t

sin t
dt

(7)

∫
1

1 + cos 2t
dt

(8)

∫ [
1

2t
+ 5t

]
dt

(9)

∫
1 + t+ t2

1 + t2
dt

5.3 Integration by Substitution

In this section we will study a technique, called substitution, that can
often be used to transform complicated integration problems into simpler
ones. The method of substitution can be motivated by examining the chain
rule from the viewpoint of anti-differentiation. For this purpose, suppose
that F is an antiderivative of f and that g is a differentiable function. The
chain rule implies that the derivative of F (g(x)) can be expressed as

d

dx
F (g(x)) = F ′(g(x))× g′(x)

which we can write in integral form as∫
F ′(g(x))g′(x)dx = F (g(x)) + C
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or since F is an antiderivative of f ,∫
f(g(x))g′(x)dx = F (g(x)) + C (5.3.1)

For our purposes it will be useful to let u = g(x) and to write du/dx = g′(x)
in the differential form du = g′(x)dx. With this notation, equation 5.3.1
can be expressed as ∫

f(u)du = F (u) + C (5.3.2)

The process of evaluating an integral of form 5.3.1 by converting it into
form 5.3.2 with the substitution

u = g(x) and du = g′(x)dx

is called the method of u−substitution. Here our emphasis is not on
the interpretation of the expression du = g′(x)dx. Rather, the differential
notation serves primarily as a useful bookkeeping device for the method of
u−substitution. The following example illustrates how the method works.

Example 5.20. Evaluate ∫
2x
(
x2 + 1

)50
dx

Solution 5.20. If we let u = x2 + 1, then du/dx = 2x, which implies that
du = 2xdx. Thus, the given integral can be written as∫

2x
(
x2 + 1

)50
dx =

∫
u50du =

u51

51
+ C =

(x2 + 1)
51

51
+ C

�

Example 5.21. Evaluate ∫
sin2 x cosxdx

Solution 5.21. If we let u = sinx, then du/dx = cos x, so du = cos xdx.
Thus, ∫

sin2 x cosxdx =

∫
u2du =

u3

3
+ C =

sin3 x

3
+ C
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Example 5.22. Evaluate ∫
e
√
x

√
x
dx

Solution 5.22. If we let u =
√
x, then

du

dx
=

1

2
√
x
, so du =

1

2
√
x
dx or 2du =

1√
x
dx

Thus. ∫
e
√
x

√
x
dx =

∫
2eudu = 2eu + C = 2e

√
x + C

�

Example 5.23. Evaluate ∫
x4

3
√

3− 5x5dx

Solution 5.23. If we let u = 3− 5x5, then

du

dx
= −25x4, so du = −25x4dx or − 1

25
du = x4dx

Thus. ∫
x4

3
√

3− 5x5dx =

∫
− 1

25
3
√
udu = − 1

25

∫
u

1
3du

= − 1

25
× 3

4
u

4
3 + C

= − 3

100

(
3− 5x5

) 4
3 + C

�

Example 5.24. Evaluate ∫
ex√

1− e2x
dx
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Solution 5.24. Substituting u = ex and du = exdx yields

∫
ex√

1− e2x
dx =

∫
1√

1− u2
du = sin−1 u+ C = sin−1 (ex) + C

�

The method of substitution is relatively straightforward, provided the
integrand contains an easily recognized composition f(g(x)) and the re-
mainder of the integrand is a constant multiple of g′(x). If this is not the
case, the method may still apply but may require more computation.

Example 5.25. Evaluate

∫
x2
√
x− 1dx

Solution 5.25. The composition
√
x− 1 suggests the substitution u = x−1

so that du = dx. From the equality u = x− 1 we have

x2 = (u+ 1)2 = u2 + 2u+ 1

so that∫
x2
√
x− 1 =

∫ (
u2 + 2u+ 1

)√
udu =

∫ (
u5/2 + 2u3/2 + u1/2

)
du

=
2

7
u7/2 + 2× 2

5
u5/2 +

2

3
u3/2 + C

=
2

7
(x− 1)7/2 +

4

5
(x− 1)5/2 +

2

3
(x− 1)3/2 + C

�
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Exercise 5.3. Evaluate the integrals using appropriate substitutions.

(1)

∫
t3
√

5 + t4dt

(2)

∫
sin(1/t)

3t2
dt

(3)

∫
esin t cos tdt

(4)

∫
t

1 + t4
dt

(5)

∫ √
etdt

(6)

∫
(ln t)2

t
dt

(7)

∫
t
√
t− 1dt

(8)

∫
1

t ln t
dt

(9)

∫
(tan−1 t)

2

1 + t2
dt

(10)

∫
1

t2 + 2t+ 5
dt

(11)

∫
1

t+
√
t
dt

(12)

∫
sin(2t)

1 + cos2 t
dt

(13)

∫
(t− 1)5

t7
dt

(14)

∫
tan t ln(cos t)dt

(15)

∫
1

t
sin
(

ln
√
t
)
dt
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5.4 The Definite Integral

In this section we define the definite integral of a function f on an interval
I. Let us assume, for the time being, that f(x) is defined and continuous
on the closed, finite interval [a, b]. We no longer assume that the values of
f are nonnegative. The symbol for the definite integral of f(x) over the
interval [a, b] is ∫ b

a

f(x)dx

which is read as the integral from a to b of f of x with respect to x.
The component parts in the integral symbol also have names as shown in
Figure 5.1 below.

Figure 5.1:

The following theorem says that if a function is continuous on a finite
closed interval, then it is integrable on that interval, and its definite integral
is the net signed area between the graph of the function and the interval.

Theorem 5.4.1. If a function f is continuous on an interval [a, b], then f
is integrable on [a, b], and the net signed area A between the graph of f and
the interval [a, b] is

A =

∫ b

a

f(x)dx

Example 5.26. Sketch the region whose area is represented by the definite
integral ∫ 4

1

2dx

and evaluate the integral using an appropriate formula from geometry.
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Solution 5.26. The graph of the integrand is the horizontal line y = 2, so
the region is a rectangle of height 2 extending over the interval from 1 to 4
(Figure 5.2). Thus,∫ 4

1

2dx = (area of rectangle) = 2× 3 = 6

Figure 5.2:

Example 5.27. Sketch the region whose area is represented by the definite
integral ∫ 1

0

√
1− x2dx

and evaluate the integral using an appropriate formula from geometry.

Solution 5.27. The graph of
√

1− x2 is the upper semicircle of radius 1,
centered at the origin, so the region is the right quarter-circle extending
from x = 0 to x = 1 (Figure 5.3). Thus,∫ 1

0

√
1− x2dx = (area of quarter-circle) =

1

4
× (1)2π =

π

4

Exercise 5.4. Sketch the region whose area is represented by the definite
integral ∫ 2

−1
(x+ 2)dx

and evaluate the integral using an appropriate formula from geometry.
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Figure 5.3:

Example 5.28. Evaluate

(1)

∫ 2

0

(x− 1)dx

(2)

∫ 1

0

(x− 1)dx

Solution 5.28. The graph of y = x − 1 is shown in Figure 5.4, and we
leave it for you to verify that the shaded triangular regions both have area
1
2
. Over the interval [0, 2] the net signed area is A1 − A2 = 1

2
− 1

2
= 0, and

over the interval [0, 1] the net signed area is −A2 = −1
2
. Thus,∫ 2

0

(x− 1)dx = 0 and

∫ 1

0

(x− 1)dx = −1

2

Figure 5.4:
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Exercise 5.5. Use the areas shown in Figure 5.5 to find:

(1)

∫ b

a

f(x)dx

(2)

∫ c

b

f(x)dx

(3)

∫ c

a

f(x)dx

(4)

∫ d

a

f(x)dx

Figure 5.5:

Properties of the Definite Integral

• If a is in the domain of f , we define∫ a

a

f(x)dx = 0

• If f is integrable on [a, b], then we define∫ a

b

f(x)dx = −
∫ b

a

f(x)dx

• If f and g are integrable on [a, b] and if c is a constant, then cf ,
f + g, and f − g are integrable on [a, b] and

(1)

∫ b

a

cf(x)dx = c

∫ b

a

f(x)dx

(2)

∫ b

a

[f(x)± g(x)]dx =

∫ b

a

f(x)dx±
∫ b

a

g(x)dx



5.4. THE DEFINITE INTEGRAL 179

• If f is integrable on a closed interval containing the three points
a, b, and c, then∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx

no matter how the points are ordered.

• If f is integrable on [a, b] and f(x) ≥ 0 for all x in [a, b], then∫ b

a

f(x)dx ≥ 0

and if f(x) ≤ 0 for all x in [a, b], then∫ b

a

f(x)dx ≤ 0

• If f and g are integrable on [a, b] and f(x) ≥ g(x) for all x in
[a, b], then ∫ b

a

f(x)dx ≥
∫ b

a

g(x)dx

Example 5.29. Find ∫ 2

−1
[f(x) + 2g(x)]dx

if ∫ 2

−1
f(x)dx = 5 and

∫ 2

−1
g(x)dx = −3

Solution 5.29.∫ 2

−1
[f(x) + 2g(x)]dx =

∫ 2

−1
f(x)dx+ 2

∫ 2

−1
g(x)dx

= 5 + 2× (−3)

= −1

�
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Exercise 5.6. Find ∫ 4

1

[3f(t)− g(t)]dt

if ∫ 4

1

f(t)dt = 2 and

∫ 4

1

g(t)dt = 10

Example 5.30. Find ∫ 5

1

f(x)dx

if ∫ 1

0

f(x)dx = −2 and

∫ 5

0

f(x)dx = 1

Solution 5.30. ∫ 5

0

f(x)dx =

∫ 1

0

f(x)dx+

∫ 5

1

f(x)dx

1 = −2 +

∫ 5

1

f(x)dx∫ 5

1

f(x)dx = 3

�

Exercise 5.7. Find ∫ −2
3

f(t)dt

if ∫ 1

−2
f(t)dt = 2 and

∫ 3

1

f(t)dt = −6

Example 5.31. Determine whether the value of the integral∫ 3

2

√
x

1− x
dx

is positive or negative.
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Solution 5.31. Since
√
x > 0 and 1− x < 0 on [2, 3] then

√
x

1− x
< 0 and

∫ 3

2

√
x

1− x
dx < 0

�

Exercise 5.8. Determine whether the value of the integral∫ 4

0

t2

3− cos t
dt

is positive or negative.

5.5 The Fundamental Theorem of Calculus

In this section we will establish two basic relationships between definite
and indefinite integrals that together constitute a result called the Funda-
mental Theorem of Calculus. One part of this theorem will relate the
antiderivative method for calculating areas, and the second part will provide
a powerful method for evaluating definite integrals using antiderivatives.

The first part of the Fundamental Theorem of Calculus says that: The
definite integral can be evaluated by finding any antiderivative of the in-
tegrand and then subtracting the value of this antiderivative at the lower
limit of integration from its value at the upper limit of integration.

Theorem 5.5.1. If f is continuous on [a, b] and F is any antiderivative of
f on [a, b], then ∫ b

a

f(x)dx = F (x)]ba = F (b)− F (a)

Observe that in the preceding theorem we did not include a constant
of integration in the antiderivatives. In general, when applying the Fun-
damental Theorem of Calculus there is no need to include a constant of
integration because it will drop out anyway.
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Example 5.32. Evaluate

(1)

∫ 4

1

3dx

(2)

∫ 9

1

xdx

(3)

∫ π/3

0

sec2 xdx

(4)

∫ ln 3

0

5exdx

(5)

∫ −1
−e

1

x
dx

(6)

∫ 1/2

−1/2

1√
1− x2

dx

Solution 5.32.

(1)

∫ 4

1

3dx = 3x]41 = 3(4)− 3(1) = 9

(2)

∫ 9

1

xdx =
1

2
x2
]9
1

=
1

2
(9)2 − 1

2
(1)2 = 40

(3)

∫ π/3

0

sec2 xdx = tanx]π/30 = tan
π

3
− tan 0 =

√
3− 0 =

√
3

(4)

∫ ln 3

0

5exdx = 5ex]ln 3
0 = 5eln 3− 5e0 = 5(3)− 5(1) = 10

(5)

∫ −1
−e

1

x
dx = ln |x|]−1−e = ln | − 1| − ln | − e| = 0− 1 = −1

(6)

∫ 1/2

−1/2

1√
1− x2

dx = sin−1 x
]1/2
−1/2 = sin−1

(
1

2

)
− sin−1

(
−1

2

)
=
π

6
− −π

6
=
π

3

�

Example 5.33. Evaluate∫ 3

0

f(x)dx if f(x) =

{
x2 if x < 2
3x− 2 if x ≥ 2
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Solution 5.33. From the properties of definite integral we can integrate
from 0 to 2 and from 2 to 3 separately and add the results. This yields∫ 3

0

f(x)dx =

∫ 2

0

f(x)dx+

∫ 3

2

f(x)dx =

∫ 2

0

x2dx+

∫ 3

2

(3x− 2)dx

=
x3

3

]2
0

+

(
3x2

2
− 2x

)]3
2

=

(
8

3
− 0

)
+

(
15

2
− 2

)
=

49

6

�

Exercise 5.9. Evaluate the integrals using Part 1 of the Fundamental The-
orem of Calculus.

(1)

∫ 2

−1
4t
(
1− t2

)
dt

(2)

∫ π/2

−π/2
sin tdt

(3)

∫ 1

−1
|2t− 1|dt

The next theorem describes the method for evaluating definite integrals
in which a substitution is required.

Theorem 5.5.2. If g′ is continuous on [a, b] and f is continuous on an
interval containing the values of g(x) for a ≤ x ≤ b, then∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(u)du

Example 5.34. Evaluate ∫ 2

0

x
(
x2 + 1

)3
dx

Solution 5.34. If we let u = x2 + 1 so that du = 2xdx or 1
2
du = xdx, then

if x = 0 , u = 1

if x = 2 , u = 5
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Thus, ∫ 2

0

x
(
x2 + 1

)3
dx =

1

2

∫ 5

1

u3du

=
u4

8

]5
1

=
625

8
− 1

8
= 78

�

Example 5.35. Evaluate ∫ π/8

0

sin5 2x cos 2xdx

Solution 5.35. If we let u = sin 2x so that du = 2 cos 2xdx or 1
2
du =

cos 2xdx, then

if x = 0 , u = sin(0) = 0

if x =
π

8
, u = sin(π/8) =

1√
2

Thus, ∫ π/8

0

sin5 2x cos 2xdx =
1

2

∫ 1/
√
2

0

u5du

=
u6

12

]1/√2
0

=
1

12
(√

2
)6 − 0 =

1

96

�

Exercise 5.10. Evaluate the integrals.

(1)

∫ π/4

0

tan2 t sec2 tdt

(2)

∫ 1

0

t3
√
t2 + 3dt

(3)

∫ √e
1

1

t
√

1− (ln t)2
dt
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Example 5.36. Find∫ 0

−2
xf
(
x2
)
dx if

∫ 4

0

f(x)dx = 1

Solution 5.36. If we let u = x2 so that du = 2xdx or 1
2
du = xdx, then

if x = −2 , u = 4

if x = 0 , u = 0

Thus, ∫ 0

−2
xf
(
x2
)
dx =

1

2

∫ 4

0

f(u)du =
1

2
× 1 =

1

2

�

Exercise 5.11. Find∫ 1

0

f(3t+ 1)dt if

∫ 4

1

f(t)dt = 5

The second part of the Fundamental Theorem of Calculus says: If a
definite integral has a variable upper limit of integration, a constant lower
limit of integration, and a continuous integrand, then the derivative of the
integral with respect to its upper limit is equal to the integrand evaluated
at the upper limit.

Theorem 5.5.3. If f is continuous on an interval, then f has an an-
tiderivative on that interval. In particular, if a is any point in the interval,
then the function F defined by

F (x) =

∫ x

a

f(t)dt

is an antiderivative of f ; that is, F ′(x) = f(x) for each x in the interval,
or in an alternative notation

d

dx

[∫ x

a

f(t)dt

]
= f(x)
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Corollary 5.5.4.

(1)
d

dx

[∫ h(x)

a

f(t)dt

]
= f(h(x)) · h′(x)

(2)
d

dx

[∫ h(x)

l(x)

f(t)dt

]
= f(h(x)) · h′(x)− f(l(x)) · l′(x)

Example 5.37. Find
d

dx

[∫ x

1

t3dt

]
Solution 5.37. The integrand is a continuous function, so

d

dx

[∫ x

1

t3dt

]
= x3

�

Example 5.38. Find
d

dx

[∫ x

1

sin t

t
dt

]
Solution 5.38. The integrand is a continuous on any interval that does
not contain the origin, so on the interval (0,∞) we have

d

dx

[∫ x

1

sin t

t
dt

]
=

sinx

x

�

Example 5.39. Use the part 2 of the Fundamental Theorem of Calculus
to find

d

dx

[∫ x2

1

etdt

]
Solution 5.39. The integrand is a continuous function, so

d

dx

[∫ x2

1

etdt

]
= ex

2 d

dx

(
x2
)

= 2xex
2
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Example 5.40. Use the part 2 of the Fundamental Theorem of Calculus
to find

d

dx

[∫ cosx

sinx

t2dt

]
Solution 5.40. The integrand is a continuous function, so

d

dx

[∫ cosx

sinx

t2dt

]
= cos2 x

d

dx
(cosx)− sin2 x

d

dx
(sinx)

= − sinx cos2 x− cosx sin2 x

�

Exercise 5.12. Use the part 2 of the Fundamental Theorem of Calculus
to find

(1)
d

dx

[
x

∫ x2

2

sin
(
t3
)
dt

]

(2)
d

dx

[∫ 1

2x

3
√
tdt

]
(3)

d

dx

[∫ x2

−x
sin−1 tdt

]
The two parts of the Fundamental Theorem of Calculus, when taken

together, tell us that differentiation and integration are inverse processes in
the sense that each undoes the effect of the other. To see why this is so,
note that Part 1 of the Fundamental Theorem of Calculus implies that∫ x

a

f ′(t)dt = f(x)− f(a)

which tells us that if the value of f(a) is known, then the function f can
be recovered from its derivative f ′ by integrating. Conversely, Part 2 of the
Fundamental Theorem of Calculus states that

d

dx

[∫ x

a

f(t)dt

]
= f(x)

which tells us that the function f can be recovered from its integral by dif-
ferentiating. Thus, differentiation and integration can be viewed as inverse
processes.
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Example 5.41. Find a function f and a number a such that

6 +

∫ x

a

f(t)

t2
dt = 2

√
x for x ≥ 0

Solution 5.41. If we let x = a ≥ 0, we have

6 +

∫ a

a

f(t)

t2
dt = 2

√
a

6 + 0 = 2
√
a

a = 9

To find f , differentiate both sides of the equation with respect to x:

d

dx

[
6 +

∫ x

a

f(t)

t2
dt

]
=

d

dx

[
2
√
x
]

0 +
f(x)

x2
=

1√
x

f(x) =
x2√
x

=
√
x3 where x ≥ 0

�

Exercise 5.13. If

f(x) =

∫ x

0

(
1− t2

)
dt,

on what intervals is f increasing, decreasing, concave up or down, and what
are the extremum and inflection points, if any, of the function f?

5.6 Area Between Two Curves

In this section we review and extend the use of definite integrals to represent
plane areas. Recall that the integral∫ b

a

f(x)dx

measures the area between the graph of f and the x−axis from x = a
to x = b, but treats as negative any part of this area that lies below the
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x−axis. (We are assuming that a < b.) In order to express the total area
bounded by y = f(x), y = 0, x = a, and x = b, counting all of the area
positively, we should integrate the absolute value of f (see Figure 5.6):∫ b

a

f(x)dx = A1 − A2 and

∫ b

a

|f(x)|dx = A1 + A2

There is no rule for integrating∫ b

a

|f(x)|dx,

one must break the integral into a sum of integrals over intervals where
f(x) > 0 so |f(x)| = f(x), and intervals where f(x) < 0 so |f(x)| = −f(x).

Figure 5.6:

To find the area between the graph of f and the x−axis over the interval
[a, b]:

1. Subdivide [a, b] at the zeros of f .

2. Integrate f over each subinterval.

3. Add the absolute values of the integrals.

Example 5.42. Figure 5.7 shows the graph of the function f(x) = sinx
between x = 0 and x = 2π. Compute the area between the graph of f(x)
and the x−axis over [0, 2π].
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Figure 5.7:

Solution 5.42. First find the zeros of f . On [0, 2π], the zeros of f(x) =
sinx are x = 0, π , 2π. So, the area between the graph of f(x) and the
x−axis over [0, 2π] is calculated by breaking up the domain of sinx into
two pieces: the interval [0, π] over which it is nonnegative and the interval
[π, 2π] over which it is nonpositive.∫ π

0

sinxdx = − cosx]π0 = −(cos π − cos 0) = 2∫ 2π

π

sinxdx = − cosx]2ππ = −(cos 2π − cos π) = −2

The second integral gives a negative value. The area between the graph
and the axis is obtained by adding the absolute values

Area = |2|+ | − 2| = 4.

�

Example 5.43. Find the area of the region between the x−axis and the
graph of f(x) = x3 − x2 − 2x over [−1, 2].

Solution 5.43. First find the zeros of f . Since

f(x) = x3 − x2 − 2x = x(x2 − x− 2) = x(x+ 1)(x− 2),

the zeros are x = 0, −1 and 2 (Figure 5.8). The zeros subdivide [−1, 2]
into two subintervals: [−1, 0] on which f ≥ 0 and [0, 2], on which f ≤ 0.
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We integrate f over each subinterval and add the absolute values of the
calculated integrals.∫ 0

−1

(
x3 − x2 − 2x

)
dx =

[
x4

4
− x3

3
− x2

]0
−1

=
5

12∫ 2

0

(
x3 − x2 − 2x

)
dx =

[
x4

4
− x3

3
− x2

]2
0

= −8

3

The total enclosed area is obtained by adding the absolute values of the
calculated integrals.

Area =

∣∣∣∣ 5

12

∣∣∣∣+

∣∣∣∣−8

3

∣∣∣∣ =
37

12
.

Figure 5.8:

�

Exercise 5.14. Find the total area between the region and the x−axis.

(1) f(x) = −x2 − 2x over [−3, 2]

(2) f(x) = x3 − x
(3) f(x) = x1/3 − x over [−1, 8]

Areas Between Curves Suppose we want to find the area of a region
that is bounded above by the curve y = f(x), below by the curve
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Figure 5.9:

y = g(x) and on the left and right by the lines x = a and x = b
(Figure 5.9). The region might accidentally have a shape whose area
we could find with geometry, but if f and g are arbitrary continuous
functions, we usually have to find the area with an integral.

Definition 5.6.1. If f and g are continuous throughout [a, b], then
the area of the region between the curves f(x) and g(x) from a to b
is the integral of |f − g| from a to b:

A =

∫ b

a

|f(x)− g(x)|dx.

When applying this definition it is helpful to graph the curves. It
helps you find the limits of integration if they are not given. You
may need to find where the curves intersect to determine the limits of
integration, and this may involve solving the equation f(x) = g(x) for
values of x. Then you can integrate the function for the area between
the intersections.

Example 5.44. Find the area of the region bounded above by the
curve y = 2e−x + x, below by the curve y = 1

2
ex, on the left by x = 0,

and on the right by x = 1.

Solution 5.44. Figure 5.10 displays the graphs of the curves and the
region whose area we want to find. The area between the curves over
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the interval is given by∫ 1

0

∣∣∣∣(2e−x + x
)
− 1

2
ex
∣∣∣∣ =

∣∣∣∣∣
[
−2e−x +

x2

2
− 1

2
ex
]1
0

∣∣∣∣∣
= 3− 2

e
− e

2
≈ 0.9051

Figure 5.10:

Example 5.45. Find the area of the region enclosed by the parabola
y = 2− x2 and the line y = −x.

Solution 5.45. First we sketch the two curves (Figure 5.11). The
limits of integration are found by solving y = 2 − x2 and y = −x
simultaneously for x.

2− x2 = −x
x2 − x− 2 = 0

(x+ 1)(x− 2) = 0

x = −1 or x = 2

The region runs from x = −1 to x = 2. The limits of integration are
a = −1 and b = 2. The area between the curves is∫ 2

−1

∣∣(2− x2)− (−x)
∣∣ =

∫ 2

−1

∣∣2 + x− x2
∣∣

=

∣∣∣∣∣
[
2x+

x2

2
− x3

3

]2
−1

∣∣∣∣∣ =
9

2
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Figure 5.11:

Example 5.46. Find the area of the region bounded by the curves
y = sinx, y = cosx, x = 0, and x = π/2.

Solution 5.46. The points of intersection occur when sinx = cosx,
that is, when x = π/4 since 0 ≤ x ≤ π/2. The intersection point x =
π/4 subdivide [0, π/2] into two subintervals: [0, π/4] on which cosx ≥
sinx and [π/4, π/2], on which sinx ≥ cosx. The region is sketched in
Figure 5.12. We integrate sin x− cosx over each subinterval and add
the absolute values of the calculated integrals.∫ π/4

0

(sinx− cosx) = [− cosx− sinx]π/40 = 1−
√

2∫ π/2

π/4

(sinx− cosx) = [− cosx− sinx]
π/2
π/4 = −1 +

√
2

Therefore the required area is: |1−
√

2|+ | − 1 +
√

2| = 2
√

2− 2.

Figure 5.12:



Appendix A

Solving Equations and
Inequalities

The Cartesian Plane: Just as you can represent real numbers by points
on a real number line, you can represent ordered pairs of real numbers
by points in a plane called the rectangular coordinate system, or the
Cartesian plane.
The Cartesian plane is formed by using two real number lines inter-
secting at right angles, as shown in Figure A.1. The horizontal real
number line is usually called the x−axis, and the vertical real number
line is usually called the y−axis. The point of intersection of these two
axes is the origin, and the two axes divide the plane into four parts
called quadrants. Each point in the plane corresponds to an ordered

Figure A.1:

pair (x, y) of real numbers x and y, called coordinates of the point.

195
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The x−coordinate represents the directed distance from the y−axis
to the point, and the y−coordinate represents the directed distance
from the x-axis to the point, as shown in Figure A.2.

Figure A.2:

Example A.1. Plot the points (−1, 2), (3, 4), (0, 0), (3, 0), and (−2,−3).

Solution A.1. See Figure A.3 below.

Figure A.3:

�

Suppose you want to determine the distance d between two points
(x1, y1) and (x2, y2) in the plane, use the distance formula.

Theorem A.0.1. The distance d between two points (x1, y1) and
(x2, y2) in the plane is

d =
√

(x2 − x1)2 + (y2 − y1)2
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Example A.2. Find the distance between the points (−2, 1) and
(3, 4).

Solution A.2. Let (x1, y1) = (−2, 1) and (x2, y2) = (3, 4). Then

d =
√

(x2 − x1)2 + (y2 − y1)2

=
√

(3− (−2))2 + (4− 1)2

=
√

52 + 32

=
√

34

�

To find the midpoint of the line segment that joins two points (x1, y1)
and (x2, y2) in a coordinate plane, find the average values of the respec-
tive coordinates of the two endpoints using the Midpoint Formula.

Midpoint =

(
x1 + x2

2
,
y1 + y2

2

)
Example A.3. Find the midpoint of the line segment joining the
points (−5,−3) and (9, 3).

Solution A.3. Let (x1, y1) = (−5,−3) and (x2, y2) = (9, 3). Then

Midpoint =

(
x1 + x2

2
,
y1 + y2

2

)
=

(
−5 + 9

2
,
−3 + 3

2

)
= (2, 0)

�

Solving Equations Algebraically An equation in x is a statement that
two algebraic expressions are equal. For example, 3x−5 = 7, x2−x−
6 = 0, and

√
2x = 4 are equations. To solve an equation in x means

to find all values of x for which the equation is true. Such values are
solutions. For instance, x = 4 is a solution of the equation 3x− 5 = 7
because 3(4)−5 = 7 is a true statement. The solutions of an equation
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depend on the kinds of numbers being considered. For instance, in
the set of rational numbers, x2 = 10 has no solution because there is
no rational number whose square is 10. However, in the set of real
numbers, the equation has the two solutions

√
10 and −

√
10.

An equation that is true for every real number in the domain (the
domain is the set of all real numbers for which the equation is defined)
of the variable is called an identity. For example, x2−9 = (x+3)(x−3)
is an identity because it is a true statement for any real value of x,
and x/(3x2) = 1/(3x), where x 6= 0, is an identity because it is true
for any nonzero real value of x. An equation that is true for just some
(or even none) of the real numbers in the domain of the variable is
called a conditional equation. The equation x2 − 9 = 0 is conditional
because x = 3 and x = −3 are the only va1ues in the domain that
satisfy the equation. The equation 2x+ 1 = 2x− 3 is also conditional
because there are no real values of x for which the equation is true.

Polynomial equations can be classified by their degree. The degree of
a polynomial equation is the highest degree of its terms. In general,
the higher the degree, the more difficult it is to solve the equation
either algebraically or graphically. You should be familiar with the
following four methods for solving quadratic equations algebraically:

• Factoring: if a× b = 0 then a = 0 or b = 0. The following are
some important factorizations.

* a2 − b2 = (a− b)(a+ b).

* a3 − b3 = (a− b)(a2 + ab+ b2).

* a3 + b3 = (a+ b)(a2 − ab+ b2).

* a4 − b4 = (a− b)(a+ b)(a2 + b2).

• Extracting Square Roots: if x2 = c, where c > 0, then x =
±
√
c.

• Completing the Square: if x2+bx = c, then
(
x+ b

2

)2
= c+ b2

4
.

• Quadratic Formula: if ax2 + bx+ c = 0 then x = −b±
√
b2−4ac
2a

.

Example A.4. Solve x2 − 5x+ 4 = 0.
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Solution A.4.

x2 − 5x+ 4 = 0

(x− 1)(x− 4) = 0

(x− 1) = 0 ↪→ x = 1

or (x− 4) = 0 ↪→ x = 4

�

Example A.5. Solve (x+ 3)2 = 16.

Solution A.5.

(x+ 3)2 = 16

(x+ 3) = ±4

x = −3± 4⇒ x = 1 or x = −7

�

Example A.6. Solve x2 + 6x = 5.

Solution A.6.

x2 + 6x = 5(
x+

6

2

)2

= 5 +
62

4

(x+ 3)2 = 14

x+ 3 = ±
√

14

x = −3±
√

14

�

Example A.7. Solve 2x2 + 3x− 1 = 0.

Solution A.7.

2x2 + 3x− 1 = 0

x =
−3±

√
32 − 4(2)(−2)

2(2)

x =
−3±

√
17

4
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The methods used to solve quadratic equations can sometimes be
extended to polynomial equations of higher degree, as shown in the
next two examples.

Example A.8. Solve x4 − 3x2 + 2 = 0

Solution A.8. The expression x4− 3x2 + 2 is said to be in quadratic
form because it is written in the form au2 + bu + c, where u is any
expression in x, namely x2. You can use factoring to solve the equation
as follows.

x4 − 3x2 + 2 = 0

(x2)2 − 3(x2) + 2 = 0

(x2 − 1)(x2 − 2) = 0

(x− 1)(x+ 1)(x2 − 2) = 0

x− 1 = 0 ⇒ x = 1

or x+ 1 = 0 ⇒ x = −1

or x2 − 2 = 0 ⇒ x = ±
√

2

�

Example A.9. Solve 2x3 − 6x2 − 6x+ 18 = 0.

Solution A.9. This equation has a common factor of 2. You can
simplify the equation by first dividing each side of the equation by 2.

2x3 − 6x2 − 6x+ 18 = 0

x3 − 3x2 − 3x+ 9 = 0

x2(x− 3)− 3(x− 3) = 0

(x− 3)(x2 − 3) = 0

x− 3 = 0 ⇒ x = 3

or x2 − 3 = 0 ⇒ x = ±
√

3

�

An equation involving a radical expression can often be cleared of
radicals by raising each side of the equation to an appropriate power.



201

When using this procedure, it is crucial to check for extraneous solu-
tions because of the restricted domain of a radical equation.

Example A.10. Solve
√

2x+ 7− x = 2

Solution A.10.
√

2x+ 7− x = 2√
2x+ 7 = x+ 2

2x+ 7 = x2 + 4x+ 4

x2 + 2x− 3 = 0

(x+ 3)(x− 1) = 0

x+ 3 = 0 ⇒ x = −3

x− 1 = 0 ⇒ x = 1

By substituting into the original equation, you can determine that
x = −3 is extraneous, whereas x = 1 is valid. So, the equation has
only one real solution: x = 1.

�

Example A.11. Solve
√

2x+ 6−
√
x+ 4 = 1

Solution A.11.
√

2x+ 6−
√
x+ 4 = 1√

2x+ 6 = 1 +
√
x+ 4

2x+ 6 = 1 + 2
√
x+ 4 + (x+ 4)

x+ 1 = 2
√
x+ 4

x2 + 2x+ 1 = 4(x+ 4)

x2 − 2x− 15 = 0

(x− 5)(x+ 3) = 0

x− 5 = 0 ⇒ x = 5

x+ 3 = 0 ⇒ x = −3

By substituting into the original equation, you can determine that
x = −3 is extraneous, whereas x = 5 is valid. So that x = 5 is the
only solution.
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Example A.12. Solve (x+ 1)2/3 = 4

Solution A.12.

(x+ 1)2/3 = 4
3
√

(x+ 1)2 = 4

(x+ 1)2 = 64

x+ 1 = ±8

x = 7 or − 9

�

Example A.13. Solve 2
x

= 3
x−2 − 1

Solution A.13. For this equation, the least common denominator of
the three terms is x(x−2), so you can begin by multiplying each term
of the equation by this expression.

2

x
=

3

x− 2
− 1

x(x− 2)
2

x
= x(x− 2)

3

x− 2
− x(x− 2)

2(x− 2) = 3x− x(x− 2); x 6= 0, 2

x2 − 3x− 4 = 0

(x− 4)(x+ 1) = 0

x− 4 = 0 ⇒ x = 4

x+ 1 = 0 ⇒ x = −1

�

Solving Inequalities Algebraically The inequality symbols<,≤, >, and
≥ are used to compare two numbers and to denote subsets of real
numbers. For instance, the simple inequality x ≥ 3 denotes all real
numbers x that are greater than or equal to 3.

As with an equation, you solve an inequality in the variable x by
finding all values of x for which the inequality is true. These values are
solutions of the inequality and are said to satisfy the inequality. For
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instance, the number 9 is a solution of the inequality 5x− 7 > 3x+ 9
because

5(9)− 7 > 3(9) + 9

38 > 36

On the other hand, the number 7 is not a solution because

5(7)− 7 ≯ 3(7) + 9

28 ≯ 30

The set of all real numbers that are solutions of an inequality is the
solution set of the inequality. The procedures for solving linear in-
equalities in one variable are much like those for solving linear equa-
tions. To isolate the variable, you can make use of the properties of
inequalities, see Theorem A.0.2. These properties are similar to the
properties of equality, but there are two important exceptions. When
each side of an inequality is multiplied or divided by a negative num-
ber, the direction of the inequality symbol must be reversed in order
to maintain a true statement.

Theorem A.0.2. Let a, b, c and d be real numbers.

1. Transitive Property: if a < b and b < c, then a < c

2. Addition of Inequalities: if a < b and c < d, then a+ c < b+ d

3. Addition of a Constant: if a < b, then a+ c < b+ c

4. Multiplying by a Constant: we have two cases

a) for c > 0, if a < b, then ac < bc

b) for c < 0, if a < b, then ac > bc

Each of the properties above is true if the symbol < is replaced by ≤
and > is replaced by ≥.

Example A.14. Solve 2x+ 1 ≤ 5x− 8.

Solution A.14.

2x+ 1 ≤ 5x− 8

−3x ≤ −9

x ≥ 3
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So, the solution set is all real numbers that are greater than or equal
to 3. The interval notation for this solution set is [3,∞).

�

Example A.15. Solve 1− 3
2
x ≥ x− 4.

Solution A.15.

1− 3

2
x ≥ x− 4

2− 3x ≥ 2x− 8

−5x ≥ −10

x ≤ 2

So, the solution set is all real numbers that are less than or equal to
2. The interval notation for this solution set is (−∞, 2].

�

Sometimes it is possible to write two inequalities as a double inequal-
ity, as demonstrated in the following example.

Example A.16. Solve 1 < 1− 3x ≤ 6.

Solution A.16.

1 < 1− 3x ≤ 6

0 < −3x ≤ 5

0 > x ≥ −5

3

−5

3
≤ x < 0

The solution set is all real numbers that are greater than or equal
to −5

3
and less than 0. The interval notation for this solution set is[

−5
3
, 0
)
.

�
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Exercise A.1. Solve 4x < 2x+ 1 ≤ 3x+ 2.

Example A.17. Solve x2 + x > 6.

Solution A.17. First, write x2+x > 6 as x2+x−6 > 0. The solution
of x2 + x − 6 > 0 is the set of all values of x that makes x2 + x − 6
has positive sign. So,

x2 + x− 6 > 0 ↪→ (x+ 3)(x− 2) > 0

↪→ (x < −3) ∪ (x > 2)

↪→ x ∈ (−∞,−3) ∪ (2,∞)

The solution set is all real numbers that are less than −3 or greater
than 2.

�

Example A.18. Solve x2 − 4 ≤ 0.

Solution A.18. The solution of x2 − 4 ≤ 0 is the set of all values of
x that makes x2 − 4 has non positive sign. So,

x2 − 4 ≤ 0 ↪→ (x+ 2)(x− 2) ≤ 0

↪→ −2 ≤ x ≤ 2

↪→ x ∈ [−2, 2]

The solution set is all real numbers that are greater than or equal to
−2 and less than or equal to 2.

�

Example A.19. Solve 1
x−1 ≥ 2.

Solution A.19. First, rewrite 1
x−1 ≥ 2 as follows.

1

x− 1
≥ 2 ↪→ 1

x− 1
− 2 ≥ 0

↪→ 1

x− 1
− 2(x− 1)

x− 1
≥ 0

↪→ 3− 2x

x− 1
≥ 0
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The solution of 3−2x
x−1 ≥ 0; x 6= 1 is the set of all values of x that makes

3−2x
x−1 has non negative sign. So,

3− 2x

x− 1
≥ 0 ↪→ 1 < x ≤ 3

2

↪→ x ∈
(

1,
3

2

]

�

Exercise A.2. Solve the following inequalities.

(a) 1
x2+1

> 0

(b) x2 + 4 < 0

(c) −3 < 1
x
≤ 1



Appendix B

Absolute Value

Definition B.0.2. The absolute value of a real number x is

|x| =
{

x : x ≥ 0
−x : x < 0

For example, |4| = 4, | − 1
2
| = 1

2
, and |0| = 0. The absolute value of a

number a is the distance from a to 0 on the real number line. Distances are
always positive or 0, so we have |a| ≥ 0 for every number a.

Figure B.1:

Remark B.0.1. Let a and b be real numbers, then:

1. |a| ≥ 0 for all real number a.

2.
√
a2 = |a|.

3. If a ∈ R, then | − a| = |a|.

207
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4. |x| = a if and only if x = a or x = −a. In general, |f(x)| = a if and
only if f(x) = a or f(x) = −a.

5. |x| ≤ a if and only if −a ≤ x ≤ a. In general, |f(x)| ≤ a if and only
if −a ≤ f(x) ≤ a.

6. |x| ≥ a if and only if x ≥ a or x ≤ −a. In general, |f(x)| ≥ a if and
only if f(x) ≥ a or f(x) ≤ −a.

7. |a · b| = |a| · |b| and |a
b
| = |a|

|b| .

8. If a ∈ R and n = 1, 2, 3, · · · , then |an| = |a|n.

9. Triangle Inequality: |a + b| ≤ |a| + |b|. If a and b have the same
sign, then |a+ b| = |a|+ |b|.

Example B.1. Solve |x− 2| = 5.

Solution B.1.

|x− 2| = 5 ↪→ x− 2 = 5 or x− 2 = −5

↪→ x = 7 or x = −3.

�

Example B.2. Solve |3x− 6| ≤ 9.

Solution B.2.

|3x− 6| ≤ 9 ↪→ −9 ≤ 3x− 6 ≤ 9

↪→ −3 ≤ 3x ≤ 15

↪→ −1 ≤ x ≤ 5

↪→ x ∈ [−1, 5]

�

Example B.3. Solve |x2 − 1| < 1.
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Solution B.3.

|x2 − 1| < 1 ↪→ −1 < x2 − 1 < 1

↪→ 0 < x2 < 2

↪→ 0 <
√
x2 <

√
2

↪→ 0 < |x| <
√

2

↪→ (|x| > 0) ∩ (|x| <
√

2)

↪→ (R− {0}) ∩ (−
√

2 < x <
√

2)

↪→ x ∈ (R− {0}) ∩ (−
√

2,
√

2)

↪→ x ∈ (−
√

2,
√

2)− {0}

�

Example B.4. Solve |x+ 4| > 7.

Solution B.4.

|x+ 4| > 7 ↪→ x+ 4 > 7 or x+ 4 < −7

↪→ x > 3 or x < −11

↪→ x ∈ (−∞,−11) ∪ (3,∞)

�

Exercise B.1. Solve the following equations and inequalities.

(a) 1 ≤ |x| ≤ 4

(b) |x+ 3| = |1 + 2x|

(c) |x2 − 9| = 9− x2





Appendix C

Equation of Line

Definition C.0.3. For x1 6= x2, the slope of the straight line through the
points (x1, y1) and (x2, y2) is the number m = y2−y1

x2−x1 .

Figure C.1:

Example C.1. Find the slope of the line through the points (−3, 5) and
(2,−4).

Solution C.1. The slope is m = −4−5
2−(−3) = −9

5
.

�
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Remark C.0.2. (Vertical and Horizontal Lines)

• When x1 = x2, the line is vertical and the slope is undefined. The
equation of the line in this case is x = x1.

• When y1 = y2, the line is horizontal and the slope is zero. The equa-
tion of the line in this case is y = y1.

Remark C.0.3. The point-slope form of a line is y− y0 = m (x− x0), where
the line passes through (x0, y0) with slope m.

Example C.2. Find the equation of the line that passes through the point
(2, 1) with slope 2

3
.

Solution C.2.

y − y0 = m(x− x0)

y − 1 =
2

3
(x− 2)

y − 1 =
2

3
x− 4

3

y =
2

3
x− 1

3

�

Example C.3. Find an equation of the line through the points (3, 1) and
(4,−1).

Solution C.3. The slope is m = −1−1
4−3 = −2. So, the equation is

y − y0 = m(x− x0)
y − 1 = −2(x− 3)

y − 1 = −2x+ 6

y = −2x+ 7

�
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Remark C.0.4. The equation y = mx+ b is called the slope-intercept form,
where m is the slope and b is the y−intercept. The x−intercept is x = − b

m
.

Figure C.2:

Example C.4. If a line has an equation y + 2x − 7 = 0, find the x− and
y−intercepts of the line.

Solution C.4. 1. To find the x−intercept, let y = 0 in the equation of
the line.

0 + 2x− 7 = 0 ↪→ x =
7

2
.

2. To find the y−intercept, let x = 0 in the equation of the line.

y + 0− 7 = 0 ↪→ y = 7.

�

Example C.5. Find the slope and y−intercept of the line y = −2.

Solution C.5. The slope is m = 0 (see remark C.0.2), and the y−intercept
is −2.

�

Example C.6. If the point (2, k) lies on the line with slope 3 and passing
through the point (1, 6), find the value of k.
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Solution C.6.

The slope of the line is m =
k − 6

2− 1
3 = k − 6

9 = k

�

Theorem C.0.3. (Parallel and Perpendicular Lines) Two lines of slope
m1 and m2 are parallel if m1 = m2, and are perpendicular if m1 ·m2 = −1.

Example C.7. Find an equation for the line parallel to y = 3x − 2 and
passes through the point (−1, 3).

Solution C.7. The slope of our line is the same as of y = 3x−2 since they
are parallel. Hence the slope is m = 3. The equation of line is

y − y0 = m(x− x0)
y − 3 = 3(x− (−1))

y − 3 = 3x+ 3

y = 3x+ 6

�

Example C.8. Find an equation for the line perpendicular to y = −2x+4
at the point (1, 2).

Solution C.8. The slope of our line equals −1/( slope of y = −2x + 4)
since they are perpendicular. Hence the slope is m = −1

−2 = 0.5. The
equation of line is

y − y0 = m(x− x0)
y − 2 = 0.5(x− 1)

y − 2 = 0.5x− 0.5

y = 0.5x+ 1.5
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Example C.9. For what values of k will be the line kx + 5y = 2k be
perpendicular to the line 2x+ 3y = 1.

Solution C.9. First, write the equations of lines in standard form as fol-
lows.

kx+ 5y = 2k ↪→ y = −1

5
kx+

2

5
k (its slope is m1 = −1

5
k)

2x+ 3y = 1 ↪→ y = −2

3
x+

1

3
(its slope is m2 = −2

3
)

The lines are perpendicular if

m1 ×m2 = −1 ↪→ −1

5
k ×−2

3
= −1

↪→ k = −15

2

�

Exercise C.1. Find an equation for the line passes through the point (2, 7)
and perpendicular to the x−axis.





Appendix D

Final Answers of Exercises

Chapter One

1. (a) R− {1} (b) R
2. (a) [0,∞) (b) (∞, 0] (c) (0, 1]

3. (a) x = 3π/2 ± 2nπ (b) x = ±nπ (c) x = π/4 ± nπ (d)
x = ±π/3± 2nπ (e) π/4± nπ/2

4. (a) R (b) [0 ± 2nπ, π/2 ± 2nπ)
⋃

[π ± 2nπ, 3π/2 ± 2nπ) (c)
x = ±nπ

5. (f−g)(x) = 2−1/x and its domain is R−{0}. Also, (f−g)(2) =
3/2

6. f−1(x) = x/(1− x)

7. [−
√

5,−
√

3]
⋃

[
√

3,
√

5]

8. (1) π/16 (2) −π/2 (3) 2π/3 (4) 5/12 (5) 4/
√

7 (6) 1/
√

5 (7)
24/25

9. 5

10. (1) x = ±e2 (2) x = 2 (3) x = 4 (4) x =
√

3/2 (5) x = ln 3
(6) x = ee

11. (1) R (2) [0 ± 2nπ, π/2 ± 2nπ)
⋃

(3π/2 ± 2nπ, 2π ± 2nπ] (3)
(−∞, 0) (4) R− {0} (5) (1/e,∞) (6) (−∞, 1) (7) (−∞, 4)

12. (1) g−1(t) = (1 + log3 t)/2 (2) g−1(t) = 10t − 3

13. (1) 1 (2) 3/4 (3) 1

217
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14. sinh x = 12, coshx = 13. Now the other values are easy!!

15. sinh x = 4/3 only since x > 0. Now the other values are easy!!

Chapter Two

1. (1) 3 (2) 4 (3) 2 (4) does not exist (5) 2

2. (1) −1/12 (2) 0

3. (1) 1/128 (2) 12

4. 2

5. −1/2

6. 2, −2, the limit does not exist.

7. Does not exist.

8. 7

9. Both limits are 0

10. Does not exist.

11. (1) −1 (2) ∞ (3) 0

12. (1) Vertical: x = 3, Horizontal: y = 1 (2) Vertical: x = 0,
Oblique: y = x

13. Easy!!

14. 4/5

15. −π and the second limit does not exist.

16. g continuous on R− {−2, 2, 4, 6, 8}
17. 1 = limx→0 f(x) 6= f(0) = 0

18. (0,∞)− {1}
19. (a) a = 10 (b) a = b = 1/2

20. 0

Chapter Three

1. −1/25

2. f ′(x) = 1/2
√
x, so f ′(0) does not exist.

3. df/dx = 2 at x = −1, and df−1/dx = 1/2 at x = f(−1) = 1
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4. (1) (1 + 3x)/(2
√
x) (2) 2x ln 2− 2x (3) ex/(1 + x2) + ex tan−1 x

(4) 2x(7x+ 10)/(7x+ 5)2 (5) x coshx

5. m = 4, b = −4

6. (1) f = x9, c = 1, limit= 9 (2) f = 4
√
x, c = 16, limit= 1/32

7. f ′′ = 2/x3, f ′′′(2) = −3/8

8. − cosx

9. (1) n! (2) (−1)n 1
xn+1

10. (1) 3 (4x3 − 6x) (x4 − 3x2 + 5)
2
(2) sec−1 x/

√
1− tan2 x (3) (2 + 4x2) /

√
1 + x2

(4) 2 cos(2x)esin(2x) (5) 3x lnx ln 3(1 + lnx) (6) (2 + x)/(x ln 10)
(7) 2 (1 + 2ex) ln [2ex + x] /(2ex + x) (8) 3ecosh(3x) sinh(3x) (9)
1/
√

1− e−2x (10) x/
√

1 + x2 − x/(1− x2) + sinh−1 x

11. (6− 162x4)/(1 + 9x4)2

12. 1
2

√
1− 4y2

13. 0

14. (x cotx+ ln sinx)(sinx)x

15. y = 2t+ 2

16. y = 20x+ 1

17. 2y = 9x− 5

Chapter Four

1. (1) does not exist (2) 0 (3) 1 (3) does not exist

2. (1) π (2) 0 (3) 0

3. (1) 0 (2) 1 (3) does not exist

4. (1) 1/e2 (2) eab

5. c = π/2

6. c = ln(6e6/(e6 − 1))

7. 16

8. Easy!!

9. g(−2) = 4 is absolute maximum and g(0) = 0 is absolute mini-
mum
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10. a =
√
e/2, b = −1/8

11. (1) g(−2) = 1/2 is abs. min, g(−1) = 1 is abs. max (2)
g(−1) = −1 is abs. min, g(8) = 2 is abs. max (3) g(−π/2) = −1
is abs. min, g(π/2) = 1 is abs. max, g(5π/6) = 1/2 is local min

12. (1) Increases on [10,∞), Decreases on [1, 10], g(1) = 1 local
max, g(10) = −8 abs. min (2) g(1/e) = −1/e is abs. min

13. g′ = 1− 1/t < 0 when t > 1

14. (1) Increases on R, Concave up on (−∞, 0), Concave down on
(0,∞), (0,0) is inflection point (2) Increases on (−2, 2), De-
creases on (−∞,−2)

⋃
(2,∞), Concave up (0,∞), Concave down

(−∞, 0).

15. P : f ′ < 0, f ′′ > 0, Q : f ′ > 0, f ′′ = 0, R : f ′ > 0, f ′′ < 0,
S : f ′ = 0, f ′′ < 0, T : f ′ < 0, f ′′ < 0,

16. Decreases on (1, 3)
⋃

(5, 6), Increases on (0, 1)
⋃

(3, 5), f has min
at x = 0, 3, 6 and has max at x = 1, 5. Concave down on
(0, 2)

⋃
(4, 6), Concave up (2, 4). The inflection points are (2, f(2))

and (4, f(4)).

Chapter Five

1. Show d
dx

[
lnx− 1

2
ln (1 + x2)− tan−1 x

x
+ C

]
= tan−1 x

x2

2. (1) 3
80
t4/3 (20 + 16t2 + 5t4) + C (2) 1

2
ln |5 + 2t+ t2| + C (3)

ln |et + e−t| + C (4) − ln | csc t + cot t| + C (5) ln | sin t| + C
(6) 2 sin t + C (7) 1

2
tan t + C (8) 1

2
ln |t| + 5t

ln 5
+ C (9) t +

1
2

ln (1 + t2) + C

3. (1) 1
6

(5 + t4)
3/2

+C (2) 1
3

cos
[
1
t

]
+C (3) esin t+C (4) 1

2
tan−1 (t2)

(5) 2
√
et + C (6) (ln t)3

3
+ C (7) 2

15
(−1 + t)3/2(2 + 3t) + C (8)

ln | ln t|+C (9) (tan−1 t)3

3
+C (10) 1

2
tan−1

(
t+1
2

)
(11) 2 ln(1+

√
t)+

C (12) − ln |1 + cos2 t| (13) (t− 1)6/6t6 +C (14) −(ln cos t)2/2
(15) −2 cos(ln t/2)

4. 15/2

5. (1) 0.8 (2) −2.6 (3) −1.8 (4) −0.3

6. −4

7. 4
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8. Since t2/(3− cos t) ≥ 0 then the integral > 0.

9. (1) −9 (2) 0 (3) 5/2

10. (1) 1/3 (2) 2(3
√

3− 4)/5 (3) π/6

11. 5/3

12. (1) 2x2 sin (x6) +
∫ x2
2

sin (t3) dt (2) −24x/3 ln 2 (3) 2x sin−1 x2 −
sin−1 x

13. Increasing: (−1, 1), Decreasing: (−∞,−1)
⋃

(1,∞), f(−1) lo-
cal min, f(1) local max, Concave up: (−∞, 0), Concave down:
(0,∞)

14. (1) 28/3 (2) 1/2 (3) (82 +
√

19)/4

Appendix A

1. [−1, 1/2)

2. (1) R (2) {} = ∅ (3) (−∞,−3)
⋃

[1,∞)

Appendix B

1. (1) [−4,−1]
⋃

[1, 4] (2) x = 2, x = −4/3 (3) [−3, 3]

Appendix C

1. x = 2




