

Philadelphia University Department of basic sciences and mathematics

Second Exam Name:			Calculus 2 Serial:						20-12-2016	
										_ Section:
Question	11: (1	2 points)	Write t	he symb	ol of the	e most o	correc	et el	noice i	n the table below.
	`	•	1	2	3	4	5		6]
										-
1) T	he su	m of the s	series \sum	$\sum_{n=1}^{\infty} \frac{3^{n+1}}{3^{2n}}$	$\frac{1}{-1}$ is					
		24		2			b) 1	18		
	c)	1/12	d) 1/15							
	e)	Divergen	ıt							
2) T	The sequence $a_n = \tan^{-1} \left(\frac{3+2n}{2n-1} \right)$ converges to									
	a)	$\pi/2$					b) -	$-\pi$	/2	
	c)	$\pi/4$					d) -	$-\pi$	/4	
	e)	0								
3) If	the t	acurciyaly	v define	d saguar	nce a	$-\frac{1}{2}(a^{2})$	v _L .	2) ic kn	own to converge for a
	If the recursively defined sequence $a_{n+1} = \frac{1}{9} \left(a_n + \frac{2}{a_n} \right)$ is known to converge for a given initial value $a_1 > 0$. Then the limit of the sequence is									
g.	a)		$u_1 >$	U. Then	me iiii	it or the	b)			
	c)						d) 1	•		
		1/4					<i>u</i>) .	1,0		
	C)	1/ 1								
4) If	the i	nth term o	f the sec	quence o	f partia	l sums o	of the	ser	ries \sum	a_n is given by $s_n =$
3	$\frac{n+2}{n+4}$. Then the	sum of	the serie	$es \sum a_n$	is				
2	a)						b) 1	1/2		
	c)	3/2					d) !	5/6	ı	
	e)	Divergen	ıt							
5) T	The values of p such that $\sum_{n=1}^{\infty} \frac{(2p+1)^n}{n}$ converges, are									
		$-2 \le p$		-	n				<i>p</i> < 1	
	ĺ	-1 < p					ŕ		≤ p ≤	
	e)	$-1 \le p$	< 0							

6) Let
$$a_n = \frac{\sqrt{n}}{n+1}$$
 . Then

- a) The sequence $\{a_n\}_n^{\infty}$ converges, and the series $\sum_{n=1}^{\infty} a_n$ diverges.
- b) The sequence $\{a_n\}_n^{\infty}$ converges, and the series $\sum_{n=1}^{\infty} a_n$ converges.
- c) The sequence $\{a_n\}_n^{\infty}$ diverges, and the series $\sum_{n=1}^{\infty} a_n$ diverges.
- d) The sequence $\{a_n\}_n^{\infty}$ diverges, and the series $\sum_{n=1}^{\infty} a_n$ converges.

Question2: (3 points)

Find the **sum** of the following series

$$\sum_{n=2}^{\infty} \left(\frac{1}{n-1} - \frac{1}{n+2} \right)$$

Question3: (3 points)

Determine if the following series is **absolutely** convergent, **conditionally** convergent or **divergent**.

$$\sum_{n=1}^{\infty} \frac{n \cos(n\pi)}{n^2 + 1}$$

Question4: (4 points)

Determine whether the series converges or diverges. **Justify** your answer.

a)
$$\sum_{n=1}^{\infty} \frac{(3n^2+1)^n}{(2n)^{2n}}$$

b)
$$\sum_{n=1}^{\infty} \frac{(-2)^{3n}}{n!}$$