Course: Calculus (3)

Lecture No: [2]

<u>Chapter: [11]</u> THREE-DIMENSIONAL SPACE; VECTORS

Section: [11.1] RECTANGULAR COORDINATES IN 3-SPACE; SPHERES; CYLINDRICAL SURFACES

In this chapter:

- We will discuss rectangular coordinate systems in three dimensions.
- We will study the analytic geometry of lines, planes, and other basic surfaces.
- We will study vectors. We will introduce various algebraic operations on vectors.
- Finally, we will discuss cylindrical and spherical coordinate systems.

RECTANGULAR COORDINATE SYSTEMS

In the remainder of this slides, we will call:

- three-dimensional space: **3-space**
- two-dimensional space (a plane): 2-space
- one-dimensional space (a line): **1-space**

Points in 3-space can be placed in one-toone correspondence with triples of real numbers by using three mutually perpendicular coordinate lines, called the x —axis, the y —axis, and the z —axis, positioned so that their origins coincide.

Example Draw the point (4,3,5)Example Draw the point (-3,2,-4)(-3,2,-4)

RECTANGULAR COORDINATE SYSTEMS

- The three coordinate axes form a threedimensional rectangular coordinate system (or Cartesian coordinate system).
- The point of intersection of the coordinate axes is called the origin of the coordinate system.

RECTANGULAR COORDINATE SYSTEMS

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Example

 $x_1 \quad y_1 \quad z_1 \qquad \qquad x_2 \quad y_2 \quad z_2$ Find the distance d between the points (2, 3, -1) and (4, -1, 3).

$$d = \sqrt{(4-2)^2 + (-1-3)^2 + (3-(-1))^2}$$
$$= \sqrt{4+16+16}$$
$$= 6$$

Midpoint
$$= \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$$

Example

 $x_1 \quad y_1 \quad z_1 \qquad \qquad x_2 \quad y_2 \quad z_2$ Find the midpoint between the points (2, 3, -1) and (4, -1, 3).

$$midpoint = \left(\frac{2+4}{2}, \frac{3+(-1)}{2}, \frac{-1+3}{2}\right)$$
$$= (3,1,1)$$

$$(x-a)^2 + (y-b)^2 = r^2$$

Circle in 2-space

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$

Sphere in 3-space

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$

Sphere in 3-space

Example

Find the equation of the sphere with center (1, -2, -4) and radius 3.

$$(x-1)^{2} + (y+2)^{2} + (z+4)^{2} = 9$$
$$x^{2} + y^{2} + z^{2} - 2x + 4y + 8z = -12$$

Example

Find the center and radius of the sphere $(x-5)^2 + y^2 + (z+3)^2 = 5$ Center (, ,) Radius $\sqrt{5}$

If the terms in the equation of **SPHERE** are *expanded* and *like terms are collected*, then the resulting equation has the form

 $x^2 + y^2 + z^2 + Gx + Hy + Iz + J = 0$

$$(x-a)^{2} + (y-b)^{2} + (z-c)^{2} = r^{2}$$

Standard equation of the sphere

The following example shows how the center and radius of a sphere that is expressed in this form can be obtained by **completing the squares.**

 $(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$

Example Find the center and radius of the sphere

 $x^2 + y^2 + z^2 - 2x - 4y + 8z + 17 = 0$

$$(x-a)^{2} + (y-b)^{2} + (z-c)^{2} = r^{2}$$

Example Find the center and radius of the sphere

$$x^{2} + y^{2} + z^{2} - 2x - 4y + 8z + 17 = 0$$

$$(x^2 - 2x) + (y^2 - 4y) + (z^2 + 8z) = -17$$

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$

Example Find the center and radius of the sphere

$$x^{2} + y^{2} + z^{2} - 2x - 4y + 8z + 17 = 0$$

(x^{2} - 2x + -) + (y^{2} - 4y + -) + (z^{2} + 8z + -) = -17
$$\left(\frac{-2}{2}\right)^{2} = 1$$

$$\left(\frac{-4}{2}\right)^{2} = 4$$

$$\left(\frac{8}{2}\right)^{2} = 16$$

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$

Example Find the center and radius of the sphere

$$x^{2} + y^{2} + z^{2} - 2x - 4y + 8z + 17 = 0$$

$$(x^{2} - 2x + 1 - 1) + (y^{2} - 4y + 4 - 4) + (z^{2} + 8z + 16 - 16) = -17$$

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$

Example Find the center and radius of the sphere

$$x^2 + y^2 + z^2 - 2x - 4y + 8z + 17 = 0$$

 $(x^2 - 2x + 1) - 1 + (y^2 - 4y + 4) - 4 + (z^2 + 8z + 16) - 16 = -17$

$$(x-a)^{2} + (y-b)^{2} + (z-c)^{2} = r^{2}$$

Example Find the center and radius of the sphere

$$x^2 + y^2 + z^2 - 2x - 4y + 8z + 17 = 0$$

 $(x^2 - 2x + 1) + (y^2 - 4y + 4) + (z^2 + 8z + 16) = 1 + 4 + 16 - 17$

$$(x-a)^{2} + (y-b)^{2} + (z-c)^{2} = r^{2}$$

Example Find the center and radius of the sphere

$$x^2 + y^2 + z^2 - 2x - 4y + 8z + 17 = 0$$

$$(x-1)^2 + (y-2)^2 + (z+4)^2 = 4$$

Center = (1,2,-4)**Radius** = $\sqrt{4} = 2$

NOTE: In general, completing the squares produces an equation of the form

$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = k$$

- If k > 0 the graph of this equation is a sphere
- If k = 0 the graph of this equation is the point (x_0, y_0, z_0)
- If k < 0 no graph !!

11.1.1 THEOREM An equation of the form $x^2 + y^2 + z^2 + Gx + Hy + Iz + J = 0$ represents a sphere, a point, or has no graph.

It is possible to graph equations in two variables in 3 — space.

Example: $x^2 + y^2 = 1$

Observe that the equation does not impose any restrictions on *z*.

This means that we can obtain the graph of $x^2 + y^2 = 1$ in an xyz –coordinate system, by first graphing the equation in the xy –plane.

It is possible to graph equations in two variables in 3 — space.

Example: $x^2 + y^2 = 1$

Observe that the equation does not impose any restrictions on *z*.

This means that we can obtain the graph of $x^2 + y^2 = 1$ in an xyz –coordinate system by first graphing the equation in the xy –plane.

And then translating that graph parallel to the z —axis to generate the entire graph.

Example $x^2 + z^2 = 1$

Example $z = y^2$

Example $z = \sin x$

11.1.2 THEOREM An equation that contains only two of the variables x, y, and z represents a cylindrical surface in an xyz-coordinate system. The surface can be obtained by graphing the equation in the coordinate plane of the two variables that appear in the equation and then translating that graph parallel to the axis of the missing variable.

Course: Calculus (3)

Lecture No: [4]

<u>Chapter: [11]</u> THREE-DIMENSIONAL SPACE; VECTORS

Section: [11.2] VECTORS

A **Vector** in 2-space or 3-space; is an **arrow** with **direction** and **length** (magnitude).

Two vectors are equal if they are translations of one another.

Because vectors are **not** affected by translation, the initial point of a vector \mathbf{v} can be *moved* to any convenient point A by making an appropriate *translation*.

11.2.1 DEFINITION If v and w are vectors, then the *sum* v + w is the vector from the initial point of v to the terminal point of w when the vectors are positioned so the initial point of w is at the terminal point of v

11.2.1 DEFINITION If v and w are vectors, then the sum(v + w) is the vector from the initial point of v to the terminal point of w when the vectors are positioned so the initial point of w is at the terminal point of v

11.2.1 DEFINITION If v and w are vectors, then the sum(v + w) is the vector from the initial point of v to the terminal point of w when the vectors are positioned so the initial point of w is at the terminal point of v

NOTE:

• If the *initial* and *terminal* points of a vector *coincide*, then the vector

has **length zero**; we call this the **zero vector** and denote it by **0**.

- The zero vector does not have a specific direction
- v + w = w + v and 0 + v = v + 0 = v.

11.2.2 DEFINITION If **v** is a nonzero vector and k is a nonzero real number (a scalar), then the scalar multiple kv is defined to be the vector whose length is |k| times the length of **v** and whose direction is the same as that of **v** if k > 0 and opposite to that of **v** if k < 0. We define $k\mathbf{v} = \mathbf{0}$ if k = 0 or $\mathbf{v} = \mathbf{0}$.

NOTE: The vectors **v** and *k***v** are parallel vectors.

Vector subtraction is defined in terms of addition and scalar multiplication by

$$\mathbf{v} - \mathbf{w} = \mathbf{v} + (-\mathbf{w})$$

Vector subtraction is defined in terms of addition and scalar multiplication by

$$\mathbf{v} - \mathbf{w} = \mathbf{v} + (-\mathbf{w})$$

NOTE:
$$v + (-v) = v - v = 0$$
VECTORS IN COORDINATE SYSTEMS

If a vector **v** is positioned with its initial point at the *origin* of a rectangular coordinate system, then its terminal point will have coordinates of the form (v_1, v_2, v_3) .

We call these coordinates the *components of* **v**, and we write **v** in component form using the *bracket* notation

 $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$

VECTORS IN COORDINATE SYSTEMS

NOTE: 0 = (0, 0, 0)

11.2.3 THEOREM *Two vectors are equivalent if and only if their corresponding components are equal.*

Example: Find the values of
$$a, b, c$$
 if $\langle -2, b, 3 \rangle = \langle a, 0, c \rangle$.

ARITHMETIC OPERATIONS ON VECTORS

11.2.4 THEOREM If $\mathbf{v} = \langle v_1, v_2 \rangle$ and $\mathbf{w} = \langle w_1, w_2 \rangle$ are vectors in 2-space and k is any scalar, then

$$\mathbf{v} + \mathbf{w} = \langle v_1 + w_1, v_2 + w_2 \rangle \tag{1}$$

$$\mathbf{v} - \mathbf{w} = \langle v_1 - w_1, v_2 - w_2 \rangle \tag{2}$$

$$k\mathbf{v} = \langle kv_1, kv_2 \rangle \tag{3}$$

Similarly, if $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$ are vectors in 3-space and k is any scalar, then

$$\mathbf{v} + \mathbf{w} = \langle v_1 + w_1, v_2 + w_2, v_3 + w_3 \rangle$$
(4)

$$\mathbf{v} - \mathbf{w} = \langle v_1 - w_1, v_2 - w_2, v_3 - w_3 \rangle$$
(5)

$$k\mathbf{v} = \langle kv_1, kv_2, kv_3 \rangle$$
(6)

ARITHMETIC OPERATIONS ON VECTORS

Example: If $\mathbf{v} = \langle 2,0,1 \rangle$ and $\mathbf{w} = \langle 3,5,-4 \rangle$, then

1.
$$v + w = \langle 2, 0, 1 \rangle + \langle 3, 5, -4 \rangle = \langle 5, 5, -3 \rangle$$

2.
$$\mathbf{v} - 2\mathbf{w} = \langle 2, \mathbf{0}, \mathbf{1} \rangle - 2\langle 3, \mathbf{5}, -4 \rangle$$

= $\langle 2, \mathbf{0}, \mathbf{1} \rangle - \langle 6, \mathbf{10}, -8 \rangle$
= $\langle -4, -10, 9 \rangle$

VECTORS IN COORDINATE SYSTEMS

If a vector **v** is positioned with its initial point at the *origin* of a rectangular coordinate system, then its terminal point will have coordinates of the form (v_1, v_2, v_3) .

We call these coordinates the *components of* **v**, and we write **v** in component form using the *bracket* notation

 $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$

VECTORS WITH INITIAL POINT NOT AT THE ORIGIN

$$\overrightarrow{P_1P_2} + \overrightarrow{OP_1} = \overrightarrow{OP_2}$$
$$\overrightarrow{P_1P_2} + \langle x_1, y_1 \rangle = \langle x_2, y_2 \rangle$$
$$\overrightarrow{P_1P_2} = \langle x_2, y_2 \rangle - \langle x_1, y_1 \rangle$$
$$= \langle x_2 - x_1, y_2 - y_1 \rangle$$

VECTORS WITH INITIAL POINT NOT AT THE ORIGIN

Example:

The vector from the point A(0, -2, 5) to the point B(3, 4, -1) is

$$\overrightarrow{AB} = \langle 3 - 0, 4 - (-2), -1 - 5 \rangle$$
$$= \langle 3, 6, -6 \rangle$$

RULES OF VECTOR ARITHMETIC

11.2.6 THEOREM For any vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} and any scalars k and l, the following relationships hold:

(a) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (b) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (c) $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$ (d) $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ (e) $k(l\mathbf{u}) = (kl)\mathbf{u}$ (f) $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$ (g) $(k + l)\mathbf{u} = k\mathbf{u} + l\mathbf{u}$ (h) $1\mathbf{u} = \mathbf{u}$

NORM OF A VECTOR

- The distance between the initial and terminal points of a vector v is called the length, the norm, or the magnitude of v and is denoted by ||v||.
- This *distance does not change* if the vector is *translated*, so for purposes of calculating the norm we can assume that the vector is positioned with its initial point at the origin.

NORM OF A VECTOR

NOTE $||k\mathbf{v}|| = |k|||\mathbf{v}||$

Example: If $w = \langle 2,3,6 \rangle$ then find the norm of

1 W
$$||w|| = \sqrt{(2)^2 + (3)^2 + (6)^2} = \sqrt{49} = 7$$

2
$$-3\mathbf{w}$$
 $||-3\mathbf{w}|| = |-3| \times ||\mathbf{w}|| = 3 \times 7 = 21$

UNIT VECTORS

- A vector of length 1 is called a unit vector.
- In an xy –coordinate system the unit vectors along the x and y –axes are denoted by i and j, respectively.

$$\mathbf{i} = \langle 1, 0 \rangle \qquad \mathbf{j}$$
$$\mathbf{j} = \langle 0, 1 \rangle \qquad \mathbf{j}$$
$$\mathbf{i} = \langle 1, 0 \rangle \qquad \mathbf{j}$$
$$\mathbf{j} = \langle 0, 1 \rangle \qquad \mathbf{j}$$

 In an xyz – coordinate system the unit vectors along the x –, y – and z –axes are denoted by i, j and k, respectively.

$$\mathbf{i} = \langle 1, 0, 0 \rangle$$

$$\mathbf{j} = \langle 0, 1, 0 \rangle$$

$$\mathbf{k} = \langle 0, 0, 1 \rangle$$

UNIT VECTORS

NOTE Every vector in 2 —space is expressible uniquely in terms of i and j as follows:

$$\mathbf{v} = \langle v_1, v_2 \rangle = \langle v_1, 0 \rangle + \langle 0, v_2 \rangle$$
$$= v_1 \langle 1, 0 \rangle + v_2 \langle 0, 1 \rangle = v_1 \mathbf{i} + v_2 \mathbf{j}$$

Also, every vector in 3 —space is expressible uniquely in terms of i, j and k as follows:

$$\mathbf{v} = \langle v_1, v_2, v_3 \rangle = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$$

UNIT VECTORS

Example:

$$\langle 2, 3 \rangle = 2\mathbf{i} + 3\mathbf{j} \langle 2, -3, 4 \rangle = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k} \langle -4, 0 \rangle = -4\mathbf{i} + 0\mathbf{j} = -4\mathbf{i} \langle 0, 3, 0 \rangle = 3\mathbf{j} \langle 0, 0, 0 \rangle = 0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k} = \mathbf{0} 5(6\mathbf{i} - 2\mathbf{j}) = 30\mathbf{i} - 10\mathbf{j} (3\mathbf{i} + 2\mathbf{j} - \mathbf{k}) - (4\mathbf{i} - \mathbf{j} + 2\mathbf{k}) = -\mathbf{i} + 3\mathbf{j} - 3\mathbf{k} ||\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}|| = \sqrt{1^2 + 2^2 + (-3)^2} = \sqrt{14}$$

NORMALIZING A VECTOR

The *unit vector* **u** that has the *same direction* as some given nonzero vector **v** is

$$\mathbf{u} = \frac{1}{\|\mathbf{v}\|} \mathbf{v} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

The process of obtaining a unit vector with the same direction of v is called *normalizing* v.

Example: Find the unit vector that has the same direction as v = 2i + 2j - k

$$|\mathbf{v}|| = \sqrt{2^2 + 2^2 + (-1)^2} = \sqrt{9} = 3$$
 $\therefore \mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \left\langle \frac{2}{3}, \frac{2}{3}, \frac{-1}{3} \right\rangle$

VECTORS DETERMINED BY LENGTH AND ANGLE

$$\cos \theta = \frac{x}{\|\mathbf{v}\|} \Rightarrow x = \|\mathbf{v}\| \cos \theta$$
$$\sin \theta = \frac{y}{\|\mathbf{v}\|} \Rightarrow y = \|\mathbf{v}\| \sin \theta$$

 $\therefore \mathbf{v} = \langle \|\mathbf{v}\| \cos \theta , \|\mathbf{v}\| \sin \theta \rangle$

VECTORS DETERMINED BY LENGTH AND ANGLE

 $\therefore \mathbf{v} = \langle \|\mathbf{v}\| \cos \theta , \|\mathbf{v}\| \sin \theta \rangle$

Example:

Find the vector of length 2 that makes an angle of $\frac{\pi}{4}$ with the positive x —axis.

$$\mathbf{v} = \left\langle 2\cos\frac{\pi}{4}, 2\sin\frac{\pi}{4} \right\rangle = \left\langle \frac{2}{\sqrt{2}}, \frac{2}{\sqrt{2}} \right\rangle$$
$$= \left\langle \sqrt{2}, \sqrt{2} \right\rangle$$

VECTORS DETERMINED BY LENGTH AND ANGLE

Example:

 $\therefore \mathbf{v} = \langle \|\mathbf{v}\| \cos \theta , \|\mathbf{v}\| \sin \theta \rangle$

Find the angle that the vector $\mathbf{v} = -\sqrt{3}\mathbf{i} + \mathbf{j}$ makes with the positive x –axis.

$$\|\mathbf{v}\| = \sqrt{\left(-\sqrt{3}\right)^2 + 1^2} = 2$$

$$\frac{\pi - \alpha}{\|\mathbf{v}\|} = \frac{\pi}{6}$$

$$\cos \theta = \frac{x}{\|\mathbf{v}\|} = \frac{-\sqrt{3}}{2}$$

$$\sin \theta = \frac{y}{\|\mathbf{v}\|} = \frac{1}{2}$$

$$\frac{\mathbf{c}_{-}, \mathbf{s}_{+}}{\mathbf{a}_{-}}$$

$$\frac{\pi + \alpha}{\mathbf{c}_{-}, \mathbf{s}_{-}}$$

$$\frac{2\pi - \alpha}{\mathbf{c}_{+}, \mathbf{s}_{-}}$$

$$\theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$$

$$\frac{\pi + \alpha}{\mathbf{c}_{-}, \mathbf{s}_{-}}$$

$$\frac{\pi + \alpha}{\mathbf{c}_{+}, \mathbf{s}_{-}}$$

Course: Calculus (3)

Lecture No: [6]

<u>Chapter: [11]</u> THREE-DIMENSIONAL SPACE; VECTORS

Section: [11.3] DOT PRODUCT; PROJECTIONS

DEFINITION OF THE DOT PRODUCT

In this section we will define a *new kind of multiplication* in which two vectors are multiplied to produce a scalar.

11.3.1 DEFINITION If $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ are vectors in 2-space, then the *dot product* of **u** and **v** is written as $\mathbf{u} \cdot \mathbf{v}$ and is defined as

 $\mathbf{u}\cdot\mathbf{v}=u_1v_1+u_2v_2$

Similarly, if $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ are vectors in 3-space, then their dot product is defined as

 $\mathbf{u}\cdot\mathbf{v}=u_1v_1+u_2v_2+u_3v_3$

Example: $(3, 5) \cdot (-1, 2) = 3(-1) + 5(2) = 7$ $(2, 3) \cdot (-3, 2) = 2(-3) + 3(2) = 0$ $(\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}) \cdot (\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}) = 1(1) + (-3)(5) + 4(2) = -6$

ALGEBRAIC PROPERTIES OF THE DOT PRODUCT

- **11.3.2 THEOREM** If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in 2- or 3-space and k is a scalar, then: (a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- (b) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
- (c) $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (k\mathbf{v})$
- (d) $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$ $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$
- (e) $\mathbf{0} \cdot \mathbf{v} = 0$

- Suppose that u and v are nonzero vectors in 2 space or 3 space that are positioned so their initial points coincide.
- We define the angle between **u** and **v** to be the angle θ determined by the vectors that satisfies the condition $\theta \in [0, \pi]$.

11.3.3 THEOREM If **u** and **v** are nonzero vectors in 2-space or 3-space, and if θ is the angle between them, then

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

Example: Find the angle between the vector $\mathbf{u} = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ and

(a)
$$\mathbf{v} = -3\mathbf{i} + 6\mathbf{j} + 2\mathbf{k}$$

 $\mathbf{u} \cdot \mathbf{v} = (1)(-3) + (-2)(6) + (2)(2) = -11$
 $\|\mathbf{u}\| = \sqrt{1^2 + (-2)^2 + 2^2} = 3$
 $\|\mathbf{v}\| = \sqrt{(-3)^2 + 6^2 + 2^2} = 7$
 $\theta = \cos^{-1}\left(\frac{-11}{21}\right)$

11.3.3 THEOREM If **u** and **v** are nonzero vectors in 2-space or 3-space, and if θ is the angle between them, then

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

Example: Find the angle between the vector $\mathbf{u} = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ and

(b)
$$w = 2i + 7j + 6k$$

 $u \cdot w = (1)(2) + (-2)(7) + (2)(6) = 0$
 $\therefore \cos \theta = 0$
 $\theta = \frac{\pi}{2}$

11.3.3 THEOREM If **u** and **v** are nonzero vectors in 2-space or 3-space, and if θ is the angle between them, then

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

Example: Find the angle between the vector $\mathbf{u} = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ and

(c)
$$\mathbf{v} = -3\mathbf{i} + 6\mathbf{j} - 6\mathbf{k}$$

 $\mathbf{u} \cdot \mathbf{v} = (1)(-3) + (-2)(6) + (2)(-6) = -27$
 $\|\mathbf{u}\| = \sqrt{1^2 + (-2)^2 + 2^2} = 3$
 $\|\mathbf{v}\| = \sqrt{(-3)^2 + 6^2 + (-6)^2} = 9$
 $\therefore \cos \theta = \frac{-27}{(3)(9)} = -1$
 $\theta = \pi$

ANGLE BETWEEN VECTORS $\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$

DIRECTION ANGLES

$$\cos \alpha = \frac{\mathbf{v} \cdot \mathbf{i}}{\|\mathbf{v}\| \|\mathbf{i}\|} = \frac{v_1}{\|\mathbf{v}\|}$$
$$\mathbf{v} = \langle v_1, v_2 \rangle$$
$$\mathbf{v} = \langle v_1, v_2 \rangle$$
$$\mathbf{j} = \langle 0, 1 \rangle$$
$$\beta$$
$$\alpha$$
$$\mathbf{i} = \langle 1, 0 \rangle$$

DIRECTION ANGLES

11.3.4 THEOREM The direction cosines of a nonzero vector $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$ are

NOTE:

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$$

DIRECTION ANGLES

Example: Find the direction cosines of the vector $\mathbf{v} = 2\mathbf{i} - 4\mathbf{j} + 4\mathbf{k}$

$$\|\mathbf{v}\| = \sqrt{4 + 16 + 16} = 6$$

$$\frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{1}{3}\mathbf{i} - \frac{2}{3}\mathbf{j} + \frac{2}{3}\mathbf{k}$$

$$\cos \alpha = \frac{1}{3}$$

$$\cos \beta = -\frac{2}{3}$$

$$\cos \gamma = \frac{2}{3}$$

$$\alpha = \cos^{-1}(\frac{1}{3}) \approx 71^{\circ}$$

$$\beta = \cos^{-1}(-\frac{2}{3}) \approx 132^{\circ}$$

$$\gamma = \cos^{-1}(\frac{2}{3}) \approx 48^{\circ}$$

In many applications it is desirable to **decompose** a vector into a sum of two orthogonal vectors with convenient specified directions.

$$\mathbf{v} = \mathbf{a}\mathbf{w}_{1} + \mathbf{b}\mathbf{w}_{2} \quad \mathbf{v} = \mathbf{k}_{1}\mathbf{e}_{1} + \mathbf{k}_{2}\mathbf{e}_{2}$$
$$\mathbf{v} \cdot \mathbf{e}_{1} = (k_{1}\mathbf{e}_{1} + k_{2}\mathbf{e}_{2}) \cdot \mathbf{e}_{1}$$
$$= k_{1}(\mathbf{e}_{1} \cdot \mathbf{e}_{1}) + k_{2}(\mathbf{e}_{2} \cdot \mathbf{e}_{1})$$
$$= k_{1}||\mathbf{e}_{1}||^{2} + 0 = k_{1}$$
$$\therefore k_{1} = \mathbf{v} \cdot \mathbf{e}_{1}$$

In many applications it is desirable to **decompose** a vector into a sum of two orthogonal vectors with convenient specified directions.

$$\mathbf{v} = \mathbf{a}\mathbf{w}_{1} + \mathbf{b}\mathbf{w}_{2} \quad \mathbf{v} = \mathbf{k}_{1}\mathbf{e}_{1} + \mathbf{k}_{2}\mathbf{e}_{2} \qquad \therefore k_{1} = \mathbf{v} \cdot \mathbf{e}_{1}$$
$$\mathbf{v} \cdot \mathbf{e}_{2} = (k_{1}\mathbf{e}_{1} + k_{2}\mathbf{e}_{2}) \cdot \mathbf{e}_{2}$$
$$= k_{1}(\mathbf{e}_{1} \cdot \mathbf{e}_{2}) + k_{2}(\mathbf{e}_{2} \cdot \mathbf{e}_{2})$$
$$= 0 + k_{2}||\mathbf{e}_{2}||^{2} = k_{2}$$
$$\therefore k_{2} = \mathbf{v} \cdot \mathbf{e}_{2}$$

In many applications it is desirable to **decompose** a vector into a sum of two orthogonal vectors with convenient specified directions.

$$\mathbf{v} = \mathbf{a}\mathbf{w}_{1} + \mathbf{b}\mathbf{w}_{2} \quad \mathbf{v} = \mathbf{k}_{1}\mathbf{e}_{1} + \mathbf{k}_{2}\mathbf{e}_{2} \qquad \therefore \mathbf{k}_{1} = \mathbf{v} \cdot \mathbf{e}_{1} \\ \therefore \mathbf{k}_{2} = \mathbf{v} \cdot \mathbf{e}_{2} \qquad \qquad \therefore \mathbf{k}_{2} = \mathbf{v} \cdot \mathbf{e}_{2} \\ = \left(\frac{\mathbf{v} \cdot \mathbf{w}_{1}}{\|\mathbf{w}_{1}\|}\right) \frac{\mathbf{w}_{1}}{\|\mathbf{w}_{1}\|} + \left(\frac{\mathbf{v} \cdot \mathbf{w}_{2}}{\|\mathbf{w}_{2}\|}\right) \frac{\mathbf{w}_{2}}{\|\mathbf{w}_{2}\|} \\ \therefore \mathbf{v} = \left(\frac{\mathbf{v} \cdot \mathbf{w}_{1}}{\|\mathbf{w}_{1}\|^{2}}\right) \mathbf{w}_{1} + \left(\frac{\mathbf{v} \cdot \mathbf{w}_{2}}{\|\mathbf{w}_{2}\|^{2}}\right) \mathbf{w}_{2} \qquad \qquad \mathbf{w}_{2}$$

$$\therefore \mathbf{v} = \underbrace{\left(\frac{\mathbf{v} \cdot \mathbf{w}_1}{\|\mathbf{w}_1\|^2}\right) \mathbf{w}_1}_{\underbrace{\mathbf{w}_2 \|^2}} \underbrace{\mathbf{w}_2}_{\underbrace{\mathbf{w}_2 \|^2}} \mathbf{w}_2$$

the <i>orthogonal</i>	the orthogonal
projection of ${f v}$	projection of v
on w ₁	on w ₂

 $proj_{W_1}v proj_{W_2}v$

ORTHOGONAL PROJECTIONS

The orthogonal projection of \boldsymbol{v} on an arbitrary nonzero vector \boldsymbol{b} is

$$\operatorname{proj}_{\mathbf{b}} \mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{b}}{\|\mathbf{b}\|^2} \mathbf{b}$$

Moreover, if we subtract $\operatorname{proj}_{\mathbf{b}} \mathbf{v}$ from \mathbf{v} , then the resulting vector

v – proj_bv

will be orthogonal to b; and we call this *the vector component of* v *orthogonal to* b.

ORTHOGONAL PROJECTIONS

Example: Find the orthogonal projection of v = i + j + k on b = 2i + 2j, and then find the vector component of v orthogonal to b.

$$\mathbf{v} \cdot \mathbf{b} = (\mathbf{i} + \mathbf{j} + \mathbf{k}) \cdot (2\mathbf{i} + 2\mathbf{j}) = 2 + 2 + 0 = 4$$

 $\|\mathbf{b}\|^2 = 2^2 + 2^2 = 8$

Thus, the orthogonal projection of v on b is

$$\operatorname{proj}_{\mathbf{b}}\mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{b}}{\|\mathbf{b}\|^2}\mathbf{b} = \frac{4}{8}(2\mathbf{i} + 2\mathbf{j}) = \mathbf{i} + \mathbf{j}$$

and the vector component of v orthogonal to b is

$$\mathbf{v} - \operatorname{proj}_{\mathbf{b}}\mathbf{v} = (\mathbf{i} + \mathbf{j} + \mathbf{k}) - (\mathbf{i} + \mathbf{j}) = \mathbf{k}$$

Course: Calculus (3)

Lecture No: [8]

<u>Chapter: [11]</u> THREE-DIMENSIONAL SPACE; VECTORS

Section: [11.4] CROSS PRODUCT

DETERMINANTS

• A matrix is a rectangular *array* (*table*) of numbers arranged in rows and columns.

• For example,
$$\begin{bmatrix} -1 & 0 & 3 \\ 2 & 5 & -7 \end{bmatrix}$$
.

- The **determinant** is a function that assigns numerical value to square matrix (number of rows = number of columns) of numbers.
- We define a 2×2 determinant by $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad bc$

• For example,
$$\begin{vmatrix} 3 & -2 \\ 4 & 5 \end{vmatrix} = (3)(5) - (-2)(4) = 15 + 8 = 23$$
DETERMINANTS

A 3×3 determinant is defined in terms of 2×2 determinants by

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

Example

le
$$\begin{vmatrix} 3 & -2 & -5 \\ 1 & 4 & -4 \\ 0 & 3 & 2 \end{vmatrix} = 3 \begin{vmatrix} 4 & -4 \\ 3 & 2 \end{vmatrix} - (-2) \begin{vmatrix} 1 & -4 \\ 0 & 2 \end{vmatrix} + (-5) \begin{vmatrix} 1 & 4 \\ 0 & 3 \end{vmatrix}$$

= 3(20) + 2(2) - 5(3) = 49

DETERMINANTS

11.4.1 THEOREM

- (a) If two rows in the array of a determinant are the same, then the value of the determinant is 0.
- (b) Interchanging two rows in the array of a determinant multiplies its value by -1.

PROOF (a)

$$\begin{vmatrix} a_1 & a_2 \\ a_1 & a_2 \end{vmatrix} = a_1 a_2 - a_2 a_1 = 0$$

PROOF (b)

$$\begin{vmatrix} b_1 & b_2 \\ a_1 & a_2 \end{vmatrix} = b_1 a_2 - b_2 a_1 = -(a_1 b_2 - a_2 b_1) = -\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$

CROSS PRODUCT

11.4.2 DEFINITION If $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ are vectors in 3-space, then the *cross product* $\mathbf{u} \times \mathbf{v}$ is the vector defined by

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

Example Let $\mathbf{u} = \langle 1, 2, -2 \rangle$ and $\mathbf{v} = \langle 3, 0, 1 \rangle$. Find $\mathbf{u} \times \mathbf{v}$

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -2 \\ 3 & 0 & 1 \end{vmatrix}$$
$$= \begin{vmatrix} 2 & -2 \\ 0 & 1 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 2 \\ 3 & 0 \end{vmatrix} \mathbf{k} = 2\mathbf{i} - 7\mathbf{j} - 6\mathbf{k}$$

- Keep in mind the essential differences between the *cross product* and the *dot product*:
 - ✓ The cross product is defined only for vectors in 3 —space, whereas the dot product is defined for vectors in 2 —space and 3 —space.
 - The cross product of two vectors is a vector, whereas the dot product of two vectors is a scalar.

11.4.3 THEOREM If \mathbf{u} , \mathbf{v} , and \mathbf{w} are any vectors in 3-space and k is any scalar, then: (a) $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$

- (b) $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$
- (c) $(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$
- (d) $k(\mathbf{u} \times \mathbf{v}) = (k\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k\mathbf{v})$
- (e) $\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$
- (f) $\mathbf{u} \times \mathbf{u} = \mathbf{0}$

The following cross products occur so frequently that it is helpful to be familiar with them:

$$\begin{aligned} \mathbf{i} \times \mathbf{j} &= \mathbf{k} & \mathbf{j} \times \mathbf{k} &= \mathbf{i} & \mathbf{k} \times \mathbf{i} &= \mathbf{j} \\ \mathbf{j} \times \mathbf{i} &= -\mathbf{k} & \mathbf{k} \times \mathbf{j} &= -\mathbf{i} & \mathbf{i} \times \mathbf{k} &= -\mathbf{j} \end{aligned}$$

WARNING

- We can write a product of three real numbers as abc since the associative law (ab)c = a(bc) ensures that the same value for the product results no matter how the factors are grouped.
- The *associative* law does not hold for cross products. For example,

 $i \times (j \times j) = i \times 0 = 0$ $(i \times j) \times j = k \times j = -i$

• Thus, we cannot write a cross product with three vectors as $\mathbf{u} \times \mathbf{v} \times \mathbf{w}$, since this expression is ambiguous (مُبهم) without parentheses.

11.4.4 THEOREM If **u** and **v** are vectors in 3-space, then: (a) $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$ ($\mathbf{u} \times \mathbf{v}$ is orthogonal to **u**) (b) $\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0$ ($\mathbf{u} \times \mathbf{v}$ is orthogonal to **v**)

Example Find a vector that is orthogonal to both of the vectors $\mathbf{u} = \langle 2, -1, 3 \rangle$ and $\mathbf{v} = \langle -7, 2, -1 \rangle$.

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & 3 \\ -7 & 2 & -1 \end{vmatrix}$$
$$= \begin{vmatrix} -1 & 3 \\ 2 & -1 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 2 & 3 \\ -7 & -1 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 2 & -1 \\ -7 & 2 \end{vmatrix} \mathbf{k} = -5\mathbf{i} - 19\mathbf{j} - 3\mathbf{k}$$

11.4.5 THEOREM Let **u** and **v** be nonzero vectors in 3-space, and let θ be the angle between these vectors when they are positioned so their initial points coincide.

(a) $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$

11.4.5 THEOREM Let **u** and **v** be nonzero vectors in 3-space, and let θ be the angle between these vectors when they are positioned so their initial points coincide.

- (a) $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$
- (b) The area A of the parallelogram that has **u** and **v** as adjacent sides is

$$A = \|\mathbf{u} \times \mathbf{v}\|$$
$$T = \frac{1}{2} \|\mathbf{u} \times \mathbf{v}\|$$

(c) $\mathbf{u} \times \mathbf{v} = \mathbf{0}$ if and only if \mathbf{u} and \mathbf{v} are parallel vectors, that is, if and only if they are scalar multiples of one another.

Example Find the area of the triangle that is determined by the points $P_1(2, 2, 0), P_2(-1, 0, 2)$, and $P_3(0, 4, 3)$.

$$\overrightarrow{P_1P_2} = \langle -3, -2, 2 \rangle$$

$$\overrightarrow{P_1P_3} = \langle -2, 2, 3 \rangle$$

$$\overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3} = \langle -10, 5, -10$$

$$A = \frac{1}{2} \| \overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3} \| = \frac{15}{2}$$

SCALAR TRIPLE PRODUCTS

If $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$, $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$ are vectors in 3-space, then the number

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

is called the scalar triple product of u, v, and w.

Example Calculate the scalar triple product $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ of the vectors

$$u = 3i - 2j - 5k$$
, $v = i + 4j - 4k$, $w = 3j + 2k$

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} 3 & -2 & -5 \\ 1 & 4 & -4 \\ 0 & 3 & 2 \end{vmatrix} = 49$$

GEOMETRIC PROPERTIES OF THE SCALAR TRIPLE PRODUCT

11.4.6 THEOREM Let **u**, **v**, and **w** be nonzero vectors in 3-space.

(a) The volume V of the parallelepiped that has \mathbf{u} , \mathbf{v} , and \mathbf{w} as adjacent edges is

 $V = |\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})|$

GEOMETRIC PROPERTIES OF THE SCALAR TRIPLE PRODUCT

11.4.6 THEOREM Let **u**, **v**, and **w** be nonzero vectors in 3-space.

(a) The volume V of the parallelepiped that has \mathbf{u} , \mathbf{v} , and \mathbf{w} as adjacent edges is

 $V = |\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})|$

(b) $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = 0$ if and only if \mathbf{u} , \mathbf{v} , and \mathbf{w} lie in the same plane.

ALGEBRAIC PROPERTIES OF THE SCALAR TRIPLE PRODUCT

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot (\mathbf{w} \times \mathbf{u})$$

Course: Calculus (3)

Lecture No: [9]

<u>Chapter: [11]</u> THREE-DIMENSIONAL SPACE; VECTORS

Section: [11.*] REVIEW OF PARAMETRIC EQUATIONS

- Until now, you have been representing a graph by a single equation involving two variables.
- You will study situations in which *three* variables are used to represent a curve in the plane.
- Suppose that a particle moves along a curve C (trajectory) in the xy —plane.
- The rectangular equation of the curve *C*, does not tell the whole story.
- Although it does tell you where the object has been, it doesn't tell you when the object was at a given point (x, y).
- To determine this time, you can introduce a third variable *t*, called a parameter.

Definition of a Plane Curve

If f and g are continuous functions of t on an interval I, then the equations

x = f(t) and y = g(t)

are **parametric equations** and *t* is the **parameter.** The set of points (x, y) obtained as *t* varies over the interval *I* is the **graph** of the parametric equations. Taken together, the parametric equations and the graph are a **plane curve**, denoted by *C*.

Example The position P(x, y) of a particle moving in the xy-plane is given by the equations and parameter interval $x = \sqrt{t}$, y = t, $t \ge 0$

We try to *identify the path* by eliminating *t* between the equations:

$$y = t = \left(\sqrt{t}\right)^2 = x^2$$

Example The *counter-clockwise* orientation parametric equations of the

circle
$$x^{2} + y^{2} = a^{2}$$
 are
 $y \qquad x = a \cos t$, $y = a \sin t$, $0 \le t \le 2\pi$
 $t = \frac{\pi}{2}$
 $x^{2} + y^{2} = 1$
 $P(\cos t, \sin t)$
 $t = \pi$
 $(1, 0) \qquad x$
 $x^{2} + y^{2} = a^{2} \cos^{2} t + a^{2} \sin^{2} t = a^{2}$.

Course: Calculus (3)

Lecture No: [10]

<u>Chapter: [11]</u> THREE-DIMENSIONAL SPACE; VECTORS

Section: [11.5] PARAMETRIC EQUATIONS OF LINES

$$\langle x - x_0, y - y_0 \rangle = \langle ta, tb \rangle$$

 $\begin{array}{l} x - x_0 = ta \\ y - y_0 = tb \end{array} \Rightarrow$

The parametric equations of the line in 2 – space that passes through the point $P_0(x_0, y_0)$ and is parallel to the nonzero vector $\mathbf{v} = \langle a, b \rangle = a\mathbf{i} + b\mathbf{j}$ are

$$x = x_0 + at$$
, $y = y_0 + bt$

The parametric equations of the line in 3 - space that passes through the point $P_0(x_0, y_0, z_0)$ and is parallel to the nonzero vector $\mathbf{v} = \langle a, b, c \rangle = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ are

$$x = x_0 + at$$
 , $y = y_0 + bt$, $z = z_0 + ct$

Example Find parametric equations of the line passing through (1, 2, -3) and parallel to v = 4i + 5j - 7k.

$$x = 1 + 4t$$
 , $y = 2 + 5t$, $z = -3 - 7t$

Example

1. Find parametric equations of the line ℓ passing through the points $P_1(2, 4, -1)$ and $P_2(5, 0, 7)$.

The vector
$$\overrightarrow{P_1P_2} = \langle 5 - 2, 0 - 4, 7 - (-1) \rangle = \langle 3, -4, 8 \rangle$$
 is parallel to ℓ .
If P_1 is chosen:
 $x = 2 + 3t_1$
 $y = 4 - 4t_1$
 $z = -1 + 8t_1$
 $4 - 4t_1 = -4t_2$
 $-1 + t_1 = t_2$
 $x = 5 + 3t_2$
 $y = -4t_2$
 $z = 7 + 8t_2$

Example

- 1. Find parametric equations of the line ℓ passing through the points $P_1(2, 4, -1)$ and $P_2(5, 0, 7)$.
- 2. Where does the line intersect the xy –plane?

$$z = 0$$
 7 + 8 $t_2 = 0$ $t_2 = \frac{-7}{8}$
The point is $\left(\frac{19}{8}, \frac{7}{2}, 0\right)$

$$x = 5 + 3t_2$$

 $y = -4t_2$
 $z = 7 + 8t_2$

Example Let ℓ_1 and ℓ_2 be the lines

$$\begin{array}{ll} \ell_1: & x = 1 + 4t, & y = 5 - 4t, & z = -1 + 5t & \mathbf{v}_1 = \langle 4, -4, 5 \rangle \\ \ell_2: & x = 2 + 8t, & y = 4 - 3t, & z = 5 + t & \mathbf{v}_2 = \langle 8, -3, 1 \rangle \end{array}$$

1. Are the lines parallel?

$$\ell_1 \parallel \ell_2 \iff \mathbf{v}_1 \parallel \mathbf{v}_2 \iff \mathbf{v}_2 = c \, \mathbf{v}_1$$

$$4c = 8$$

 $-4c = -3$
 $5c = 1$
No such c

 $\therefore \ell_1$ and ℓ_2 are NOT parallel lines.

Example Let ℓ_1 and ℓ_2 be the lines

$$\ell_1$$
: $x = 1 + 4t$, $y = 5 - 4t$, $z = -1 + 5t$
 ℓ_2 : $x = 2 + 8t$, $y = 4 - 3t$, $z = 5 + t$

2. Do the lines intersect?

Suppose the point of intersection is

$$1 + 4t_1 = x^* = 2 + 8t_2$$

$$5 - 4t_1 = y^* = 4 - 3t_2$$

 $-1 + 5t_1 = z^* = 5 + t_2$

Example Let ℓ_1 and ℓ_2 be the lines

$$\ell_1$$
: $x = 1 + 4t$, $y = 5 - 4t$, $z = -1 + 5t$
 ℓ_2 : $x = 2 + 8t$, $y = 4 - 3t$, $z = 5 + t$

2. Do the lines intersect?

Suppose the point of intersection is

$$1 + 4t_1 = 2 + 8t_2$$

$$5 - 4t_1 = 4 - 3t_2$$

$$-1 + 5t_1 = 5 + t_2$$

$$6 = 6 + 5t_2$$

$$T_2 = 0$$

$$t_1 = \frac{1}{4}$$

$$\therefore \ell_1 \text{ and } \ell_2 \text{ do NOT intersect.}$$

- Two lines in 3 —space that are not parallel and do not intersect are called skew lines.
- Any two skew lines lie in *parallel planes*.

VECTOR EQUATIONS OF LINES

$$\mathbf{r} = \mathbf{r}_{0} + t \mathbf{v}$$

$$\langle x, y \rangle = \langle x_{0}, y_{0} \rangle + t \langle a, b \rangle \quad \text{In 2-space}$$

$$\langle x, y, z \rangle = \langle x_{0}, y_{0}, z_{0} \rangle + t \langle a, b, c \rangle \quad \text{In 3-space}$$

NOTE Let ℓ be the line that passes through the point (x_0, y_0, z_0) and is parallel to the vector $\mathbf{v} = \langle a, b, c \rangle$, where a, b, and c are nonzero. Then the following equations are called the symmetric equations of ℓ .

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

Course: Calculus (3)

Lecture No: [11]

<u>Chapter: [11]</u> THREE-DIMENSIONAL SPACE; VECTORS

Section: [11.6] PLANES IN 3-SPACE

PLANES PARALLEL TO THE COORDINATE PLANES

- A plane in 3 —space can be determined uniquely by specifying a *point* in the plane and a *vector perpendicular* to the plane.
- A vector perpendicular to a plane is called a normal to the plane.

-- __ __

$$\mathbf{n} \cdot \mathbf{v} = 0$$

$$\langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

$$\overline{a(x - x_0) + b(y - y_0) + c(z - z_0) = 0}$$

$$\mathbf{n} = \langle a, b, c \rangle$$

Example Find an equation of the plane passing through the point (3, -1, 7) and perpendicular to the vector $\mathbf{n} = \langle 4, 2, -5 \rangle$.

$$4(x-3) + 2(y+1) - 5(z-7) = 0$$

$$4x - 12 + 2y + 2 - 5z + 35 = 0$$

$$4x + 2y - 5z + 25 = 0$$
Example Determine whether the two planes are parallel. $P_1: 3x - 4y + 5z = 0$ $n_1 = \langle 3, -4, 5 \rangle$ $P_2: -6x + 8y - 10z - 4 = 0$ $n_2 = \langle -6, 8, -10 \rangle$

 $P_{1} \parallel P_{2} \iff \mathbf{n}_{1} \parallel \mathbf{n}_{2} \iff \mathbf{n}_{2} = k \mathbf{n}_{1}$ $\Leftrightarrow \langle -6, 8, -10 \rangle = k \langle 3, -4, 5 \rangle$ $\Leftrightarrow \qquad \begin{array}{c} -6 = 3k \\ 8 = -4k \\ -10 = 5k \end{array}$

 \Leftrightarrow k = -2 \therefore P_1 and P_2 are parallel planes

Example Find an equation of the plane through the points $P_1(1, 2, -1)$, $P_2(2, 3, 1)$, and $P_3(3, -1, 2)$.

$$n = \overrightarrow{P_2 P_1} \times \overrightarrow{P_2 P_3} = \begin{vmatrix} i & j & k \\ -1 & -1 & -2 \\ 1 & -4 & 1 \end{vmatrix} = \langle -9, -1, 5 \rangle$$

By using this normal and the point $P_3(3, -1, 2)$ in the plane, we obtain the point-normal form

$$-9(x-3) - (y+1) + 5(z-2) = 0$$

$$-9x - y + 5z + 16 = 0$$

$$9x + y - 5z - 16 = 0$$

Example Determine whether the line ℓ : x = 3 + 8t, y = 4 + 5t, z = -3 - tis parallel to the plane x - 3y + 5z = 12.

 $\mathbf{v} = \langle 8, 5, -1 \rangle$ $\mathbf{n} = \langle 1, -3, 5 \rangle$

Example Determine whether the line $\ell: x = 3 + 8t$, y = 4 + 5t, z = -3 - tis parallel to the plane x - 3y + 5z = 12. $v = \langle 8,5,-1 \rangle$ $n = \langle 1,-3,5 \rangle$ $n \cdot v = (1)(8) + (-3)(5) + (5)(-1) = 12 \neq 0$

 \therefore The line and the plane are not parallel.

: The line and the plane **intersects**.

Example Find the intersection of the line ℓ : x = 3 + 8t, y = 4 + 5t, z = -3 - tand the plane x - 3y + 5z = 12.

Suppose the point of intersection is (x_0, y_0, z_0)

Two distinct intersecting planes determine two positive angles of intersection

If n_1 and n_2 are normals to the planes, then the acute angle θ between the planes satisfies:

$$\cos\theta = \frac{|\mathbf{n}_1 \cdot \mathbf{n}_2|}{\|\mathbf{n}_1\|\|\mathbf{n}_2\|}$$

Example Find the acute angle of intersection between the two planes

$$2x - 4y + 4z = 6 \text{ and } 6x + 2y - 3z = 4$$
$$n_1 = \langle 2, -4, 4 \rangle \qquad n_2 = \langle 6, 2, -3 \rangle$$

$$\cos\theta = \frac{|\mathbf{n}_1 \cdot \mathbf{n}_2|}{\|\mathbf{n}_1\| \|\mathbf{n}_2\|} = \frac{|-8|}{\sqrt{36}\sqrt{49}} = \frac{4}{21} \qquad \theta = \cos^{-1}\left(\frac{4}{21}\right) \approx 79^\circ$$

Example Find an equation for the line ℓ of intersection of the planes

$$2x - 4y + 4z = 6$$
 and $6x + 2y - 3z = 4$

v Plane 1	\Rightarrow	$\mathbf{v} \perp \mathbf{r}$	<u>n</u> 1
v Plane 2	\Rightarrow	v⊥ ı	<u>1</u> 2
$\therefore \mathbf{v} = \mathbf{n}1 \times \mathbf{n}2$	$= \begin{vmatrix} i \\ 2 \\ 6 \end{vmatrix}$	j 4 2	k 4 -3
v = (4,30,28	\$ `		

Example Find an equation for the line ℓ of intersection of the planes 2x - 4y + 4z = 6 and 6x + 2y - 3z = 4 $v = \langle 4, 30, 28 \rangle$ Solve the equations: To find a point on ℓ 2x - 4y = 66x + 2y = 4 ℓ is not perpendicular to $\mathbf{k} = \langle 0, 0, 1 \rangle$ x = 1, y = -1 $\mathbf{v} \cdot \mathbf{k} = 0 + 0 + 28 \neq 0$: point = (1, -1, 0)

 $\therefore \ell$ intersects the xy –plane (z = 0)

Example Find an equation for the line ℓ of intersection of the planes

$$2x - 4y + 4z = 6$$
 and $6x + 2y - 3z = 4$

 $\mathbf{v} = \langle 4, 30, 28 \rangle$ $\therefore \text{ point} = (1, -1, 0)$ The parametric equations of ℓ are

$$x = 1 + 4t$$
$$y = -1 + 30t$$
$$z = 28t$$

DISTANCE PROBLEMS INVOLVING PLANES

- The distance between a point and a plane.
- The distance between two parallel planes.
- The distance between two skew lines.

DISTANCE PROBLEMS INVOLVING PLANES

The distance *D* between a point $P_0(x_0, y_0, z_0)$ and the plane ax + by + cz + d = 0 is

$$D = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Example Find the distance *D* between the point (1, -4, -3) and the plane 2x - 3y + 6z = -1.

$$D = \frac{|(2)(1) + (-3)(-4) + 6(-3) + 1|}{\sqrt{2^2 + (-3)^2 + 6^2}} = \frac{|-3|}{7} = \frac{3}{7}$$

Course: Calculus (3)

Lecture No: [13]

Chapter: [11] THREE-DIMENSIONAL SPACE; VECTORS

Section: [11.8] CYLINDRICAL AND SPHERICAL COORDINATES

REVIEW OF POLAR COORDINATES

REVIEW OF POLAR COORDINATES

CYLINDRICAL AND SPHERICAL COORDINATE SYSTEMS

CONSTANT SURFACES

In rectangular coordinates

CONSTANT SURFACES

In cylindrical coordinates

CONSTANT SURFACES

In spherical coordinates

From	Cylindrical	From	Spherical		From	Spherical	
То	Rectangular	То	Cylindrical		То	Rectangular	
	$x = r \cos \theta$ $y = r \sin \theta$		$r = \rho \sin \phi$ $\theta = \theta$			$x = \rho \sin \phi$ $y = \rho \sin \phi$	cosθ sinθ
	z = z		$z = \rho \cos \phi$			$z = \rho \cos \phi$	
From	Rectangular	From	Cylindrical		From	Rectangular	
From To	Rectangular Cylindrical	From To	Cylindrical Spherical		From To	Rectangular Spherical	
From To	Rectangular Cylindrical $r = \sqrt{x^2 + y^2}$	From To	Cylindrical Spherical $\rho = \sqrt{r^2 + 2}$	z ²	From To	Rectangular Spherical $\rho = \sqrt{x^2 + c^2}$	$y^2 + z^2$
From To	RectangularCylindrical $r = \sqrt{x^2 + y^2}$ $\tan \theta = y/x$	From To	CylindricalSpherical $\rho = \sqrt{r^2 + 2}$ $\theta = \theta$	z ²	From To	Rectangular Spherical $\rho = \sqrt{x^2 + \frac{1}{2}}$ $\tan \theta = y/x$	$\frac{y^2 + z^2}{z}$

Example Find the rectangular coordinates of the point with cylindrical coordinates

$$(r,\theta,z) = \left(4,\frac{\pi}{3},-3\right)$$

$x = 4\cos\frac{\pi}{2} = 2$		
3	From	Cylindrical
$y = 4\sin\frac{\pi}{3} = 2\sqrt{3}$	То	Rectangular
z = -3		$x = r\cos\theta$
$\therefore (x, y, z) = (2, 2\sqrt{3}, -3)$		$y = r \sin \theta$ $z = z$

Example Find the rectangular coordinates of the point with spherical coordinates

$$(\rho,\theta,\phi) = \left(4,\frac{\pi}{3},\frac{\pi}{4}\right)$$

$$x = 4 \sin \frac{\pi}{4} \cos \frac{\pi}{3} = \frac{2}{\sqrt{2}} = \sqrt{2}$$

$$y = 4 \sin \frac{\pi}{4} \sin \frac{\pi}{3} = \frac{2\sqrt{3}}{\sqrt{2}} = \sqrt{6}$$
From Spherical

$$To$$
Rectangular

$$z = 4 \cos \frac{\pi}{4} = 2\sqrt{2}$$

$$\therefore (x, y, z) = (\sqrt{2}, \sqrt{6}, 2\sqrt{2})$$

$$x = \rho \sin \phi \cos \theta$$

$$y = \rho \sin \phi \sin \theta$$

$$z = \rho \cos \phi$$

Г

Example Find the spherical coordinates of the point that has rectangular coordinates

$$(x, y, z) = \left(4, -4, 4\sqrt{6}\right)$$

$$\rho = \sqrt{4^2 + (-4)^2 + (4\sqrt{6})^2} = \sqrt{128} = 8\sqrt{2}$$

$$\tan \theta = \frac{-4}{4} = -1$$

$$\cos \phi = \frac{4\sqrt{6}}{8\sqrt{2}} = \frac{\sqrt{3}}{2}$$

From Total State Stat

rom	Rectangular
0	Spherical
	$\rho = \sqrt{x^2 + y^2 + z^2}$ $\tan \theta = y/x$ $\cos \phi = z/\rho$

Example Find the spherical coordinates of the point that has rectangular coordinates

z = r

 $\rho \cos \phi = \sqrt{\rho^2 \sin^2 \phi \cos^2 \theta} + \rho^2 \sin^2 \phi \sin^2 \theta$

 $z = \gamma$

 $\rho \cos \phi = \sqrt{\rho^2 \sin^2 \phi \left(\cos^2 \theta + \sin^2 \theta \right)}$

Example Find equations of the cone $z = \sqrt{x^2 + y^2}$ in cylindrical and spherical coordinates. From Rectangular From **Spherical** То Cylindrical Rectangular То $r = \sqrt{x^2 + y^2}$ $x = \rho \sin \phi \cos \theta$ $y = \rho \sin \phi \sin \theta$ $\tan \theta = y/x$ $z = \rho \cos \phi$ Z = Z

$$z = r$$

$$\rho\cos\phi = \sqrt{\rho^2\sin^2\phi}$$

Example Find equations of the cone $z = \sqrt{x^2 + y^2}$ in cylindrical and spherical coordinates. From Rectangular **Spherical** From То Cylindrical Rectangular То $r = \sqrt{x^2 + y^2}$ $x = \rho \sin \phi \cos \theta$ $y = \rho \sin \phi \sin \theta$ $\tan \theta = y/x$ $z = \rho \cos \phi$ z = z $\rho \cos \phi = \rho \sin \phi$ z = r $1 = \tan \phi$

Example Find equations of the paraboloid $\rho = \cos \phi \csc^2 \phi$ in cylindrical coordinates.

$$\rho = \cos \phi \csc^2 \phi$$

$$\sin^2 \phi \rho = \cos \phi$$

$$\frac{r^2}{\rho^2} \rho = \frac{z}{\rho}$$

$$z = r^2$$
From Spherical
To Cylindrical

$$r = \rho \sin \phi$$

$$\theta = \theta$$

$$z = \rho \cos \phi$$

