Course: Calculus (3) Lecture No: [2]

THREE-DIMENSIONAL SPACE; VECTORS

RECTANGULAR COORDINATES IN 3-SPACE; SPHERES;
CYLINDRICAL SURFACES



In this chapter:

We will discuss rectangular coordinate systems in three dimensions.

We will study the analytic geometry of lines, planes, and other basic

surfaces.

We will study vectors. We will introduce various algebraic operations

on vectors.

Finally, we will discuss cylindrical and spherical coordinate system:s.



RECTANGULAR COORDINATE SYSTEMS

In the remainder of this slides, we will call:
* three-dimensional space: 3-space
* two-dimensional space (a plane): 2-space

* one-dimensional space (aline): 1-space

Points in 3-space can be placed in one-to-
one correspondence with triples of real
numbers by using three mutually
perpendicular coordinate lines, called the
x —axis, the y —axis, and the z —axis,
positioned so that their origins coincide.

i



RECTANGULAR COORDINATE SYSTEMS

4 = e The three coordinate axes form a three-
' dimensional rectangular coordinate system

Example n (or Cartesian coordinate system).
: * The point of intersection of the coordinate
Draw the point (4,3,5) B (4,3,5) axes is called the origin of the coordinate
e system.
|
Example S S
. —S y
Draw the point (—3,2, —4) ml ! I
¥ —T ,: - e il
£ Lo
L ;!
£ i
o (-3,2,—-4)



RECTANGULAR COORDINATE SYSTEMS
P

REGION DESCRIPTION




DISTANCE IN 3-SPACE; SPHERES

Py (x3,¥2,23)

R TR T X P

Py (x1,¥1,21)



DISTANCE IN 3-SPACE; SPHERES

d=+/(x —x))2 + (2 —n)? + (22 — 21)?

Example
P X1 Y1 41 X2 Y2 2p

Find the distance d between the points (2,3,—1) and (4, —1, 3).

d = \/(4 —2)>+(-1-3)2+ (3 — (—1))2

=4+ 16+ 16

=6



DISTANCE IN 3-SPACE; SPHERES

P, (x2,¥2,27)

X1+ Xx ~+ Z1+ Z
Midpoint =( 1 2 V1T Y2 23 2)

2 2 7 2

Py (x1,y1,21)



DISTANCE IN 3-SPACE; SPHERES

X1+ X + Z1+ Z
Midpoint :( 1 2 Y1 TY2 77 2)

2 2 72

Example
P X1 Y1 41 X2 Y2 Zp

Find the midpoint between the points (2,3, —1) and (4, —1, 3).

o (2+4 3+ (—1) —1+3)
midpoint =

2 7 2 2

= (3,1,1)



DISTANCE IN 3-SPACE; SPHERES

(x—a)*+(y—b)*>=r? x—a)*+ @ —b)+(@z—c) =r?

Circle in 2-space Sphere in 3-space



DISTANCE IN 3-SPACE; SPHERES

(x—a)>+(y—b)*+(z—-c)?=r?

Sphere in 3-space

Example

Find the equation of the sphere with center
(1, —2,—4) and radius 3.

(x—1D*+@+2)+Z+4)?*=9
x2+y2+2z2—-2x+4y+8z=-12

Example

Find the center and radius of the sphere
(x—=5?24+y2+(z+3)2=5

Center C, , )

Radius V5



DISTANCE IN 3-SPACE; SPHERES

(x—a)’+(y—-b)*+(z—-c)?=r?

Standard equation of the sphere

If the terms in the equation of SPHERE are
expanded and like terms are collected, then
the resulting equation has the form

-

Py b G+ Hy+ Iz 4-d =0

The following example shows how the center
and radius of a sphere that is expressed in
this form can be obtained by completing the
squares.



DISTANCE IN 3-SPACE; SPHERES (x—a)+(y—b)>+(z—c)? =r?
Example Find the center and radius of the sphere

x2+y?+2z2—2x—4y+8z+17=0



DISTANCE IN 3-SPACE; SPHERES (x—a)+(y—b)>+(z—c)? =r?
Example Find the center and radius of the sphere
x2+y?+2z2—-2x—4y+8z+17=0

(x? —2x) + (y? —4y) + (z%> + 8z) = —17



DISTANCE IN 3-SPACE; SPHERES (x—a)+(y—b)>+(z—c)? =r?
Example Find the center and radius of the sphere
x2+y?+2z2—-2x—4y+8z+17=0

(x*=2x+ - )+@*=4y+ — )+ (@z*+8z+ - )=-17

@ @ G



DISTANCE IN 3-SPACE; SPHERES (x—a)’+ W —b)+(z—c)* =7r?
Example Find the center and radius of the sphere
x2+y24+22-2x—4y+8z+17=0

(x2—2x+1—[5+(2—4 —/ﬂ 2 _/‘:_
y y+45=4)+ (z- + 8z + 16 =1%6) 17



DISTANCE IN 3-SPACE; SPHERES (x—a)+(y—b)>+(z—c)? =r?
Example Find the center and radius of the sphere

x2+y?+2z2—-2x—4y+8z+17=0

(x> =2x+1)—1+(@?—4y+4)—4+(z°+8z+16) — 16 = —17



DISTANCE IN 3-SPACE; SPHERES (x—a)+(y—b)>+(z—c)? =r?
Example Find the center and radius of the sphere

x2+y?+2z2—-2x—4y+8z+17=0

(x*—2x+ 1)+ @y*—4y+4)+(z*°+8z+16)=1+4+16—17



DISTANCE IN 3-SPACE; SPHERES (x—a)+(y—b)>+(z—c)? =r?
Example Find the center and radius of the sphere

x2+y?+2z2—-2x—4y+8z+17=0

x—1D*+(@y—-2)+(=z+4)*=4

(1,2, —4)
Radius = V4 =2

Center



DISTANCE IN 3-SPACE; SPHERES
NOTE: In general, completing the squares produces an equation of the form
(% x50 < (y — }’{])1 t{z—z0)" =k

Ifk >0 the graph of this equation is a sphere
Ifk =0 the graph of this equation is the point (x,, Yo, Zo)
Ifk <0 no graph !!

11.1.1 THEOREM An equation of the form

X4y 4+ +Gx+Hy+1Iz+7=0

represents a sphere, a point, or has no graph.




CYLINDRICAL SURFACES

It is possible to graph equations in two
variables in 3 —space.

Example: x2 + y2 =1
Observe that the equation does not impose

any restrictions on z.

This means that we can obtain the graph of
x? 4+ y% = 1in an xyz —coordinate system
by first graphing the equation in the
xy —plane.




CYLINDRICAL SURFACES

It is possible to graph equations in two
variables in 3 —space.

Example: x2 + y2 =1
Observe that the equation does not impose

any restrictions on z.

This means that we can obtain the graph of
x? 4+ y% = 1in an xyz —coordinate system
by first graphing the equation in the
xy —plane.

And then translating that graph parallel to
the z —axis to generate the entire graph.




CYLINDRICAL SURFACES

Example x?+z%2=1




CYLINDRICAL SURFACES

Example z = y?




CYLINDRICAL SURFACES

Example z =sinx

-
3
i >
""-\-\.._‘_H--‘E 1 ] -\-:‘-':'_F__,i
. -\.\___:-Hﬁ‘ -__J.-'
o e
T il [ e
" o 1 '
ki




CYLINDRICAL SURFACES

11.1.2 THEOREM An equation that contains only twe of the variables x, y. and
z represents a cylindrical surface in an xyz-coordinate svstem. The surface can be
obtained by graphing the equation in the coordinate plane of the two variables that
appear in the equation and then transiating that graph parallel to the axis of the missing
variable.



Course: Calculus (3) Lecture No: [4]

THREE-DIMENSIONAL SPACE; VECTORS

VECTORS



VECTORS VIEWED GEOMETRICALLY

A Vector in 2-space or 3-space;
is an arrow with direction and
length (magnitude).

Two vectors v and w are equal
if they have the same length
and same direction, and we
write v =w.

9
Initial Point vorv

//
V=W VW

Terminal Point

/

VFW




VECTORS VIEWED GEOMETRICALLY

Two vectors are equal if they are translations
of one another.

Because vectors are not affected by
translation, the initial point of a vector v can
be moved to any convenient point A by
making an appropriate translation.




VECTORS VIEWED GEOMETRICALLY

11.2.1 bpErFNITION [f v and w are vectors, then the sum v + w 1s the vector from
the initial point of ¥ to the terminal point of w when the vectors are positioned so the

initial point of w is at the terminal poimnt of v



VECTORS VIEWED GEOMETRICALLY

11.2.1 bpeEFINITION If v and w are vectors, then the sum 18 the vector from

the initial point of ¥ to the terminal point of w when the vectors are positioned so the
initial point of w is at the terminal poimnt of v



VECTORS VIEWED GEOMETRICALLY

11.2.1 bpeEFINITION If v and w are vectors, then the sum 18 the vector from
the initial point of ¥ to the terminal point of w when the vectors are positioned so the

initial point of w is at the terminal poimnt of v

V+Ww




VECTORS VIEWED GEOMETRICALLY

NOTE:

* |If the initial and terminal points of a vector coincide, then the vector
has length zero; we call this the zero vector and denote it by 0.
 The zero vector does not have a specific direction

e v+w=w+vandO+v=v+0=v.



VECTORS VIEWED GEOMETRICALLY

11.2.2 pEFINITION If v 1s anonzero vector and & 1s a nonzero real number (a scalar),
then the scalar multiple kv is defined to be the vector whose length is |k| times the length
of v and whose direction is the same as that of v if £ = () and opposite to that of v if
k<0 Wedefinekv=01fk=00rv=0.

NOTE: The vectors v and kv are parallel vectors.



VECTORS VIEWED GEOMETRICALLY

Vector subtraction is defined in terms of addition and scalar
multiplication by

V—W=V+ (—W)



VECTORS VIEWED GEOMETRICALLY

Vector subtraction is defined in terms of addition and scalar
multiplication by

V—W=V+ (—W)

(—w)

NOTE: V+(—Vv)=v—v=1(



VECTORS IN COORDINATE SYSTEMS te

If a vector v is positioned with its initial point
at the origin of a rectangular coordinate
system, then its terminal point will have
coordinates of the form (v, v,, v3).

We call these coordinates the components of v,
and we write v in component form using the
bracket notation

vV = (v, U2, V3)



VECTORS IN COORDINATE SYSTEMS

NOTE: 0 = (0,0, 0)

11.2.3 THEOREM Two vectors are equivalent if and only if their corresponding com-
ponents are equal.

v |

Example: Find the values of a, b, ¢ if (—2, b(3) = (a, 0{c).




ARITHMETIC OPERATIONS ON VECTORS

11.2.4 THEOREM [V = (v, v2) and W = (w, wa) are vectors in 2-space and k is
any scalar, then

V+W= (1 +wp.U+ w) (1)
V—W={U; — W, UV — ) (2)
kv = {kvy, kva) (3)

Similarly, if v = (v, va, va) and w = {w ., w2, ws) are vectors in 3-space and k is any
scalar then

v+ w= (1 +w, v+ w, v+ ws) (4)
V—W= {1 —wi, V2 — W, U3 — Ws) (5)
kv = (kvy, kv, kvs) (6)



ARITHMETIC OPERATIONS ON VECTORS

Example: Ifv=(2,0,1) and w = (3,5, —4), then

l.v+w= (2,0,1) + (3,5, —4) = (5,5,—3)

2.v—2w=(2,0,1) — 2(3,5, —4)
=(2,0,1) — (6,10, —8)

= (—4,—10,9)



VECTORS IN COORDINATE SYSTEMS te

If a vector v is positioned with its initial point
at the origin of a rectangular coordinate
system, then its terminal point will have
coordinates of the form (v, v,, v3).

We call these coordinates the components of v,
and we write v in component form using the
bracket notation

vV = (v, U2, V3)



VECTORS WITH INITIAL POINT NOT AT THE ORIGIN

Py P;
P1P;

P1P;

B Py (x2,y2)
+ 0P, = 0P, PiPy
Py (x1,¥1) /’
+ (X1, Y1) = (X2, ¥2) A '/;7—06 Y2)
’ 2 = \2, 02

=(X2,¥2) — (X1,¥1)

={X2 — X1,¥2 — Y1)




VECTORS WITH INITIAL POINT NOT AT THE ORIGIN

Py(x2,y2)

Example: P, P,
_ Py (x1,y1)
The vector from the point A(0,—2,5) to

the point B(3,4,—1) is

(X2 —X1,¥2 — Y1)

AB ={(3-04—(-2),—-1—75)
= (3,6, —6)

PP, = (x; — X1,Y2 — Y1)



RULES OF VECTOR ARITHMETIC

11.2.6  TtaeEOrREM Foranyvectorsa, v, and w and any scalars k and 1. the following
relationships hold:

() u+v=v-+u (¢) k(lu) = (kDu
(b) u+v)+w=u-+ (v+w) (f) k(lu+v)=ku-+kv
(¢c) u+0=04+u=nu (g) (k+Du=*ku+/u

(d) u+(—u) =10 () lu=u



NORM OF A VECTOR

* The distance between the initial and terminal

points of a vector v is called the length, the

norm, or the magnitude of v and is denoted

by ||v]|.

* This distance does not change if the vector is

translated, so for purposes of calculating the

norm we can assume that the vector is V]| =\/v12+v22

positioned with its initial point at the origin.



NORM OF A VECTOR

NOTE |[[kv]| = |k][v]|

Example: If w = (2,3,6) then find the norm of

O w lwll = V(22 + (3)2 + (6)2 =49 = 7

©® 3w [-3wll=|-3x]|wl|=3x7=21



UNIT VECTORS

A vector of length 1 is called a
unit vector.

In an xy —coordinate system the
unit vectors along the x — and
y —axes are denoted by i and j,
respectively. ¥

<= [0, 1)

(1, 0} j
(0, 1)

i
)

X
—

z 5
L (1,0

* In an xyz —coordinate system
the unit vectors along the x —,
y — and z —axes are denoted by
i, j and k, respectively.

f =
I"({l{:’-.l] I‘:(lUiU}
j=1(0.1.0)
k k= (0,0, 1)
P
i (0. 1,0

w1, (k)

x



UNIT VECTORS

NOTE Every vector in 2 —space is expressible uniquely in terms of i and j
as follows:

V = <v1)v2> — <v1) O) T <01v2>
— v1<110> T v2<011> — vli + ij

Also, every vector in 3 —space is expressible uniquely in terms of i,
j and k as follows:

V =(vq1,V,,V3) = v1i + vyj + 13K



UNIT VECTORS
Example: (2,3) =2i+3j
(2,-3,4) = 2i - 3j + 4k
(4, 0) = —4i + 0j = —4i
(0,3, 0) = 3j
(0,0,0) = 0i+0j + 0k = 0
5(6i — 2j) = 30i — 10j
Eirdj-k—{#i—jrIK =113 -3k
li+2j - 3k|| = V12 + 2%+ (=3)* =14




NORMALIZING A VECTOR

The unit vector u that has the same direction as some given nonzero

vector vis
1 \Y

The process of obtaining a unit vector with the same direction of v is
called normalizing v.

Example: Find the unit vector that has the same directionasv = 2i + 2j — k

\% 2 2 —1
IVl = /22422 4+ (-1)2 =9 =3 ,.,u:_=<§,§ >



VECTORS DETERMINED BY LENGTH AND ANGLE

cos =— = x =||v|]/cosO

IIVII

sin 6 = L = vy =||vl|sinf

vl

= v ={(|lvl][cos 8, ||v] sinB)




VECTORS DETERMINED BY LENGTH AND ANGLE

= v =(|[vlcos 8, |[v]| sin )

Example:

Find the vector of length 2 that makes
T . . .
an angle on with the positive x —axis.

T T
V=<2cos—,25in—> :<2 2>

NN
= (V2,V2)



VECTORS DETERMINED BY LENGTH AND ANGLE

Example: s v = {||v]| cos @, ||v]| sin &)

Find the angle that the vector v = —\/§i+j makes with the positive
X —axis.
c—,s+ 4 c+,s+

2 7T
||V||:\/(_\/§) +12 =2 mT—a a a':g
v
x =3 > g — T 5T
cosb = =5 m+a 21— a "6 6
c—,S— C+,5—
sinf =

I\4l 2 Reference Angle



Course: Calculus (3) Lecture No: [6]

THREE-DIMENSIONAL SPACE; VECTORS

DOT PRODUCT; PROJECTIONS



DEFINITION OF THE DOT PRODUCT

In this section we will define a new kind of multiplication in which two
vectors are multiplied to produce a scalar.

11.3.1 peFINITION Ifu = (1, u2) and v = (v, v} are vectors in 2-space, then the
dot product of u and v 1s written as v - v and is defined as

U-v =1ujt; + ustz
Similarly, if 0 = {(u;. u>, u3) and v = (v, va, v3y) are vectors in 3-space, then their dot

roduct is defined as
P U=V =UiV] + UV + U333

Example: (3,5):(—=1,2) =3(=1)+5(2) =7
(2,3) « (=3,2) =2(=3)+3(2) =0
i—3j+4K) - (i+35J+2k)=1(1)+(=3)(5) +4(2) = -6




ALGEBRAIC PROPERTIES OF THE DOT PRODUCT

11.3.2 THEOREM [fu. v, and W are vectors in 2- or 3-space and k 1s a scalar, then:
(@) n~¥=%-1

(b) u(v4+w)=uv+u+w

(c) k(u-v)=(ku)-v=u-(kv)

d) v-v=Iv|]* |v|=Jv-V

(e) 0-v=0



ANGLE BETWEEN VECTORS

e Suppose that u and v are nonzero vectors in 2 —space or 3 —space
that are positioned so their initial points coincide.
* We define the angle between u and v to be the angle 6 determined by

the vectors that satisfies the condition 8 € [0, ].

= _—/4 ¥ >
. 0
\ | /
o £ o N <




ANGLE BETWEEN VECTORS

11.3.3 THEOREM [fu and v are nonzero vectors in 2-space or 3-space, and if 6 is

the angle between them, then
u-v

[l v

cosf =

Example: Find the angle between the vectoru =i — 2j + 2k and
(@) v==3i+6j+ 2k
u-v=(1(=3)+(=2)(6) +(2)(2) = -11
lull = VT2 + (—2)2 + 22 = 3 030 = =
vl =(=3)2 +62 +22 =7 11
6 = cos™ ! ( )

21



ANGLE BETWEEN VECTORS

11.3.3 THEOREM [fu and v are nonzero vectors in 2-space or 3-space, and if 6 is

the angle between them, then
u-v

[l v

cosf =

Example: Find the angle between the vectoru =i — 2j + 2k and

(b) w = 2i+ 7j + 6k

ww= 1@+ 2@ +@(@6) =0  ~cosf=0
0 =

N[ S



ANGLE BETWEEN VECTORS

11.3.3 THEOREM [fu and v are nonzero vectors in 2-space or 3-space, and if 6 is

the angle between them, then
u-v

[l v

cosf =

Example: Find the angle between the vectoru =i — 2j + 2k and
(c) v=—-3i+6j — 6k
u-v=(1(=3)+(=2)(6) + (2)(=6) = =27
_ 2 —72)2 2 — —27
lull = {12 + (=2)? + 22 =3 - cos
IVl =v/(=3)2 + 6%+ (—6)2 =9




ANGLE BETWEEN VECTORS

¥ LY L

n-v>=

u-v=|ull|v||cosé
YV
6
b ]
1
n-v<i |

=



DIRECTION ANGLES

V-i V1
cosa = — = ——
IvIlil] (vl
V-] %
cospf = ] —Z

VI (v




DIRECTION ANGLES

11.3.4 THEOREM The direction cosines of anonzerovectorv = vji+ vaj + vikare

& Ua 2%
COS = ——, cosfl=—, cosy = —
[¥]] vl M

NOTE:

g 2
cos’a + cos® B +cos’y = 1

Y=

Ll




DIRECTION ANGLES

Example: Find the direction cosines of the vector v = 2i — 4j 4 4k

vl =v4+16+16=06

¥

o = 13+ 3K

{JGS&’:% O = COS I(%)E?l{’

Eﬂﬂﬁ:q% ﬁ:cgg (_%) 132¢
3 y =cos™!(%) ~ 48°

cosy =



DECOMPOSING VECTORS INTO ORTHOGONAL COMPONENTS

In many applications it is desirable to decompose
a vector into a sum of two orthogonal vectors with
convenient specified directions.

vV =aw; + bw, F/ = ke, + kzeﬂ

v-e; = (kie; + koey) - €4
=kqi(e;-e1) +ky(ey-eq)
= kqlles]|* + 0 =k,

o kl =V-€e



DECOMPOSING VECTORS INTO ORTHOGONAL COMPONENTS

In many applications it is desirable to decompose
a vector into a sum of two orthogonal vectors with
convenient specified directions.

vV =aw; + bw, Ff=k1e1+kzea kg =v-e Wy

v-e, = (kie; + kyey) - e,
=ki(e;-ep) + ky(e; - e3)
=0+ ky,lle;||* =k,

kz =V-e



DECOMPOSING VECTORS INTO ORTHOGONAL COMPONENTS

In many applications it is desirable to decompose
a vector into a sum of two orthogonal vectors with
convenient specified directions.

VvV =awy + bw, R=k1e1+k2eg ~ ki =v-eq
wky =v-e

v=(v-ee; +(v-ey)e,

V-W;\ Wy V-Wr\ W, €1
= +
lw ll / 1w |l lwa |l /] l[w ]|




DECOMPOSING VECTORS INTO ORTHOGONAL COMPONENTS

(V'Wl) +(V°W2>
SV = W4 W,
||W1||2 ||W2||2

N— e’ | 7

the orthogonal | the orthogonal
projection of v| | projection of v
on wy on w,

projw, v projw,v




ORTHOGONAL PROJECTIONS

The orthogonal projection of v on an arbitrary nonzero
vector b is

_ v-b b
ron.v =
PPOIbY = ip]I2

Moreover, if we subtract proj,v from v, then the resulting
vector

V — projpv

will be orthogonal to b; and we call this the vector
component of v orthogonal to b.



ORTHOGONAL PROJECTIONS

Example: Find the orthogonal projectionof v=1i+j+ Kkonb = 2i + 2j,
and then find the vector component of v orthogonal to b.

vib=(>G4+j4+k) - -QRi4+2j)=2+2+0=4
Ibl]* =2° + 2> =8

Thus, the orthogonal projection of v on b 1s

v+b 4
=b=-(2i+2)) =1+
Ib]l- 8

and the vector component of v orthogonal to b 1s

v—propv=0+j+k)—(1+])) =k

proj,v =



Course: Calculus (3) Lecture No: [8]

THREE-DIMENSIONAL SPACE; VECTORS

CROSS PRODUCT



DETERMINANTS

A matrix is a rectangular array (table) of numbers arranged in
rows and columns.

0 3 ]

5 =71

The determinant is a function that assigns numerical value to

For example, [_21

square matrix (number of rows = number of columns) of numbers.

We define a 2 X 2 determinant by M = ad — bc

For example, ‘i _52‘ = (3)(5) = (=2)(4) = 15 + 8 = 23



DETERMINANTS

A 3 X 3 determinant is defined in terms of 2 X 2 determinants by

m\ ([ _ 7 _\1
A b, by b, bs b, b,
o b2 byl =a c, C3| “2 c1 C “3 c1 C
¢, 0 03 2 3 1 3 1 2
3 -2 -3 , ,
Example :l 4 —4 =3‘§ _i —(=2) []] 2‘ + (—3) ‘(I} i‘
() 3 2 ) - )

=320 +2(2) —5(3) =49



DETERMINANTS

11.4.1 THEOREM

(a) Iftwo rows in the array of a determinant are the same, then the value of the deter-
minant is (.

(b) Interchanging two rows in the array of a determinant multiplies its value by —1.

PROOF (@)

a;
=aydzr — arxy =10
ay s
PROOF (D)
I :’Jg'l b ; ( ; b ) (y  az &
— Dy — ] = —\d i — a0 ) = —
ap by b




CROSS PRODUCT

11.4.2 DpEFINITION Ifw = (4, us, u3) and v = (vq, v2, v3) are vectors in 3-space,
then the cross product u X v is the vector defined by

U xX ¥Vv= |y U U3

i j k
uxv=y1 2 =2
30 1
3 =8, B =3 2
_ - | k = 2i— 7j — 6k
o 1’ ‘3 1‘“‘ U‘ T




ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

 Keep in mind the essential differences between the cross product
and the dot product:
v' The cross product is defined only for vectors in 3 —space,
whereas the dot product is defined for vectors in 2 —space and
3 —space.

v' The cross product of two vectors is a vector, whereas the -

- of two vectors -



ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

11.4.3 THEOREM [fu, v, andw are any vectors in 3-space and k is any scalar, then:
(a) uXv=—(vXu

(b) u X (v+w)=u X V)4 (u X w)

(¢) M4+V)Xw=(uXxXWw +(vxXWw)

(d) kiuxv)=(ku) X v=u x (kv)

(e) uX0=0xu=»90

(f) axu=~0



ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

The following cross products occur so frequently that it is helpful to be
familiar with them:

ixX j=Kk I X k=i Kk xXi1=]
] Xi=-k KX ]J=-1 1 X K= —]




ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

WARNING

We can write a product of three real numbers as abc since the
associative law (ab)c = a(bc) ensures that the same value for the
product results no matter how the factors are grouped.
The associative law does not hold for cross products. For example,
iX(Xj)=ix0=0
ixjp)xXj=kxj=-i
Thus, we cannot write a cross product with three vectors as u X v X w,

since this expression is ambiguous (a¢) without parentheses.



GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

11.4.4 THEOREM [fuandv are vectors in 3-space, then:
(@) u-(mxv)y=~0 (u X v is orthogonal to u)

&) v xv)=808 (u X vis orthogonal to v)

uxv

u <




GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

Example Find a vector that is orthogonal to both of the vectors u = (2, —1, 3) and

v={(-7.2,-1).
i j k
Hxy=|2 -] 3
—7 2 —1
1 3, 2 3. B |
= 5 _11—‘_? —l'H_‘—? z‘k——ﬁl—lgj—Hk




GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

11.4.5 THEOREM Leru and v be nonzero vectors in 3-space, and let 0 be the angle
between these vectors when they are positioned so their initial points coincide.

(@) Juxv|=uf|v]sne



GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

11.4.5 THEOREM Leruand v be nonzero vectors in 3-space, and let 0 be the angle
between these vectors when they are positioned so their initial points coincide.

(@) flux vl =lulv]sine

(h)y The area A of the parallelogram that has w and v as adjacent sides is

A=|uXxyv| VAT ™™777777

T =2 lluxvl
—Zu Vv

(¢) u xXv=0ifand onlyifaand v are parallel vectors, that is, if and only if they are
scalar multiples of one another.



GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

Example Find the area of the triangle that is determined by the points

P;(2,2,0), P,(—1,0,2), and P5(0, 4, 3).

AZ y

N #

PP, = (-3,-2,2) // "'..

PiPy=1{-2,2,3) Py(~1,0,2) / » (0, 4,3)

PIPE X Plpfa_, = (-'05 —|0> \ / ;
N A 5

A = 3||P\P, X PP =




SCALAR TRIPLE PRODUCTS

Ifa={uy, iz, u3), v= {1, 2, v3), and w = (wy, ws, w3} are vectors in 3-space, then the
number

H (2 5] 3
u*(vXw =|vy vz Uz
w; wa Wwj

1s called the scalar triple product of u. v, and w.

Example Calculate the scalar triple product u + (v X W) of the vectors

u=3i—-2j—5k, v=i+4j—4k., w=3j+2k

3 -2 =5
u-(vxw) =|l 4 —4| =49
0 3 2




GEOMETRIC PROPERTIES OF THE SCALAR TRIPLE PRODUCT

11.4.6 THEOREM Letu, v, and w be nonzero vectors in 3-space.

(a) The volume V of the parallelepiped that has w, v, and w as adjacent edges is

V=u-(vxw)




GEOMETRIC PROPERTIES OF THE SCALAR TRIPLE PRODUCT

11.4.6 THEOREM Letu, v, and w be nonzero vectors in 3-space.

(a) The volume V of the parallelepiped that has u, v, and w as adjacent edges is
V=u-(vxw)|

(b)y u-(v X w)=0ifand only ifu, v, and w lie in the same plane.

ALGEBRAIC PROPERTIES OF THE
SCALAR TRIPLE PRODUCT

U (vXw=w-(uXxXv)=v-(wxu
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REVIEW OF PARAMETRIC EQUATIONS



PARAMETRIC EQUATIONS

Until now, you have been representing a graph by a single equation
involving two variables.

You will study situations in which three variables are used to
represent a curve in the plane.

Suppose that a particle moves along a curve C (trajectory) in the
xy —plane.

The rectangular equation of the curve C, does not tell the whole
story.

Although it does tell you where the object has been, it doesn’t tell
you when the object was at a given point (x, y).

To determine this time, you can introduce a third variable t, called a
parameter.



PARAMETRIC EQUATIONS

Definition of a Plane Curve

It f and g are continuous functions of 7 on an interval /, then the equations
x=f() and y = 2(1)

are parametric equations and / is the parameter. The set of points (x, y)
obtained as  varies over the interval [ is the graph of the parametric equations.
Taken together, the parametric equations and the graph are a plane curve,
denoted by C.




PARAMETRIC EQUATIONS

Example The position P(x,y) of a particle
moving in the xy —plane is given by ¥
the equations and parameter interval

x=+t , y=t , t=0

We try to identify the
path by eliminating t
between the equations:

2
y = t = (\/E) = xZ ()| Starts at
=}



PARAMETRIC EQUATIONS

Example The counter-clockwise orientation parametric equations of the
circle x? + y% = a“® are

¥ x=acost , y=asint , 0<t<2nm

e
E

JF:E .-'I:E.-|_II!-':2 ]
2

e Plcost, sint)

ﬁ=1r X\I =1

0 1.0) . S . 3
1?2 + y* = @ cos*t + a’ sin*t = a*,
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LINES DETERMINED BY A POINT AND A VECTOR

(x — X0,y _3’0> — <tal tb)

X — X9 = ta
y—Yo=1tb

=

The parametric equations of the
line in 2 —space that passes
through the point Py(xg,Yo)
and is parallel to the nonzero
vector v = (a, b) = ai + bj are

X=Xxp+at , y=y,+ bt

P(x,y)

/| Py (%0, Y0 )

/V=(a,b)
>

v
PoP Il v

—

P0P=tV




LINES DETERMINED BY A POINT AND A VECTOR

The parametric equations of the line in 3 —space that passes
through the point Py(xq, Vo, Zo) and is parallel to the nonzero vector
v={(a,b,c)=ai+ bj+ ckare

X=Xp+at , y=yo+bt , z=2z5+ct

Example Find parametric equations of the line passing through
(1,2,—3) and parallel tov = 4i + 5] — 7k.

x=1+4 , y=2+5t , z=-3-7t



LINES DETERMINED BY A POINT AND A VECTOR

Example

1. Find parametric equations of the line £ passing through the points
P;(2,4,—1) and P,(5,0,7).

The vector PyP, = (5 — 2,0 —4,7 — (—1)) = (3,—4,8) is parallel to #.

If P; is chosen:

X
y
Z

4 — 4At,

:4—41:1/ —1+t;

—4t,

n N

X
y
Z

If P, is chosen:

=—4t2



LINES DETERMINED BY A POINT AND A VECTOR

Example

1. Find parametric equations of the line £ passing through the points
P;(2,4,—1) and P,(5,0,7).

2. Where does the line intersect the xy —plane? y = —4t,
—7 zZ=7++ 8t2

z=0 7+8t2:0 t2=

The point is 197 0
8’2’

8



LINES DETERMINED BY A POINT AND A VECTOR

Example Let£; and £, be the lines
£1: x=1+4+4t, y=5—-4t, z=-1+5t v, = (4, —4,5)
?: x=2+48t, y=4—-3t, z=5+t v, = (8,—3,1)
1. Are the lines parallel?

it © villv, © V2=¢CVy

4c =8 o
—4c = -3 No such ¢ ~ €1 and £, are NOT parallel lines.
5c =1 O




LINES DETERMINED BY A POINT AND A VECTOR

Example Let#; and £, be the lines
?i: x=1+4t, y=5—4t, z=-1+5t
ly: x=248t y=4-3t, z=5+t

2. Do thelines intersect?
Suppose the point of intersection is

5—4t, = y" = 4 — 3t,
—1+5t1: A 5+t2



LINES DETERMINED BY A POINT AND A VECTOR

Example Let£; and £, be the lines
?i: x=1+4t, y=5—4t, z=-1+5t
l: x=24+8t y=4-3t, z=5+t

2. Do the lines intersect?
Suppose the point of intersection is

1+ 4t; = 2 + 8t, ;}5‘\6=6+5t2 BUT !!
5—4t; = 4—3t;| tz =0 Do not satisfy the 3" equation.
—1+5t1= 5+t2 t]_:l
4 ~ 41 and £, do NOT intersect.



LINES DETERMINED BY A POINT AND A VECTOR

e Two lines in 3 —space that are

T Ty,
/ r’:..‘ Mﬁr #:"‘,:‘
not parallel and do not intersect g o
are called skew lines. g
2 A
..-f'*m “\1“‘-“, ,.;”i'#
* Any two skew lines lie in parallel Mt

planes.



VECTOR EQUATIONS OF LINES

r=ro+tv
(x,y) = (xg,¥0) +t{a,b) In2-space
(x,¥,2) = {x0,Y0,20) + t {a,b,c) In3-space

NOTE Let £ be the line that passes through the
point (xy, Yo, Zo) and is parallel to the vector
v ={a, b, c), where a, b, and ¢ are nonzero.
Then the following equations are called the
symmetric equations of £.
X—Xo Y—Yo Z—Z2p
a b @ c
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PLANES PARALLEL TO THE COORDINATE PLANES

(a0, c}}/."'-

/.

Parallel to
yz —plane

Parallel to
xz —plane

4

o A
/{}{h. 0)

A Z

/ 10,0, ¢) :f‘
=0

¥ -

/

Parallel to
xy —plane



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

e A planein 3 —space can be determined
uniquely by specifying a point in the
plane and a vector perpendicular to the
plane.

« A vector perpendicular to a plane is

called a normal to the plane.




PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

n={(ab,c)

Po(xg,¥0,20) .



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR
n-v=2900

(a,b,c) - {(x — X0,V — V0, Z — Zy) = 0

a(x —x9) +b(y—ye)+c(z—25) =0 n={a,b,c)

\’ This is called the

point-normal form
of the equation of
a plane.

PO(X,O,'}’O'ZO) .

ax +by+cz+d=0



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Find an equation of the plane passing through the point
(3,—1,7) and perpendicular to the vector n = (4,2, —5).

4(x —3)+2(y+1)—-5(z—-7)=0
4x —12+2y+2—-5z2+35=0
4x + 2y —5z+25=0



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Determine whether the two planes are parallel.
P;: 3x—4y+5z=0 n; = (3,—4,5)
P, —6x+8y—10z—4=0 n, =(—6,8,-10)

P1"P2 L— nlllnz L— n2=kn1

& (—6,8,—10) = k(3,—4,5)
\ | = —6 =3k |
8 = —4k

—10 = 5k

4 TR & ' ..
4 e " -
- : o
' . .
ey r
- e " T

S k=-2 =~ Prand P, are parallel planes



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Find an equation of the plane through the points P; (1,2, —1),
P,(2,3,1),and P;(3,—1, 2).

\ \ i j K
n:P2P1XP2P3: —1 —1 —2 :<—9,—1,5>
1 -4 1

By using this normal and the point P;(3,—1,2) in the

plane, we obtain the point-normal form
—-9(x—-3)—-(w+1)+5=-2)=0
—-9x—y+5z2+16=0
9x+y—5z—-16=0




PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Determine whether the line
¢ x=34+8t , y=4+4+5t , z=-3—-t
is parallel to the plane x — 3y + 5z = 12.

v=(8,5—-1) n=(1,-3,5)

/



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Determine whether the line
¢ x=34+8t , y=4+5t , z=-3—-t
is parallel to the plane x — 3y + 5z = 12.

v=(85—-1) n=(1,-3,5)
n-v=(1)(@®8)+(-3)5)+(5)(—1)=12+0

~. The line and the plane are not parallel.

- The line and the plane intersects. n '\Q/)



PLANES DETERMINED BY A POINT AND A NORMAL VECTOR

Example Find the intersection of the line
¢ x=34+8t , y=4+5t , z=-3—-t
and the plane x — 3y + 5z = 12.

Suppose the point of intersection is (xy, yo, Zo)

LINE PLANE POINT
Xog = 3+ 8t0 Xog — 3y0 + SZO =12 (_21; _1110)
Yo =4+ 5t (3 + 8ty) — 3(4 + 5ty) + 5(—3 — t) = 12
Zy = —3 — to



INTERSECTING PLANES

Two distinct intersecting planes
determine two positive angles

of intersection

Plane |

If n; and n, are normals to the
planes, then the acute angle 6
between the planes satisfies:

In; - no|

COSH =
[y [ |[mz ]|



INTERSECTING PLANES

Example Find the acute angle of intersection between the two planes

2x —4y+4z=6 and 6x+2y—3z=4
g _ g _J
~" ~"

ng = (2; _4)4) n, = (6)2) _3>

e moml -8 4 ) i o6
st = = _ = =cos | — | =
| Inal ~ /36449 21 SR |y



INTERSECTING PLANES

Example Find an equation for the line £ of intersection of the planes

2x—4y+4z=6 and 6x+2y—3z=4

v || Plane 1 =3 v 1 nl

v || Plane 2 = v 1l n2

I, ¢ i j k
Plane 1 ~v=nlXxnZ2=12 -4 4
6 2 —3

v = (4,30,28)

Plane 2



INTERSECTING PLANES

Example Find an equation for the line £ of intersection of the planes

2x—4y+4z=6 and 6x+ 2y —3z=4

v =(4,30,28) Solve the equations:
To find a point on £ 2x —4y =6
6x +2y =4
£ is not perpendicular to k = (0,0,1) —_
v-k=04+0+28+0 x=1y=-1

~ £ intersects the xy —plane (z = 0) ~ point = (1,-1,0)



INTERSECTING PLANES

Example Find an equation for the line £ of intersection of the planes

2x—4y+4z=6 and 6x+ 2y —3z=4

v = (4,30,28) The parametric equations of € are
~ point = (1,—1,0)
x =144t
y = —1+ 30t

z = 28t



DISTANCE PROBLEMS INVOLVING PLANES

* The distance between a point and a plane.
* The distance between two parallel planes.
* The distance between two skew lines.

A Y

(7 [




DISTANCE PROBLEMS INVOLVING PLANES

The distance D between a point Py(xg, Vo, Zg) and the plane
ax +by+cz+d=0is

D= laxg + byo + czo + d|
Va: + b? + ¢

Example Find the distance D between the point (1, —4, —3) and the plane
2x — 3y + 6z =-—1.

b IO+ DD +6EH 1 =33
7

V22 +(=3)2 4+ 62 7
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REVIEW OF POLAR COORDINATES

Rectangular
Coordinates

A

(x,y)

origin

Polar
Coordinates

>
Polar Axis



REVIEW OF POLAR COORDINATES

From Rectangular From Polar

To Polar A To Rectangular
(o ST y) (6 y) = (r,6) y

» cos@z; , sin@ =
| tan9=% r/liy
— ,,é\ l X =rcosf
< gL > o
X y =rsinf

RIS



CYLINDRICAL AND SPHERICAL COORDINATE SYSTEMS

A
Cylindrical coordinates Spherical coordinates
Rectangular coordinates (1, 6. 2) (p. 6, )
*x.. 2 (r=0,0<6<2m (p20,0<6<2m.0<Pp<m)




CONSTANT SURFACES

In rectangular coordinates

X =da Z=C
A Z f
/‘f & (0, 0. L“]/
A= 4 —
; 1 £ 2 y
: > >
IlL’ﬁ':l 1'-}:I ﬂ.}/
/, x




CONSTANT SURFACES

In cylindrical coordinates

r=ry
' ""&: -




CONSTANT SURFACES

In spherical coordinates




CONVERTING COORDINATES

From Cylindrical From Spherical From Spherical

To Rectangular To Cylindrical To _
X =1rcosf r =psing X =psingcosb
y =rsinf 6=20 y =psingsinf
Z=17Z Z = pCoS@® Z = pCoSQ®

From Rectangular From Cylindrical From _

To Cylindrical To Spherical To Spherical
r=\/x2+y2 ,0=\/r2+z2 ,0=\/x2+yz+z2
tanf = y/x 0=20 tanf = y/x
zZ=7z tang =1r/z cosp =2z/p



CONVERTING COORDINATES

Example Find the rectangular coordinates of the point with cylindrical
coordinates

(r.0,7) = (4,5,—3)

3
I8
X =4cos—=2
3 From Cylindrical
s
y = 4sin§ = 24/3 To Rectangular
;= _3 X =1rcosf

y =rsinf
Z=7z



CONVERTING COORDINATES

Example Find the rectangular coordinates of the point with spherical
coordinates

b0 =(321)

T T 2

X sm4cos3 7 V2 |
— 4 T 7T_2\/§_\/g From Spherical
Yoy T N To  Rectangular
T .
Z=4cos— =22 X PS%D(PC?)SH
* y =psingsinb

~ (x,y,2) = (V2,V6,2V2) Z = pcos ¢



CONVERTING COORDINATES

Example Find the spherical coordinates of the point that has rectangular
coordinates

(x,y,2z) = (4, —4,4\/8)

p= (4 4+ (4)2 + (4VB)” = VIZB = 8Y2

—4
tan 0 = = —1 From Rectangular
46 3 To Spherical
COSp = ——==—
8v2 2 p=x%+y?+ 22

tanf = y/x
cosp =2z/p



CONVERTING COORDINATES

Example Find the spherical coordinates of the point that has rectangular

coordinates

p = J42+( 4)2+(4\/_)

t 9—_4— 1 0—7”

WMe= T ~ 4
4/6 3 R

COS P = — Cb—g
NRE

= (p,6,¢) = <8\/_7—ﬂ E)

(x,y,2z) = (4, —4,4\/6)

V128 = 8V2

4 *c'E

R

T'h




EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

Example Find equations of the cone z =./x2 + y2 in cylindrical and

spherical coordinates. z
From Rectangular From Spherical *'-T r
To Cylindrical To _ :
r=+/x2+ y2 x = psing cosb y
tan@:y/x y=psin¢sin9 ]
Z=12z Z=pcoso

Z=r pcosd =+/p?sin? ¢ cos? 6 + p? sin? ¢ sin? @




EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

Example Find equations of the cone z =./x2 + y2 in cylindrical and

spherical coordinates. z
From Rectangular From Spherical *'-T r
To Cylindrical To _ :
r=+/x2+ y2 x = psing cosb y
tan@:y/x y=psin¢sin9 ]
Z=12z Z=pcoso

Z=r pcos @ =+/p?sin2 ¢ (cos? 6 + sin2 0)




EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

Example Find equations of the cone z =./x2 + y2 in cylindrical and

spherical coordinates. z
From Rectangular From Spherical *-T y
To Cylindrical To _
r=+/x2+ y2 x = psing cosb y
tan@:y/x y=psinq’>sin9 ]
Z=12z Z=pcoso

Z=r pcosd =+/p?sin? ¢




EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

Example Find equations of the cone z =./x2 + y2 in cylindrical and

spherical coordinates. z
From Rectangular From Spherical *-T y
To Cylindrical To _
r=+/x2+ y2 x = psing cosb y
tan@:y/x y=psin¢sin9 ]
Z=12z Z=pcoso

pCcos¢ = psing
1 =tan¢

N
|
=
<
|
NE




EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

Example Find equations of the paraboloid p = cos ¢ csc? ¢ in cylindrical
coordinates.

p = cos ¢ csc? ¢

5 From Spherical
sin“ ¢ p = cos ¢

To Cylindrical
2

_Z r =psing
02”7 p 6 =6
Z=T'2 Z=pCOS¢



EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

CONE CYLINDER SPHERLE

4 e

& &
RECTANGULAR 7=Nx2+ p* X242 = C4+r+2=1
CYLINDRICAL z=r r=1 #2=1-52
SPHERICAL b =nmi4 p = cscd p=1




EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHERICAL COORDINATES

PARABOLOID HYPERBOLOID

= Iy

RECTANGULAR z= x*+ y*

CYLINDRICAL # P

SPHERICAL p = cos ¢ csc ¢
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