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IN THIS CHAPTER

 We will consider functions whose values are vectors.

Functions that associate

vectors with real numbers.

 In this section we will discuss more general parametric curves, and we

will show how vector notation can be used to express parametric

equations in a more compact form.



PARAMETRIC CURVES IN � −SPACE

• A space curve � is the set of all ordered triples �, �, � together with

their defining parametric equations

� = 	 
 , � = � 
 and � = ℎ 


where 	, � and ℎ are continuous functions of 
 on an interval  , that

is traced in a specific direction (orientation) as the parameter 


increases.

• The curve together with its orientation is called the graph of the

parametric equations or the parametric curve represented by the

equations.



PARAMETRIC CURVES IN � −SPACE

Example The parametric equations

� = 1 − 


� = 3


� = 2


represent a line in 3 −space that passes

through the point �1,0,0� and is parallel

to the vector −1, 3, 2 .



PARAMETRIC CURVES IN � −SPACE

Example Describe the parametric curve represented 

by the equations

� = 10 cos 


� = 10 sin 


� = 


Circular HELIX



VECTOR-VALUED FUNCTIONS

A function of the form

r 
 = 	 
 i � � 
 j � ℎ 
 k

= 	 
 , � 
 , ℎ 


is a vector-valued function, where

the component functions 	, � and

ℎ are real-valued functions of the

parameter 
.



Example Describe the parametric curve represented 

by the equations

� = 10 cos 


� = 10 sin 


� = 


r 
 = 10 cos 
 i � 10 sin 
 j � 
k
= 10 cos 
 , 10 sin 
  , 


VECTOR-VALUED FUNCTIONS

Circular HELIX



VECTOR-VALUED FUNCTIONS

The domain of a vector-valued function r�
� is the set of allowable

values for 
.

NOTE Usual reasons to restrict a domain:

1. Avoid division by 0.

2. Avoid even roots of negative numbers.

3. Avoid logarithms of negative numbers or 0.



VECTOR-VALUED FUNCTIONS

Example Find the natural domain of r 
 = ln 
 − 1  i � �  j � 
 k

� 
 = ln 
 − 1

� 
 = � 

� 
 = 


Domain = ℝ − 1

Domain = ℝ

Domain = "0, ∞�

∴ The domain of r 
 is the intersection of these sets.

−∞ ∞10

"0,1� ∪ 1, ∞
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LIMITS AND CONTINUITY

• Many techniques and definitions used in the calculus of real-

valued functions can be applied to vector-valued functions.

• For instance, you can add and subtract vector-valued

functions, multiply a vector-valued function by a scalar, take

the limit of a vector-valued function, differentiate a vector-

valued function, and so on.



LIMITS AND CONTINUITY



LIMITS AND CONTINUITY

Example If r � �
�

�� i �
	
 �

����
j � cos �� k, find lim

�→�
 r � .

lim
�→�

r � � 3, �
�
, �1 lim

�→�

3

��
� 3



LIMITS AND CONTINUITY

Example If r � �
�

�� i �
	
 �

����
j � cos �� k, find lim

�→�
 r � .

lim
�→�

r � � 3, �
�
, �1 lim

�→�

ln �

�� � 1
�

1

2
lim
�→�

1 �⁄

2�
�



LIMITS AND CONTINUITY

Example If r � �
�

�� i �
	
 �

����
j � cos �� k, find lim

�→�
 r � .

lim
�→�

r � � 3, �
�
, �1 lim

�→�
cos �� � �1



LIMITS AND CONTINUITY

Example If r � �
�

�� i �
	
 �

����
j � cos �� k, find lim

�→�
 r � .

lim
�→�

r � � 3, �
�
, �1 

� 3i �
1

2
j � k



Example If r � �
�����

����
i � sin

�

�
j � � �� k, find lim

�→!
 r � .

lim
�→!

r � � 2,0,0 

LIMITS AND CONTINUITY

lim
�→!

2�� � 1

�� � �
� 2



Example If r � �
�����

����
i � sin

�

�
j � � �� k, find lim

�→!
 r � .

lim
�→!

r � � 2,0,0 

LIMITS AND CONTINUITY

lim
�→!

sin
1

�
� 0



Example If r � �
�����

����
i � sin

�

�
j � � �� k, find lim

�→!
 r � .

lim
�→!

r � � 2,0,0 

LIMITS AND CONTINUITY

lim
�→!

� �� �

� 0

0 ⋅ ∞

� lim
�→!

�

 � � lim
�→!

1

 �



Example If r � �
�����

����
i � sin

�

�
j � � �� k, find lim

�→!
 r � .

lim
�→!

r � � 2,0,0 

LIMITS AND CONTINUITY

� 2i



LIMITS AND CONTINUITY

Example The vector-valued function r � � ��i �
�

����
j � �k, is

discontinuous at � � %1.

It is continuous for all � ∈ ℝ � �1,1



DERIVATIVES

• The derivative of a vector-valued function is defined by a limit like that

for the derivative of a real-valued function.

r( � � lim
)→*

r � � ℎ � r �

ℎ

• The derivative of r(�) can be expressed as

.

.�
r �  ,

.r

.�
 , r( �  ,  r′

• Keep in mind that r(�) is a vector, not a number, and hence has a

magnitude and a direction for each value of �, except if r(�) � 0.



DERIVATIVES

Suppose that 0 is the graph of a

vector-valued function r(�) and that

r′(�) exists and is nonzero for a given

value of �.

If the vector r′(�) is positioned with its

initial point at the terminal point of

the radius vector r(�), then r′(�) is

tangent to 0 and points in the

direction of increasing parameter.



DERIVATIVES

Example For the vector-valued function 

r � � �i � �� � 2 j, find r( 1 .

r( � � i � 2�j

r( 1 � i � 2j



Example For the vector-valued function r � � cos � i � sin � j � 2�k, find:

DERIVATIVES

r( � r( � � � sin � i � cos � j � 2k

r(( � r(( � � � cos � i � sin � j

r( � ⋅ r(( � r( � ⋅ r(( � � sin � cos � � cos � sin � � 0

r( � 1 r(( �

r( � 1 r(( � �
i j k

� sin � cos � 2
� cos � � sin � 0

� 2 sin � i � 2 cos � j � k



DERIVATIVE RULES



DERIVATIVE RULES

Example For u � � �
� i � j 	 ln � k and v � � ��i � 2�j 	 k then:

�
�� u � ⋅ v � � u � ⋅ v� � 	 u� � ⋅ v �

� 1
� , �1, ln � ⋅ 2�, �2,0 	 �1

�� , 0, 1
� ⋅ ��, �2�, 1

� 2 	 2 	 0 	 �1 	 0 	 1
�

� 3 	 1
�



DERIVATIVE RULES

Example For u � � �
� i � j 	 ln � k and v � � ��i � 2�j 	 k then:

�
�� v � � v� � � v � � v�� � 	 v� � � v′ �

�
i j k

�� �2� 1
2 0 0

	 0

� 2j 	 4�k



TANGENT LINES TO GRAPHS OF VECTOR-VALUED FUNCTIONS

Example Find parametric equations of the tangent line to the circular helix

r � � cos � i 	 sin � j 	 �k at the point where � � �.

� � �
POINT

TANGENT VECTOR

cos � , sin � , � � �1,0, �

r� � � � sin � i 	 cos � j 	 k
r� � � �j 	 k

∴ The parametric equations

of the tangent line are

! � �1
" � ��
# � � 	 �



DEFINITE AND INDEFINITE INTEGRALS OF VECTOR-VALUED FUNCTIONS

In general, we have

Example Let r � � ��i 	 $�j � 2 cos �� k. Then



Example

DEFINITE AND INDEFINITE INTEGRALS OF VECTOR-VALUED FUNCTIONS



Example

DEFINITE AND INDEFINITE INTEGRALS OF VECTOR-VALUED FUNCTIONS

Find r(�) given that r�(�) � 3, 2� and r(1) � 2, 5 .

( r� � �� ��r � ( 3,2� �� � 3�, �� 	 C

But r(1) � 2, 5
3,1 	 C � 2, 5

C � �1, 4

So r � � 3�, �� 	 �1,4
r � � 3� � 1, �� 	 4
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SMOOTH PARAMETRIZATIONS

• We will say that a curve represented by r(�) is smoothly parametrized

by r(�), or that r(�) is a smooth function of � if:

 r�(�) is continuous, and

 r� � ≠ � for any allowable value of �.

• Geometrically, this means that a smoothly parametrized curve can

have no abrupt (مفاجئ) changes in direction as the parameter

increases.



SMOOTH PARAMETRIZATIONS

Example Determine whether the following vector-valued functions are

smooth.

r � � 	 cos � i � 	 sin � j � ��k 	 � 0, � � 0
r� � � �	 sin � i � 	 cos � j � �k
 The components are continuous functions, and

 there is no value of � for which all three of them are zero.

 So r(�) is a smooth function.



SMOOTH PARAMETRIZATIONS

Example Determine whether the following vector-valued functions are

smooth.

r � � ��i � ��j
r� � � 2�i � 3��j
 The components are continuous

functions, and

 they are both equal to zero if � � 0.

 So, r(�) is NOT a smooth function.



ARC LENGTH FROM THE VECTOR VIEWPOINT

If � is the graph of a smooth vector-valued function r(�), then its arc

length ℓ from � � 	 to � � � is

ℓ � � �r
�� ��

 

!
� � �"

��
�

� �#
��

�
� �$

��
�

��
 

!

Example Find the arc length of that portion of the circular helix r � �
cos � , sin � , � from � � 0 to � � %.



ARC LENGTH FROM THE VECTOR VIEWPOINT

ℓ � � �r
�� ��

 

!
� � �"

��
�

� �#
��

�
� �$

��
�

��
 

!
Example Find the arc length of that portion of the circular helix r �

� cos � , sin � , � from � � 0 to � � %.

r� � � � sin � , cos � , 1
r� � � � sin � � � cos� � � 1

� 2

ℓ � � r� � ��
'

(

� � 2
'

(
��

� 2 %
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UNIT TANGENT VECTORS

• Recall that if � is the graph of a smooth vector-valued function r(�),

then the vector r�(�) is:

 nonzero, tangent to �, and

 points in the direction of increasing parameter.

• Thus, by normalizing r�(�) we obtain a unit vector

T � � r� �
r� �

that is tangent to � and points in the direction of increasing parameter.

• We call T(�) the unit tangent vector to � at �.



Example

UNIT TANGENT VECTORS

Find the unit tangent vector to the graph of r � � ��i � ��j at

the point where � � 2.

r� � � 2�i � 3��j
r� 2 � 4i � 12j
T 2 � r� 2

r� 2
� 4i � 12j

160 � 1
10 i � 3

10 j



UNIT NORMAL VECTORS

• Recall if r � � � , then r � and

r� � are orthogonal vectors.

• T(�) has constant norm 1, so T(�) and

T�(�) are orthogonal vectors.

• This implies that T�(�) is perpendicular

to the tangent line to � at �, so we say

that T�(�) is normal to � at �.



UNIT NORMAL VECTORS

• It follows that if T� � ≠ 0, and if we

normalize T�(�), then we obtain a

unit vector

N � � T� �
T� �

that is normal to � and points in the

same direction as T�(�).



UNIT NORMAL VECTORS

• We call N(�) the principal unit normal vector to � at � , or more simply,

the unit normal vector.

• Observe that the unit normal vector is defined only at points where

T� � ≠ 0. Unless stated otherwise, we will assume that this condition

is satisfied.

• In particular, this excludes straight lines.



UNIT NORMAL VECTORS

Example Find T(�) and N(�) for the circular helix r � = 3 cos � , 3 sin � , 4� .

r� � = −3 sin � , 3 cos � , 4

r� � = 9 sin� � + 9 cos� � + 16 = 5

T � =
−3 sin � , 3 cos � , 4

5
=

−3

5
sin � ,

3

5
cos � ,

4

5



UNIT NORMAL VECTORS

Example Find T(�) and N(�) for the circular helix r � = 3 cos � , 3 sin � , 4� .

T � =
−3 sin � , 3 cos � , 4

5
=

−3

5
sin � ,

3

5
cos � ,

4

5

T� � =
−3

5
cos � ,

−3

5
sin � , 0

T� � =
9

25
cos� � +

9

25
sin� � + 0 =

3

5



UNIT NORMAL VECTORS

Example Find T(�) and N(�) for the circular helix r � = 3 cos � , 3 sin � , 4� .

T� � =
−3

5
cos � ,

−3

5
sin � , 0

T� � =
9

25
cos� � +

9

25
sin� � + 0 =

3

5

N � =

−3
5

cos � ,
−3
5

sin � , 0

3
5

= −cos � , − sin � , 0



BINORMAL VECTORS IN � −SPACE

If � is the graph of a vector-valued function

r(�) in 3 − space, then we define the

binormal vector to � at � to be

B � = T � × N �

• It follows from properties of the cross product that B(�) is orthogonal to

both T(�) and N(�) and is oriented relative to T(�) and N(�) by the

right-hand rule.

• B(�) is unit vector !!.

B � = T � × N � = T � N � sin
�

2
= 1



BINORMAL VECTORS IN � −SPACE

Note that T(�), N(�), B(�) are three mutually

orthogonal unit vectors.

B � = T � × N �

N � = B � × T �

T � = N � × B �

The binormal B(�) can be expressed directly in

terms of r(�) as:

B � =
r� � × r�� �

r� � × r�� �



BINORMAL VECTORS IN � −SPACE

Example Find B(�) for the circular helix r � = 3 cos � , 3 sin � , 4� .

T � =
−3

5
sin � ,

3

5
cos � ,

4

5
N � = −cos � , − sin � , 0

B � = T � × N � =

i j k

−
3

5
sin �

3

5
cos �

4

5
− cos � − sin � 0

=
4

5
sin � ,

−4

5
cos � ,

3

5
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DEFINITION OF CURVATURE

• We will consider the problem of obtaining a numerical measure of how

sharply a curve bends.

• For instance, in the figure, the curve bends more sharply at P than at Q

and you can say that the curvature is greater at P than at Q.



DEFINITION OF CURVATURE

• If � is a straight line (no bend), then the direction of T remains constant.

• If � bends slightly, then T undergoes a gradual change of direction.

• If � bends sharply, then T undergoes a rapid change of direction.

You can calculate curvature by calculating

the magnitude of the rate of change of the

unit tangent vector T with respect to the

arc length !.



If r(�) is a smooth vector-valued function, then for each value of � at

which T�(�) and r��(�) exist, the curvature " can be expressed as

" � =
T� �

r� �
=

r� � × r�� �

r� � #

DEFINITION OF CURVATURE

Example Show that the curvature of a circle of radius $ is " =
%

&
.

" � =
T� �

r� �



DEFINITION OF CURVATURE

Example Show that the curvature of a circle of radius $ is " =
%

&
.

" � =
T� �

r� �
r � = $ cos � i + $ sin � j � ∈ 0,2�

r� � = −$ sin � i + $ cos � j

T � =
r� �

r� �
=

−$ sin � , $ cos �

−$ sin � � + $ cos � �
= −sin � , cos �

T′ � = − cos � , − sin �

" � =
−cos � � + −sin � �

−$ sin � � + $ cos � �
=

1

$



DEFINITION OF CURVATURE

Example Show that the curvature of a circle of radius $ is " =
%

&
.

" � =
r� � × r�� �

r� � #
r � = $ cos � i + $ sin � j + 0k � ∈ 0,2�

r� � = −$ sin � i + $ cos � j + 0k

r�� � = −$ cos � i − $ sin � j + 0k

r� � × r�� � =
i j k

−$ sin � $ cos � 0
−$ cos � −$ sin � 0

= $�k

r� � × r�� � = $�

r� � = $
" � =

$�

$#
=

1

$
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