Course: Calculus (3)

Lecture No: [15]

Chapter: [12] VECTOR-VALUED FUNCTIONS

Section: [12.1] INTRODUCTION TO VECTOR-VALUED FUNCTIONS

IN THIS CHAPTER

 \checkmark We will consider *functions whose values are* vectors.

Functions that associate vectors with real numbers.

✓ In this section we will discuss more general parametric curves, and we will show how vector notation can be used to express parametric equations in a more compact form.

PARAMETRIC CURVES IN 3 – SPACE

• A *space curve C* is the set of all ordered triples (*x*, *y*, *z*) together with their defining parametric equations

$$x = f(t), y = g(t)$$
 and $z = h(t)$

where f, g and h are continuous functions of t on an interval I, that is traced in a *specific direction* (orientation) as the parameter t increases.

 The curve together with its orientation is called the *graph* of the parametric equations or the parametric curve represented by the equations.

PARAMETRIC CURVES IN 3 – SPACE

Example The parametric equations

$$x = 1 - t$$
$$y = 3t$$
$$z = 2t$$

represent a line in 3 —space that passes through the point (1,0,0) and is parallel to the vector $\langle -1, 3, 2 \rangle$.

PARAMETRIC CURVES IN 3 - SPACE

Example Describe the parametric curve represented by the equations

A function of the form

 $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ $= \langle f(t), g(t), h(t) \rangle$

is a vector-valued function, where the component functions f, g and h are real-valued functions of the parameter t.

Example Describe the parametric curve represented by the equations

 $x = 10 \cos t$ $y = 10 \sin t$ z = t

 $\mathbf{r}(t) = 10 \cos t \,\mathbf{i} + 10 \sin t \,\mathbf{j} + t \mathbf{k}$ $= \langle 10 \cos t \,, 10 \sin t \,, t \rangle$

Circular HELIX

The domain of a vector-valued function r(t) is the set of allowable values for t.

NOTE Usual reasons to restrict a domain:

- 1. Avoid division by 0.
- 2. Avoid even roots of negative numbers.
- 3. Avoid logarithms of negative numbers or 0.

Example Find the natural domain of $\mathbf{r}(t) = \ln|t - 1|\mathbf{i} + e^t\mathbf{j} + \sqrt{t}\mathbf{k}$

 $x(t) = \ln|t-1|$ \square Domain = $\mathbb{R} - \{1\}$

 $y(t) = e^t$ \mathbf{V} Domain = \mathbb{R}

 $-\infty$ 0 1 ∞

 $z(t) = \sqrt{t}$ \square Domain = $[0, \infty)$

∴ The domain of r(t) is the *intersection of these sets*. [0,1) \cup (1,∞)

Course: Calculus (3)

Lecture No: [16]

Chapter: [12] VECTOR-VALUED FUNCTIONS

Section: [12.2] CALCULUS OF VECTOR-VALUED FUNCTIONS

- Many techniques and definitions used in the calculus of realvalued functions can be applied to vector-valued functions.
- For instance, you can add and subtract vector-valued functions, multiply a vector-valued function by a scalar, take the limit of a vector-valued function, differentiate a vectorvalued function, and so on.

 $\mathbf{r}_{1}(t) + \mathbf{r}_{2}(t) = [f_{1}(t)\mathbf{i} + g_{1}(t)\mathbf{j}] + [f_{2}(t)\mathbf{i} + g_{2}(t)\mathbf{j}]$ $= [f_{1}(t) + f_{2}(t)]\mathbf{i} + [g_{1}(t) + g_{2}(t)]\mathbf{j}.$

$$\mathbf{r}_{1}(t) - \mathbf{r}_{2}(t) = [f_{1}(t)\mathbf{i} + g_{1}(t)\mathbf{j}] - [f_{2}(t)\mathbf{i} + g_{2}(t)\mathbf{j}]$$
$$= [f_{1}(t) - f_{2}(t)]\mathbf{i} + [g_{1}(t) - g_{2}(t)]\mathbf{j}.$$

$$\frac{\mathbf{r}(t)}{c} = \frac{[f_1(t)\mathbf{i} + g_1(t)\mathbf{j}]}{c}, \quad c \neq 0$$
$$= \frac{f_1(t)}{c}\mathbf{i} + \frac{g_1(t)}{c}\mathbf{j}.$$

 $c\mathbf{r}(t) = c[f_1(t)\mathbf{i} + g_1(t)\mathbf{j}]$ $= cf_1(t)\mathbf{i} + cg_1(t)\mathbf{j}.$

Example If
$$\mathbf{r}(t) = \frac{3}{t^2}\mathbf{i} + \frac{\ln t}{t^2 - 1}\mathbf{j} + \cos(\pi t)\mathbf{k}$$
, find $\lim_{t \to 1} \mathbf{r}(t)$.
$$\lim_{t \to 1} \mathbf{r}(t) = \langle \ , \ , \ \rangle \qquad \qquad \lim_{t \to 1} \frac{3}{t^2} = 3$$

Example If
$$\mathbf{r}(t) = \frac{3}{t^2}\mathbf{i} + \frac{\ln t}{t^2 - 1}\mathbf{j} + \cos(\pi t)\mathbf{k}$$
, find $\lim_{t \to 1} \mathbf{r}(t)$
$$\lim_{t \to 1} \mathbf{r}(t) = \langle 3, , \rangle \qquad \qquad \lim_{t \to 1} \frac{\ln t}{t^2 - 1} = \lim_{t \to 1} \frac{1/t}{2t} = \frac{1}{2}$$

Example If
$$\mathbf{r}(t) = \frac{3}{t^2}\mathbf{i} + \frac{\ln t}{t^2 - 1}\mathbf{j} + \frac{\cos(\pi t)}{\cos(\pi t)}\mathbf{k}$$
, find $\lim_{t \to 1} \mathbf{r}(t)$.
$$\lim_{t \to 1} \mathbf{r}(t) = \langle 3, \frac{1}{2}, \rangle \qquad \qquad \lim_{t \to 1} \cos(\pi t) = -1$$

Example If
$$\mathbf{r}(t) = \frac{3}{t^2}\mathbf{i} + \frac{\ln t}{t^2 - 1}\mathbf{j} + \cos(\pi t)\mathbf{k}$$
, find $\lim_{t \to 1} \mathbf{r}(t)$.
$$\lim_{t \to 1} \mathbf{r}(t) = \langle 3, \frac{1}{2}, -1 \rangle$$
$$= 3\mathbf{i} + \frac{1}{2}\mathbf{j} - \mathbf{k}$$

Example If
$$\mathbf{r}(t) = \frac{2t^2 - 1}{t^2 + t}\mathbf{i} + \sin\left(\frac{1}{t}\right)\mathbf{j} + te^{-t}\mathbf{k}$$
, find $\lim_{t \to \infty} \mathbf{r}(t)$.
$$\lim_{t \to \infty} \mathbf{r}(t) = \langle , , \rangle$$

$$\lim_{t \to \infty} \frac{2t^2 - 1}{t^2 + t} = 2$$

Example If
$$r(t) = \frac{2t^2 - 1}{t^2 + t}i + \sin\left(\frac{1}{t}\right)j + te^{-t}k$$
, find $\lim_{t \to \infty} r(t)$.
$$\lim_{t \to \infty} r(t) = \langle 2, , \rangle$$

$$\lim_{t \to \infty} \sin\left(\frac{1}{t}\right) = 0$$

Example If
$$\mathbf{r}(t) = \frac{2t^2 - 1}{t^2 + t}\mathbf{i} + \sin\left(\frac{1}{t}\right)\mathbf{j} + \frac{te^{-t}}{t^2}\mathbf{k}$$
, find $\lim_{t \to \infty} \mathbf{r}(t)$.
$$\lim_{t \to \infty} \mathbf{r}(t) = \langle 2, 0, \rangle$$

$$\lim_{t \to \infty} te^{-t} = 0 \cdot \infty$$
$$= \lim_{t \to \infty} \frac{t}{e^t} = \lim_{t \to \infty} \frac{1}{e^t} = 0$$

Example If
$$\mathbf{r}(t) = \frac{2t^2 - 1}{t^2 + t}\mathbf{i} + \sin\left(\frac{1}{t}\right)\mathbf{j} + te^{-t}\mathbf{k}$$
, find $\lim_{t \to \infty} \mathbf{r}(t)$.
$$\lim_{t \to \infty} \mathbf{r}(t) = \langle 2, 0, 0 \rangle = 2\mathbf{i}$$

A vector-valued function **r** is **continuous at the point** given by t = a when the limit of $\mathbf{r}(t)$ exists as $t \rightarrow a$ and

 $\lim_{t\to a}\mathbf{r}(t)=\mathbf{r}(a).$

A vector-valued function **r** is **continuous on an interval** *I* when it is continuous at every point in the interval.

Example The vector-valued function $r(t) = t^2i + \frac{1}{t^2-1}j + tk$, is discontinuous at $t = \pm 1$. It is continuous for all $t \in \mathbb{R} - \{-1,1\}$

• The derivative of a vector-valued function is *defined by a limit* like that for the derivative of a real-valued function.

$$\mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$$

• The derivative of r(t) can be *expressed as*

$$\frac{d}{dt}[\mathbf{r}(t)], \quad \frac{d\mathbf{r}}{dt}, \quad \mathbf{r}'(t), \quad \mathbf{r}'$$

• Keep in mind that r(t) is a *vector*, not a number, and hence *has a magnitude and a direction* for each value of t, except if r(t) = 0.

Suppose that C is the graph of a vector-valued function r(t) and that r'(t) exists and is nonzero for a given value of t.

If the vector $\mathbf{r}'(t)$ is positioned with its initial point at the terminal point of the radius vector $\mathbf{r}(t)$, then $\mathbf{r}'(t)$ is tangent to C and points in the direction of increasing parameter.

If $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, where *f*, *g*, and *h* are differentiable functions of *t*, then

$$\mathbf{r}'(t) = f'(t)\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k}.$$

Example For the vector-valued function $r(t) = ti + (t^2 + 2)j$, find r'(1).

$$r'(t) = i + 2tj$$
$$r'(1) = i + 2j$$

Example For the vector-valued function $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + 2t\mathbf{k}$, find:

$$\begin{array}{cccc} 1 & r'(t) & r'(t) = -\sin t \, \mathbf{i} + \cos t \, \mathbf{j} + 2\mathbf{k} \\ 2 & r''(t) & r''(t) & r''(t) = -\cos t \, \mathbf{i} - \sin t \, \mathbf{j} \\ 3 & r'(t) \cdot r''(t) & r'(t) \cdot r''(t) = \sin t \cos t - \cos t \sin t = 0 \\ 4 & r'(t) \times r''(t) & \\ r'(t) \times r''(t) & \\ r'(t) \times r''(t) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -\sin t & \cos t & 2 \\ -\cos t & -\sin t & 0 \end{vmatrix} = 2\sin t \, \mathbf{i} - 2\cos t \, \mathbf{j} + \mathbf{k}$$

DERIVATIVE RULES

1.
$$\frac{d}{dt} [c\mathbf{r}(t)] = c\mathbf{r}'(t)$$

2.
$$\frac{d}{dt} [\mathbf{r}(t) \pm \mathbf{u}(t)] = \mathbf{r}'(t) \pm \mathbf{u}'(t)$$

3.
$$\frac{d}{dt} [w(t)\mathbf{r}(t)] = w(t)\mathbf{r}'(t) + w'(t)\mathbf{r}(t)$$

4.
$$\frac{d}{dt} [\mathbf{r}(t) \cdot \mathbf{u}(t)] = \mathbf{r}(t) \cdot \mathbf{u}'(t) + \mathbf{r}'(t) \cdot \mathbf{u}(t)$$

5.
$$\frac{d}{dt} [\mathbf{r}(t) \times \mathbf{u}(t)] = \mathbf{r}(t) \times \mathbf{u}'(t) + \mathbf{r}'(t) \times \mathbf{u}(t)$$

6.
$$\frac{d}{dt} [\mathbf{r}(w(t))] = \mathbf{r}'(w(t))w'(t)$$

7. If $\mathbf{r}(t) \cdot \mathbf{r}(t) = c$, then $\mathbf{r}(t) \cdot \mathbf{r}'(t) = 0$.

DERIVATIVE RULES

Example For
$$u(t) = \frac{1}{t}i - j + \ln t k$$
 and $v(t) = t^2i - 2tj + k$ then:
1 $\frac{d}{dt}[u(t) \cdot v(t)] = u(t) \cdot v'(t) + u'(t) \cdot v(t)$
 $= \left(\frac{1}{t}, -1, \ln t\right) \cdot \langle 2t, -2, 0 \rangle + \left(\frac{-1}{t^2}, 0, \frac{1}{t}\right) \cdot \langle t^2, -2t, 1 \rangle$
 $= (2 + 2 + 0) + \left(-1 + 0 + \frac{1}{t}\right)$
 $= 3 + \frac{1}{t}$

DERIVATIVE RULES

Example For
$$u(t) = \frac{1}{t}i - j + \ln t k$$
 and $v(t) = t^{2}i - 2tj + k$ then:
2 $\frac{d}{dt}[v(t) \times v'(t)] = v(t) \times v''(t) + v'(t) \times v'(t)$

$$= \begin{vmatrix} i & j & k \\ t^{2} & -2t & 1 \\ 2 & 0 & 0 \end{vmatrix} + 0$$

 $= 2\mathbf{j} + 4t\mathbf{k}$

TANGENT LINES TO GRAPHS OF VECTOR-VALUED FUNCTIONS

Example Find parametric equations of the tangent line to the circular helix $r(t) = \cos t i + \sin t j + tk$ at the point where $t = \pi$.

 $t = \pi$

POINT

 $(\cos \pi, \sin \pi, \pi) = (-1, 0, \pi)$

TANGENT VECTOR

∴ The parametric equations of the tangent line are

$$x = -1$$
$$y = -t$$
$$z = \pi + t$$

 $r'(t) = -\sin t i + \cos t j + k$ $r'(\pi) = -j + k$

DEFINITE AND INDEFINITE INTEGRALS OF VECTOR-VALUED FUNCTIONS

In general, we have

$$\int_{a}^{b} \mathbf{r}(t) dt = \left(\int_{a}^{b} x(t) dt \right) \mathbf{i} + \left(\int_{a}^{b} y(t) dt \right) \mathbf{j} + \left(\int_{a}^{b} z(t) dt \right) \mathbf{k}$$

Example Let $\mathbf{r}(t) = t^2\mathbf{i} + e^t\mathbf{j} - 2\cos(\pi t)\mathbf{k}$. Then

$$\int_0^1 \mathbf{r}(t) dt = \left(\int_0^1 t^2 dt\right) \mathbf{i} + \left(\int_0^1 e^t dt\right) \mathbf{j} - \left(\int_0^1 2\cos\pi t dt\right) \mathbf{k}$$
$$= \frac{t^3}{3} \Big]_0^1 \mathbf{i} + e^t \Big]_0^1 \mathbf{j} - \frac{2}{\pi} \sin\pi t \Big]_0^1 \mathbf{k} = \frac{1}{3} \mathbf{i} + (e-1)\mathbf{j}$$

DEFINITE AND INDEFINITE INTEGRALS OF VECTOR-VALUED FUNCTIONS

Example
$$\int (2t\mathbf{i} + 3t^2\mathbf{j}) dt = \left(\int 2t dt\right)\mathbf{i} + \left(\int 3t^2 dt\right)\mathbf{j}$$

$$= (t^2 + C_1)\mathbf{i} + (t^3 + C_2)\mathbf{j}$$
$$= (t^2\mathbf{i} + t^3\mathbf{j}) + (C_1\mathbf{i} + C_2\mathbf{j}) = (t^2\mathbf{i} + t^3\mathbf{j}) + \mathbf{C}$$

DEFINITE AND INDEFINITE INTEGRALS OF VECTOR-VALUED FUNCTIONS

Example Find r(t) given that $r'(t) = \langle 3, 2t \rangle$ and $r(1) = \langle 2, 5 \rangle$.

$$\mathbf{r}(t) = \int \mathbf{r}'(t)dt = \int \langle 3,2t \rangle dt = \langle 3t,t^2 \rangle + \mathbf{C}$$

But
$$\mathbf{r}(1) = \langle 2,5 \rangle$$

$$\langle 3,1 \rangle + \mathbf{C} = \langle 2,5 \rangle$$

$$\mathbf{C} = \langle -1,4 \rangle$$

So
$$\mathbf{r}(t) = \langle 3t,t^2 \rangle + \langle -1,4 \rangle$$

$$\mathbf{r}(t) = \langle 3t-1,t^2+4 \rangle$$

Course: Calculus (3)

Lecture No: [18]

Chapter: [12] VECTOR-VALUED FUNCTIONS

Section: [12.3] CHANGE OF PARAMETER; ARC LENGTH

SMOOTH PARAMETRIZATIONS

- We will say that a curve represented by r(t) is smoothly parametrized
 by r(t), or that r(t) is a smooth function of t if:
 - ✓ $\mathbf{r}'(t)$ is continuous, and
 - ✓ $\mathbf{r}'(t) \neq \mathbf{0}$ for any allowable value of *t*.
- Geometrically, this means that a smoothly parametrized curve can have no abrupt (مفاجئ) changes in direction as the parameter increases.

SMOOTH PARAMETRIZATIONS

Example Determine whether the following vector-valued functions are smooth.

1
$$\mathbf{r}(t) = a \cos t \mathbf{i} + a \sin t \mathbf{j} + ct\mathbf{k}$$
 $a > 0, c > 0$

$$\mathbf{r}'(t) = -a\sin t\,\mathbf{i} + a\cos t\,\mathbf{j} + c\mathbf{k}$$

\checkmark The components are continuous functions, and

- \checkmark there is no value of t for which all three of them are zero.
- ✓ So $\mathbf{r}(t)$ is a smooth function.

SMOOTH PARAMETRIZATIONS

Example Determine whether the following vector-valued functions are smooth.

2
$$r(t) = t^2 i + t^3 j$$

$$\mathbf{r}'(t) = 2t\mathbf{i} + 3t^2\mathbf{j}$$

- ✓ The components are continuous functions, and
- ✓ they are both equal to zero if t = 0.
- ✓ So, $\mathbf{r}(t)$ is NOT a smooth function.

ARC LENGTH FROM THE VECTOR VIEWPOINT

If C is the graph of a smooth vector-valued function $\mathbf{r}(t)$, then its arc length ℓ from t = a to t = b is

$$\ell = \int_{a}^{b} \left\| \frac{d\mathbf{r}}{dt} \right\| dt = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt$$

Example Find the arc length of that portion of the circular helix $\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle$ from t = 0 to $t = \pi$.

ARC LENGTH FROM THE VECTOR VIEWPOINT

$$\ell = \int_{a}^{b} \left\| \frac{d\mathbf{r}}{dt} \right\| dt = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt$$

Example Find the arc length of that portion of the circular helix $\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle$ from t = 0 to $t = \pi$.

 π

Course: Calculus (3)

Lecture No: [18]

Chapter: [12] VECTOR-VALUED FUNCTIONS

Section: [12.4] UNIT TANGENT, NORMAL, AND BINORMAL VECTORS

UNIT TANGENT VECTORS

- Recall that if *C* is the graph of a *smooth* vector-valued function $\mathbf{r}(t)$, then the vector $\mathbf{r}'(t)$ is:
 - ✓ nonzero, tangent to C, and
 - ✓ points in the direction of increasing parameter.
- Thus, by normalizing $\mathbf{r}'(t)$ we obtain a unit vector

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$$

that is tangent to C and points in the direction of increasing parameter.

• We call T(t) the unit tangent vector to C at t.

UNIT TANGENT VECTORS

Example Find the unit tangent vector to the graph of $r(t) = t^2i + t^3j$ at the point where t = 2.

• Recall if $||\mathbf{r}(t)|| = c$, then $\mathbf{r}(t)$ and

 $\mathbf{r}'(t)$ are orthogonal vectors.

• T(t) has constant norm 1, so T(t) and

T'(t) are orthogonal vectors.

• This implies that T'(t) is perpendicular

to the tangent line to C at t, so we say

that T'(t) is *normal* to C at t.

It follows that if T'(t) ≠ 0, and if we normalize T'(t), then we obtain a unit vector

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$$

that is normal to C and points in the same direction as T'(t).

- We call N(t) the principal unit normal vector to C at t, or more simply, the unit normal vector.
- Observe that the unit normal vector is defined only at points where $T'(t) \neq 0$. Unless stated otherwise, we will assume that this condition is satisfied.
- In particular, this excludes straight lines.

Example Find T(t) and N(t) for the circular helix $r(t) = \langle 3 \cos t, 3 \sin t, 4t \rangle$.

4

$$\mathbf{r}'(t) = \langle -3\sin t, 3\cos t, 4 \rangle$$

$$\|\mathbf{r}'(t)\| = \sqrt{9\sin^2 t} + 9\cos^2 t + 16 = 5$$
$$\mathbf{T}(t) = \frac{\langle -3\sin t, 3\cos t, 4 \rangle}{5} = \left\langle \frac{-3}{5}\sin t, \frac{3}{5}\cos t, \frac{4}{5}\right\rangle$$

Example Find T(t) and N(t) for the circular helix $r(t) = \langle 3 \cos t, 3 \sin t, 4t \rangle$.

$$T(t) = \frac{\langle -3\sin t, 3\cos t, 4 \rangle}{5} = \left\langle \frac{-3}{5}\sin t, \frac{3}{5}\cos t, \frac{4}{5} \right\rangle$$

$$\mathbf{T}'(t) = \left\langle \frac{-3}{5} \cos t, \frac{-3}{5} \sin t, 0 \right\rangle$$

$$\|\mathbf{T}'(t)\| = \sqrt{\frac{9}{25}\cos^2 t + \frac{9}{25}\sin^2 t + 0} = \frac{3}{5}$$

Example Find T(t) and N(t) for the circular helix $r(t) = \langle 3 \cos t, 3 \sin t, 4t \rangle$.

$$T'(t) = \left\{ \frac{-3}{5} \cos t, \frac{-3}{5} \sin t, 0 \right\}$$
$$|T'(t)|| = \sqrt{\frac{9}{25} \cos^2 t + \frac{9}{25} \sin^2 t + 0} = \frac{3}{5}$$
$$N(t) = \frac{\left\{ \frac{-3}{5} \cos t, \frac{-3}{5} \sin t, 0 \right\}}{\frac{3}{5}} = \left\langle -\cos t, -\sin t, 0 \right\rangle$$

BINORMAL VECTORS IN 3 – SPACE

If C is the graph of a vector-valued function r(t) in 3 — space, then we define the *binormal vector* to C at t to be

 $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$

- It follows from properties of the cross product that B(t) is orthogonal to both T(t) and N(t) and is oriented relative to T(t) and N(t) by the right-hand rule.
- B(t) is unit vector !!.

 $\|\mathbf{B}(t)\| = \|\mathbf{T}(t) \times \mathbf{N}(t)\| = \|\mathbf{T}(t)\| \|\mathbf{N}(t)\| \sin \frac{\pi}{2} = 1$

BINORMAL VECTORS IN 3 – SPACE

Note that T(t), N(t), B(t) are three *mutually orthogonal unit vectors*.

 $B(t) = T(t) \times N(t)$ $N(t) = B(t) \times T(t)$ $T(t) = N(t) \times B(t)$

The binormal B(t) can be expressed directly in terms of r(t) as:

$$B(t) = \frac{\mathbf{r}'(t) \times \mathbf{r}''(t)}{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}$$

BINORMAL VECTORS IN 3 – SPACE

Example Find B(t) for the circular helix $r(t) = \langle 3 \cos t, 3 \sin t, 4t \rangle$.

$$T(t) = \left(\frac{-3}{5}\sin t, \frac{3}{5}\cos t, \frac{4}{5}\right) \qquad N(t) = \langle -\cos t, -\sin t, 0 \rangle$$
$$B(t) = T(t) \times N(t) = \begin{vmatrix} i & j & k \\ -\frac{3}{5}\sin t & \frac{3}{5}\cos t & \frac{4}{5} \\ -\cos t & -\sin t & 0 \end{vmatrix}$$
$$= \left(\frac{4}{5}\sin t, \frac{-4}{5}\cos t, \frac{3}{5}\right)$$

Course: Calculus (3)

Lecture No: [19]

Chapter: [12] VECTOR-VALUED FUNCTIONS

Section: [12.5] CURVATURE

- We will consider the problem of obtaining a *numerical measure of how sharply a curve bends*.
- For instance, in the figure, the curve bends more sharply at P than at Q and you can say that the curvature is greater at P than at Q.

You can calculate curvature by calculating the magnitude of the rate of change of the unit tangent vector T with respect to the arc length s.

• If C is a *straight line (no bend)*, then the direction of T remains constant.

Т-

т

Т

- If *C* bends slightly, then T undergoes a gradual change of direction.
- If *C* bends sharply, then T undergoes a rapid change of direction.

If r(t) is a smooth vector-valued function, then for each value of t at which T'(t) and r''(t) exist, the curvature κ can be expressed as

$$\kappa(t) = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}$$

Example Show that the curvature of a circle of radius R is $\kappa = \frac{1}{R}$. **1** $\kappa(t) = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|}$

Example Show that the curvature of a circle of radius R is $\kappa = \frac{1}{R}$.

1
$$\kappa(t) = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|}$$
 $\mathbf{r}(t) = R\cos t\,\mathbf{i} + R\sin t\,\mathbf{j}$ $t \in [0,2\pi]$
 $\mathbf{r}'(t) = -R\sin t\,\mathbf{i} + R\cos t\,\mathbf{j}$

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} = \frac{\langle -R\sin t, R\cos t \rangle}{\sqrt{(-R\sin t)^2 + (R\cos t)^2}} = \langle -\sin t, \cos t \rangle$$

$$T'(t) = \langle -\cos t, -\sin t \rangle$$

$$\kappa(t) = \frac{\sqrt{(-\cos t)^2 + (-\sin t)^2}}{\sqrt{(-R\sin t)^2 + (R\cos t)^2}} = \frac{1}{R}$$

Example Show that the curvature of a circle of radius R is $\kappa = \frac{1}{R}$. 2 $\kappa(t) = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}$ $\mathbf{r}(t) = R\cos t\,\mathbf{i} + R\sin t\,\mathbf{j} + 0\mathbf{k}$ $t \in [0, 2\pi]$ $\mathbf{r}'(t) = -R\sin t\,\mathbf{i} + R\cos t\,\mathbf{j} + 0\mathbf{k}$ $\mathbf{r}''(t) = -R\cos t\,\mathbf{i} - R\sin t\,\mathbf{j} + 0\mathbf{k}$ $\mathbf{r}'(t) \times \mathbf{r}''(t) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{K} \\ -R\sin t & R\cos t & \mathbf{0} \\ -R\cos t & -R\sin t & \mathbf{0} \end{vmatrix} = R^2 \mathbf{k}$ $\|\mathbf{r}'(t) \times \mathbf{r}''(t)\| = R^2$ $\kappa(t) = \frac{R^2}{D^3} = \frac{1}{D}$ $\|\mathbf{r}'(t)\| = R$