Course: Calculus (3) Lecture No: [20]

PARTIAL DERIVATIVES

FUNCTIONS OF TWO OR MORE VARIABLES



NOTATION AND TERMINOLOGY

 In this chapter we will extend many of the basic concepts of
calculus to functions of two or more variables, commonly called

functions of several variables.
 Many familiar quantities are functions of two or more variables. For

example:

1. The work done by a force, W = FD, is a function of two
variables.

2. The volume of a right circular cylinder, V = tr?h, is a function
of two variables.

3. The volume of a rectangular solid, V = [wh, is a function of

three variables.



NOTATION AND TERMINOLOGY

The notation for a function of two or more variables is similar to that
for a function of a single variable.

Z = f(x, y) Function of two variables
v
2 Variables
w = f(x’ Y, Z) Function of three variables
W_/

3 Variables



NOTATION AND TERMINOLOGY

Definition of a Function of Two Variables .
v’ Let D be a set of ordered pairs of real <
numbers.
v If to each ordered pair (x,y) in D there
Domain Range

corresponds a unique real number f(x,y)
then f is a function of x and y.

v' The set D is the domain of f and the
corresponding set of values for f(x,y) is —
the range of f. '
v' x and y are called the independent variables
and z is called the dependent variable.



NOTATION AND TERMINOLOGY

Example Find the domain of the function f(x,y) =

The function f is defined for all points (x,y)
such that x # 0 and

x24+y2-9>20 > x*+y%?>9

Jx2+y2—9

So, the domain is the set of all points lying
on or outside the circle x? + y% = 9 except
those points on the y —axis.




NOTATION AND TERMINOLOGY

Example Find the domain of the function f(x,y) =y + 1+ In(x*—y)

. . A Y
Note that \/y + 1 is defined only when ) _,

_ [y=x"
\ /
y = —1. \ - |
\ - /
e Also, In(x? —y) is defined only when ‘.,‘ g ;
\ -
2 2
x4 —1vy > 0andhencey < x*. \ b F
: : A .4
* Thus, the natural domain of f consists of 1 1+ 1 1 1~n[7 il
all points in the xy —plane for which yr=—1

—1<y<x?



NOTATION AND TERMINOLOGY

Example Find the domain of the function f(x,y,z) = /1 — x2 — y2 — 22

1—x2—y2—-222>20 = x?+4+y?+2z%2<1

The natural domain of f consists of all points on or
within the sphere whose centeris (0,0,0) and radius 1.



LEVEL CURVES

The set of all points (x, y, f(x, y)) in space, for (x,y) in the domain of
f,is called the graph of f.

Surface: z=f{x. v) |

The graph of f is also called the surface z = f(x,y).



LEVEL CURVES

The set of points in the plane where a

function f(x,y) has a constant value
f(x,y) = c is called a level curve of

" The surface
z=flx,y)

=100 — x2 — },2
is the graph of 1.

flx,y) =175

fx,y) =51
(a typical
level curve in
the function’s
domain)



LEVEL CURVES

The curve in space in which the plane
z =c cuts a surface z = f(x,y) is
made up of the points that represent
the function value f(x,y) =c. It is

called the contour curve f(x,y) = c.

The contour curve f(x, ¥) = 100 — x> — y> = 75
is the circle x* + v* = 25 in the plane z = 75.
|

z= 100 — x2 - _1.'3

|| z
| ‘L !
: |
Planez = 75 \ 100=" (

The level curve f(x, v) = 100 — x* — y* = 75
is the circle x* + v2 = 25 in the xy-plane.



LEVEL CURVES

Example Sketch the contour plot of f(x,y) = 4x? + y* using level

curves of height k = 0,1, 2, 3,4, 5.

flx,y) =k 4x% +y4 =k

k=20

k>0

4x% +y%2 =0 (0,0)

X2 2

L A

k/4 k

Which represents a family of
ellipses with x —intercepts -I_-7k

and y —intercepts +Vk.



LEVEL CURVES

Example Sketch the contour plot of f(x,y) = 4x? + y* using level

curves of height k = 0,1, 2, 3,4, 5.
flx,y) =k 4x% +y4 =k

k=0 4x>+y2=0 (0,0)
2 2
k/4 k
Which represents a family of
ellipses with x —intercepts -I_-7k

and y —intercepts +Vk.




Course: Calculus (3) Lecture No: [21]

PARTIAL DERIVATIVES

LIMITS AND CONTINUITY



LIMITS ALONG CURVES

For a function of one variable there are two one-sided limits at a point
X, Namely,

x—oxg

reflecting the fact that there are only two directions from which x can
approach xg, the right or the left.

lim f(x) and xlir)rcl_ f(x)

For functions of several variables the
situation is more complicated because
there are infinitely many different curves
along which one point can approach
another.

¥ o



LIMITS ALONG CURVES

If C is a smooth parametric curve in 2 —space
that is represented by the equations x = x(t)
and y = y(t), and if x, = x(ty) and yo = y(ty),
then
lim )f(x, y) = tIlr{l f(x(t),y(t))
—lo

(x;Y)_’(xo;YO

(along ©)

i

z
(x( 0, ¥ ), [, piin)

I
| £ _III-I_..:I['- _}“I
I
I

]
o
L
Lo

II.’]EI'_I: .]".I.:'II I £
(x(£), M 1)



RELATIONSHIPS BETWEEN GENERAL LIMITS AND LIMITS ALONG
SMOOTH CURVES

If f(x,¥) = Las (x,y) = (x0,Y0), then f(x,y) = L as (x,y) = (x,¥0)
along any smooth curve.

If the limit of f(x,y) fails to exist as (x,y) = (xy,y,) along some
smooth curve, or if f(x,y) has different limits as (x,y) = (xq,yo) along

two different smooth curves, then the limit of f(x,y) does not exist as

(x,y) = (%0, ¥0)-



LIMITS ALONG CURVES

-

X
Example Evaluate lim - 24 along:
(xy)-(0,0) x? + y?

@ thex —axis (y=0)

I x X0 . 0 0
1m — — _— =
0)>(0,0) %2+ 02 x50 x2

© they —axis (x =0)

I 00Xy . 0 0
(O,y)lir(l0,0) 0% + y? B yl—rf(l)? B

) e



LIMITS ALONG CURVES 0
Example Evaluate lim —— > along:
(xy)-(00) x“+Yy

theliney = x
B X XX —x2

lim — i _
(x0)-(0,0) x2+x2 = lm 2xZ

The parabola y = x*

y x X x? y —x3 @
1m — = —
(x,x2)-(0,0) x2 + x* 50 x%(1 + x2)

Since we found two different smooth curves along which this limit had
different values then the limits does not exist



LIMITS ALONG CURVES

Example Show that the following limit does not exist.

lim X" —3y° = 9
xy)-00)x%2 +2y%2 0
x% -0
the x —axis li =
o (x,o)lir(lo,o) x2+0
The limit does
t exist
0-3y2 3 no
© the y —axis lim ——

(o, y)—>(0 00+ 2y2 2



LIMITS ALONG CURVES

Example Show that the following limit does not exist.

lim x3y — 9
(x,y)~(0,0) x® + 2 0
0
o I _
) the x —axis (x,O)ILr(IO,O)x6 =0
The limit does
3 3 p not exist
@ Thecurve lim (") (") — 1imx_ —

y = x3 (xx3)(0,0) X6 + x6  x-02x6 2



LIMITS ALONG CURVES

Xy (—1)(2) 2

Bample  Evaluate IR 1522 y? ~(-D2+22 5

Example  Evaluate lim  (5x3v2 +9) — 3 (42 _
i (x,y)—>(1,4)( Y ) 5(1°)(4°) + 9 = 89

1 1
Example Evaluate li — —— = 400 does not exist
i (6)-(0,0) X2 + )2 0+ 0




LIMITS ALONG CURVES

| x*—y* 0
Example  Evaluate lim —
(xy)~(0,0) x% + y? 0
o xt =yt @2 = YD) +y?)
llm — lim
= lim (x*—y*
R0 * YD)

=0



LIMITS ALONG CURVES

Example

Evaluate lim
(x,y)—(0,0)

It is not evident whether this limit
exists because it is an
indeterminate form of type O - oo.
Although L'Hospital's rule cannot
be applied directly, we can find

this limit by converting to polar

coordinates.

(x?2+y)In(x?+y%) =0 -0

X = 1cos0 y =7rsind

r’=x?4+y? tanf =7y/x

Note

Since ¥ > 0 then r = \/xz + y?2,
so that » = 0% if and only if
(x,y) = (0,0)




LIMITS ALONG CURVES

Example Evaluate lim  (x*+y?*)In(x*+y%) =0-o

(x,¥)—(0,0)
/ X =1 cosf y =7sing

i 2 2
— rll)r(r)1+r In(r<) r? =x?% + y* tanf = y/x
_ i 2Inr Note

r—o0t 1/r?

5 Since 7 = 0 then r = \/x2 + y2,

— lim /r3 so that » = 0% if and only if

roo+t —1/r (x,y) - (0,0)
= lim (—r?) =0

r-0t



LIMITS ALONG CURVES

Example Show that the following limit does not exist.

cos(xy) 1

1m = —
(x,y)~(0,0) x2 + y?2 0
cos( 1

. — lim — —
(x,ol)lir(lo,o)x2 +0 30 X2 >

Along the x —axis

The limit does not exist



LIMITS ALONG CURVES

Example Determine whether the following limit exists.

Xy 0

I —
)00, 3%2 + 2y2 0

Along the line y = mx wherem # 0

(x)(mx) . mx? m

(x,mxl)rE(O,O) 3x?% + 2(mx)? = x50 (3 + 2m?)x? T 3+ 2m?

Since the limit depends on the slope m of the line in which approach
the origin, we conclude that the limit does not exist.



LIMITS ALONG CURVES

Example Evaluate the following limit by converting to polar coordinates.

I x*y? 0 X =1cosf
im — _
(0 y)=>(0,0) /2 + y2 0 y =1sinf
r? =x%+y?

Remember that r — 0% if and only if (x,y) — (0,0).

_ x2y? ~ (rcos0)?(rsinf)?

im = lim
(x:y)_)(o,o) \/xz _|_ yz r—0*t r

lim 73 cos?6sin?g =0
r—0t



LIMITS ALONG CURVES

Example Evaluate the following limit.

1

lim tan~1 [

(x,y,2)~(0,0,0) x? 4+ y? + z2



CONTINUITY

A function f(x,y) is said to be continuous at (xg, vy) if f(xg, Vo) is

defined and if
lim f(x,y) = f(x0,¥0)

(x,y)—(x0,¥0)

In addition, if f is continuous at every point in an open set D, then
we say that f is continuous on D, and if f is continuous at every point

in the xy —plane, then we say that f is continuous everywhere.




CONTINUITY

NOTE We will regard f as being continuous if the surface has no tears or

holes. Z
&£ P

Vertical jump
Hole at the origin Infinite at the origin at the origin




CONTINUITY

3.2
Example f(x,y) = * is continuous except where 1 — xy = 0
1—xy .
y = ;
fsin(x2+y2)
Example Let f(x,y) =<{ x2+y? : (x,y) #(0,0)
.1 : (x,y) =(0,0)

Show that f is continuous at (0,0).



CONTINUITY

fsin(x2+y2)
Example Let f(x,y) =1 x%+y? - (xy) #(0,0)
.1 : (x,y) =(0,0)

Show that f is continuous at (0,0). V

’ £(0,0) = 1 is defined

sin(x? + y?)
lim X, lim
o (x,3)-(0,0 )f( v) = (xy)—>(00) (x? + y2)

| sin(r?)
o0t (r2)

=1 =£(0,0)




Course: Calculus (3) Lecture No: [23]

PARTIAL DERIVATIVES

PARTIAL DERIVATIVES



PARTIAL DERIVATIVES OF FUNCTIONS OF TWO VARIABLES

How will the value of a function be affected by a change in one of its
independent variables?

The procedure used to determine the rate of change of a function
f(x,y) with respect to one of its several independent variables is
called partial differentiation, and the result is referred to as the
partial derivative of f with respect to the chosen independent

variable.



PARTIAL DERIVATIVES OF FUNCTIONS OF TWO VARIABLES

Definition of Partial Derivatives of a Function of Two Variables

If z = flx. v), then the first partial derivatives of f with respect to x and v
are the functions f, and f, defined by

. x + Ax,y) — flx, y
Tax; y) = _‘E}E:}n i 3‘3 J1x. ) Partial derivative with respect to x

and

e v i JUY Ay = fluy)
f-‘"(i“}) B ﬂ.l.\]'TU Ay

Partial derivative with respect to v

provided the limits exist.



PARTIAL DERIVATIVES OF FUNCTIONS OF TWO VARIABLES

NOTE This previous definition indicates that if z = f(x, y) then:
v" To find f, you consider y constant and differentiate with respect
to x.
v’ Similarly, to find fy you consider x constant and differentiate

with respect to y.



THE PARTIAL DERIVATIVE FUNCTIONS

Example Find f,(x,y) and f, (x,y) for f(x,y) = 2x3y* 4+ 2y + 4x and
use those partial derivatives to compute f,.(1,3) and £, (1,3).

Keeping y fixed (constant) and differentiating with respect to x yields

d
f(x,y) = [2x3y2 + 2y + 4x] = 6x°y* + 4

and keeping x fixed (constant) and differentiating with respect to y
yields d
fy(x,y) = O [2x3y2 + 2y + 4x] = 4x3y + 2

Thus, f,(1,3) =6(1%)(3%) +4 =58 fy(1,3) = 4(1°)(3)+2 =14



PARTIAL DERIVATIVE NOTATION

For z = f(x, y), the partial derivatives f, and f, are denoted by

d az

— _.]‘-_’.'.| 'l1r! s .I. 1! -m— "-"_:

ﬂ_rﬂ . ) f‘( y) S ax
and

() 0z

—flx,y) =f(x,v) =7z, = —.

d}?f( y) =5y =z oy

Partial derivative with respect to x

Partial derivative with respect to v

The first partials evaluated at the point (a. b) are denoted by

0Z ,
= = f(a, b) and
ax (ei. b) -

AN

= f.(a. b).



PARTIAL DERIVATIVE NOTATION

Example Fmd — and —y if z = x*sin(xy?).

dz 0
% Ix — [x* sin(xy?)]
= X % [sin(xy3)] + sin(xy?) i)a_x [x4]

= x*y3 cos(xy3) + 4x3 sin(xy?)



PARTIAL DERIVATIVE NOTATION

Example Fmd — and —y if z = x*sin(xy?).

az d

8y 3y — [x* sin(xy?)]

0
= x* 3y [sin(xy3)] = x* x 3xy? cos(xy?)

= 3x°y? cos(xy?3)



PARTIAL DERIVATIVE NOTATION

Example Find f,(1,In2) and f,,(1,In2) if f(x,y) = yexzy.

0 2
= — X"y
0

=Y [exzy] =y X 2xyeX’Y = 2xy2eX’Y
X

+ f, (1,In2) = 2(1)(In 2)2e(1*) In2
= 4(In 2)?



PARTIAL DERIVATIVE NOTATION

Example Find f,(1,In2) and f,,(1,In2) if f(x,y) = yexzy.

a 2 a 2 2 a
= — x=y = x-y XY —

= yx2eXV 4 XV = (yx? + 1)e*”y

+ £, (1,In2) = (1¥)In2 + 1)e(1*)n2
=2In2+ 2



PARTIAL DERIVATIVES VIEWED AS SLOPES

The values of f, and f,, at the point (X0, Vo, Zy) denote the slopes of the
surface in the x — and y —directions, respectively.

Slope = £ {x. 1) Blope = £l W)
) :




PARTIAL DERIVATIVES VIEWED AS SLOPES
Example Let f(x,y) = x%y + 5y3.

a) Find the slope of the surface f(x,y) in the x —direction at the point
(1, -2).

fx(x; y) — ny
Thus, the slope in the x —directionis f,(1,—2) = —4

b) Find the slope of the surface f(x,y) in the y —direction at the point
(1, -2).

v f,(x,y) = x* + 15y°
Thus, the slope in the y —directionis f,,(1,—2) = 61



IMPLICIT PARTIAL DIFFERENTIATION

Example Find the slope of the sphere x? + y% + z? = 1 in the y —direction

at the point (—,%,g)
9] d 0 1/3
[x% +y2 + z2] = —[1] > __13
3y dy dy (Zl%) 2/3
0z 3’3’3
2y +2z— =0 1
dy =75
0z vy

dy z



PARTIAL DERIVATIVES OF FUNCTIONS WITH MORE THAN
TWO VARIABLES

* For a function w = f(x,y, z) of three variables, there are three partial
derivatives:

GW_ aw_ OW_
ax_fx ’ ay_fy ’ az_fz

* The partial derivative f, is calculated by holding y and z constant and
differentiating with respect to x.
* For f,, the variables x and z are held constant,

* and for f, the variables x and y are held constant.



PARTIAL DERIVATIVES OF FUNCTIONS WITH MORE THAN
TWO VARIABLES

Example If f(x,y,2) = x3y%z* + 2xy + z, then
f(x,y,2) = 3x%y?z* + 2y
fy(x,y,2) = 2x3yz* + 2x

(x,v,2) = 4x3y?z3 + 1

X+y+z

, then iz_x+y+z

ow w2

Example If f(x,y,z,w) =




PARTIAL DERIVATIVES OF FUNCTIONS WITH MORE THAN
TWO VARIABLES

2

x2-z2

then

Example Ifw = T

ow _ (y*+2°)(=22) — (x* — z*)(22)
0z (y? + 22)?

_ 22(x* +y*)
— (y? + z2)2




HIGHER-ORDER PARTIAL DERIVATIVES

v' Suppose that f is a function of two variables x
and y.

v’ Since the partial derivatives f, and f,, are also
functions of x and y, these functions may
themselves have partial derivatives.

v This gives rise to four possible second-order
partial derivatives of f , which are defined by

9f B (a.r) B f 8 (af\ _ y
0x2  dx \dx/ "7 a8y T ay\ay) "

Differentiate twice Differentiate twice
with respect to x. wilh respect Lo v,

3 f a [af
dxdy  dx \ 9y

Dnilferentiae lirst with
respect oy and then
with respect oo x,

Dillerentiate lirst with
respect to v and then
with respect to v,

) = .ﬁ.'l.



HIGHER-ORDER PARTIAL DERIVATIVES

* The last two cases are called the mixed second-order  &-f d (Hf) |
N

dxay  dx \dy

partial derivatives or the mixed second partials.
Dhfferentiare first with

e (QObserve that the two notations for the mixed respect o v and then

with respect o x,

second partials have opposite conventions for the

order of differentiation.

acf 0 (a_ f) ,
. . T Y Jr.x v
* Let f be a function of two variables. If f,,, and f,,, ~ dvdx  dy \dx |

Dillerentiate lirst with

are continuous on some open disk, then fy,, = f,, respect to x and then
with respect to v,

on that disk.



HIGHER-ORDER PARTIAL DERIVATIVES

Example
Find the second-order partial derivatives of f(x,y) = 2xy3 + 4x3y
fl,y) =x?y* +x*y fy(x,y) = 3x%y? + x*
2f d (df 9]
frx = 322 Ix (ax) (ny + 4x3y) = 2y3 + 12x%y
2f d (df 0
2 — fr2
fyy ayz ay (ay) (3X y +x4) = 6x y

52
92 f of\_ 0
= 6xy? + 4x3 =
fry = ayax ay E (ny + 4x3y) = 6xy% + 4x3 = fix



HIGHER-ORDER PARTIAL DERIVATIVES

Third-order, fourth-order, and higher-order partial derivatives can be
obtained by successive differentiation. Some possibilities are

vr _ 3 (ﬂzf _ ' 9 ( af‘f‘) .
H_TE o H.T ‘,}I;_' — JXXX a}_:-i = H} a}’i = Jyvvy

3 f _ (Hzf )_ | 9t 9 ( 83f )_f
dylox  dy \oydx ) dy2ox2  dy \dyox2) TV

Example Let f(x,y) = y“e* +y. Find fiyy.

af‘? ; '3 H : d... , C} _ _
R f — ( / — E (y'e”) = —(2ye") =2
RS dy=dx dy= \ dx d} dy




PARTIAL DERIVATIVES AND CONTINUITY

In contrast to the case of functions of a single variable, the existence of
partial derivatives for a multivariable function does not guarantee the
continuity of the function.

( Xy
- x,y) # (0,0
Example Let f(x,y) =1 x2+y? (x, y) # (0,0)
\ 0 : (X, 3’) — (O;O)

. Xy
lim -—
(xy)—(0,0) x?% + y?

We previously show that does not exist.

~ f(x,y) is discontinuous at (0,0).



PARTIAL DERIVATIVES AND CONTINUITY
( b Y

- x,y) # (0,0
Example Llet f(x,y) =1 x?%+y? (x,y) # (0,0)
.0 . (x,y) =(0,0)

« f(x,y) is discontinuous at (0,0).

We will have to use the definitions of the partial derivatives to determine
whether f has partial derivatives at (0,0), and if so, we find the values of
those derivatives.

£0.0)= lim L& =/0.0 . 0-0_,
' Ax — ) Ax Ax—0 Ax

(0. Ay) — F(0.0 ) (
/+(0,0) = lim 70,89~ /0.9 _ lim [ J:U

Ay — 0 Ay Ay—0 Ay



PARTIAL DERIVATIVES AND CONTINUITY
( b Y

Example Let f(x,y) =< X2+ y2

(x,y) # (0,0)

0 =00
~ f(x,y) is discontinuous at (0,0).
f:(0,0) = lm f(ax, 0 = 70.0) = lim V-0 = ()
' Ax — 0 Ax Ax—0 Ax
(0, Ayv) — (0,0 ) —(
£+(0,0) = lim 7O, 4y) = 1,0 — lim [ : = ()
. Ay — 0 Ay Ay—=0 Ay

This shows that f has partial derivatives at (0,0) and the values of
both partial derivatives are 0 at that point.



Course: Calculus (3) Lecture No: [25]

PARTIAL DERIVATIVES

THE CHAIN RULE



CHAIN RULES FOR DERIVATIVES

If v is a differentiable function of x and x is
a differentiable function of t, then the
chain rule for functions of one variable
states that, under composition, y becomes
a differentiable function of t with

dy dy dx
dt dx dt




CHAIN RULES FOR DERIVATIVES

 Let w= f(x,y) where f is a differentiable
function of x and y.

 Ifx =g(t) and y = h(t) where g and h are
differentiable functions of t then w is a
differentiable function of t.

e And

dw awdx_l_awdy
dt 0Jx dt dy dt




CHAIN RULES FOR DERIVATIVES

Example Let w = x%y — y?, where x = sint

and y = e'. Find Z—V:when t = 0.

dw B ow dx

ow dy

dt ~ x dt " ay dt

= (2xy)(cost) + (x% — 2y)(eh)
= (2sint eY)(cost) + (sin?t — 2et)(e!)

dw awdx_l_é‘wdy
dt 0x dt 0dy dt

w

ow ow

a/\@

X y
dx

dt

dy

dt

t t

NOTE w = elsin?t — e?t



CHAIN RULES FOR DERIVATIVES

Example Let w = xy + yz, where y = sinx and

z = e*. Use an appropriate form of the aw
chain rule to find dw/dx. Ox Z_LV
dw ow oJdwdy OJw dz * Y
dx 0dx OJdy dx 0z dx -
X
=y+ (x+2z)(cosx) + (y)(e*) X
NOTE

= (1+e*)sinx + (x +e*)cosx w = xsinx + e*sinx



CHAIN RULES FOR DERIVATIVES
0z z %

0x dy
Example Given that z = e*’, x = 2u + v, and /\

y

y = u/v. Find dz/0u and dz/dv. ox T ox dy /\ay

du v ou dv
0z dzdx 0z 0y u v u v

— = — 4+ — Z

dJu Jdxdu 0dy du

= (ye*)(2) + (xe*)(1/v) = e*¥ (Zy + %) — o Qutv)(u/v) (1 + 4%)

0z dzdx 0z 0y

o 0x0v+ dy dv
xu) 2U?

= Ge™)(D) + (xe™)(—u/v?) =e? (y—5) = - 2L Curmwm
v




CHAIN RULES FOR DERIVATIVES

Example dw
: 2 L 2 2 0X_—"ow
Given thatw = x“ + y“ — z*, and %
X = psingcosb X y g z
: : dx 9y
y = psin¢sinf — 20 /\
Z = pCcoso p ) p 6 p ¢
Use appropriate forms of the (¢ ¢

chain rule to find dw/06.

i, owodx 0w 0
% = %% +% % = (2x)(—psin¢gsinf) + (2y)(p sin ¢ cos 6)

— 0 This result is explained by the fact that w
does not vary with 6.



CHAIN RULES FOR DERIVATIVES

Example Let f be a differentiable function of one %
variable and let z = f(x + 2y). Show that
ou du
, 0z 0z _ 0 - 3
dx Jdy
X y
letu = x + 2y
dz dzou dZ(l) _dz
0x dudx du ~ du
dz 0z dz dz
0z _dzdu_dz . . dz 0z 0z_,dz_,

3y  dudy du du ox 0oy “du “du



IMPLICIT DIFFERENTIATION

: : : : foaf
Consider the special case where f(x, y) is a function o L
of x and y and y is a differentiable function of x. amy

x y
df _of ofdy dy
— _|_ —_— dx

dx dx 0Jydx

Now, suppose that f(x,y) = c. Then

0 af d
0= _f_|_ _f_y

dx OJdydx
dy df /0x




IMPLICIT DIFFERENTIATION

dy  0f/ox
dx  of/dy

Example Given that x> + y?x — 3 = 0, find Z_i’

x3 4+ yix =3
~—

f(x,y)

ﬂ _ 3x% 4 y°
dx 2xy




Course: Calculus (3) Lecture No: [27]

PARTIAL DERIVATIVES

DIRECTIONAL DERIVATIVES AND GRADIENTS



DIRECTIONAL DERIVATIVES

* In this section we extend the concept of a partial derivative to
the more general notion of a directional derivative.
* You will see that f,(x,y) and f,,(x,y) can be used to find the

slope in any direction.

* To determine the slope at a point on a surface, you will define a

new type of derivative called a directional derivative.



DIRECTIONAL DERIVATIVES

* To do this is to use a unit vector
u=uql+ uyj
that has its initial point at (xq,y¢) and points in the desired

direction. 7




DIRECTIONAL DERIVATIVES

If f(x,y) is a function of x and y, and if u = u4i + u,j is a unit vector,
then the directional derivative of f in the direction of u at (xy, yp) is

denoted by Dy f (xq, yo) and is defined by

Duf (x0,Y0) = fx (X0, Yo)us + £, (x0, y0)u;



DIRECTIONAL DERIVATIVES

Example Find the directional derivative of f(x,y) = e* at (—2,0) in
the direction of the unit vector that makes an angle of /3
with the positive x —axis.

T I3

feley) =ye?  f(xy)=xe”  u=coszi+sinz]
1. V3
fx(=2,0)=0 fy(=2,0) = -2 u= Ei + 7]'

DUf(_Z)O) — fx(—Z,O)ul + fy(—Z,O)uz

of)rca(f)-



DIRECTIONAL DERIVATIVES

Example Find the directional derivative of f(x,y,z) = x%y — yz> + z at
(1,—2,0) in the direction of the vector a = 2i +j — 2k.

a 2i+ij— 2k
fx(x,y,z)=2xy U=-r—7 = ]
) =t ENCE e
y ) ) -
2 1 2
(x,y,z) = =3yz? +1 e B S
fz(x,y y 31+3] 3k

£.(1,-2,0) = —4
£,(1,-2,0) =1
£,(1,-2,0) =1



DIRECTIONAL DERIVATIVES

Example Find the directional derivative of f(x,y,z) = x%y — yz> + z at
(1,—2,0) in the direction of the vector a = 2i +j — 2k.

f(1,-200=-4 £(1,-20=1 f(1,-20)=1

_a 2.1 2
“al T3 7373

Dyf(1,-2,0) = f,(1,=2,0)u; + f,(1,—2,0)u, + f;(1,—2,0)u;

2 1 —2
= (=4 (g) +(1) (§> +(1) (?) = -3



THE GRADIENT

(a) If f is afunction of x and y, then the gradient of f is defined by
Vi, y) = fulx. )i+ fulx, ¥)j
(b) If f 1s a function of x, v, and z, then the gradient of f 1s defined by

Vit v,z = Ll vz i v, 2)] + ey, 2k

NOTE Duf (x0,¥Y0) = fi(x0,Y0)us + f,(x0, yo)us

— (fx(in yO): fy(x0» y0)> ’ <u11u2>
=Vf-u



PROPERTIES OF THE GRADIENT

Let f be a function of either two variables or three variables and let P
denote the point P(xy, yo) or P(xq, Vo, Zp), respectively. Assume that f is
differentiable at P.

a) IfVf = 0atP, then all directional derivatives of f at P are zero.

b) If Vf # 0 at P, then among all possible directional derivatives of f at
P, the derivative in the direction of Vf at P has the largest value. The
value of this largest directional derivative is ||Vf|| at P.

c) If Vf # 0 at P, then among all possible directional derivatives of f at
P, the derivative in the opposite direction of Vf at P has the smallest

value. The value of this smallest directional derivative is —||Vf|| at P.



PROPERTIES OF THE GRADIENT

Example Let f(x,y) = x%eY. Find the maximum value of a directional
derivative at (—2,0), and find the unit vector in the direction in
which the maximum value occurs.

Vilx,y) = fi (e, i+ f,(x,¥)] = 2xe?i+ x?e”]
VF(=2,0) = —4i + 4

So, the maximum value of the directional derivative is

IVF (=20l = J(—4)? + 42 =42




PROPERTIES OF THE GRADIENT

Example Let f(x,y) = x%e”. Find the maximum value of a directional
derivative at (—2,0), and find the unit vector in the direction in
which the maximum value occurs.

So, the maximum value of the directional derivative is
IVF(=2,0)ll = /(—4)2 + 42 =42

This maximum occurs in the direction of Vf(—2,0).

The unit vector in this direction is

VF(—2,0) ](,1+4) L |
= T 1 e e ] ——
IVi(—2.0) ~ 4v2 ' ;




Course: Calculus (3) Lecture No: [28]

PARTIAL DERIVATIVES

TANGENT PLANES AND NORMAL VECTORS



TANGENT PLANES AND NORMAL VECTORS TO LEVEL SURFACES
F(x,y,z) =c

In this section we will discuss “How do we find equations of tangent

planes to surfaces in three-dimensional space?”

e So far, you have represented surfaces in space primarily by equations
of the form z = f(x, y).

* In the development to follow, however, it is convenient to use the

more general representation F(x,y,z) = 0.



TANGENT PLANES AND NORMAL VECTORS TO LEVEL SURFACES
F(x,y,z) =c

* For a surface S given by z = f(x,y) you can convert to the general
form by defining F as
F(x,y,2) = f(x,y) — z
* Because f(x,y) —z = 0, you can consider S to be the level surface of
F given by F(x,y,z) = 0.
* In the process of finding a normal line to a surface, you are also able

to solve the problem of finding a tangent plane to the surface.



TANGENT PLANES AND NORMAL VECTORS TO LEVEL SURFACES
F(x,y,z) =c

* Let S be a surface given by F(x,y,z) =0
and let P(xy, yo, Zo) be a pointon S. ;“ﬁl-“-ﬂ: i
e Let C be a curve on S through P that is F
defined by the vector-valued function §
r(t) = x(8)i + y(Oj + z(Dk ;P{ T
* Then, forall t, F(x(t),y(t),z(t)) = 0. : H




TANGENT PLANES AND NORMAL VECTORS TO LEVEL SURFACES
F(x,y,z) =c

Surfhce §:

Flx,,3)=0
* If F is differentiable and x'(t), y'(t) and 5
z'(t) all exist, then it follows from the
Chain Rule that o
F é?i{n-}'ﬂ- :ﬂ} g i T

0=F'(ty)
= F (%0, Y0, 20)x"(£0) + E, (X0, Y0, Z0)y' (to)+ F; (0, Y0, 20)Z" (to)



TANGENT PLANES AND NORMAL VECTORS TO LEVEL SURFACES
F(x,y,z) =c

0 =F'(ty)
= Fy(x0, Yo, Zo)x" (to) + F,(x0, Yo, 20)y' (£0)+ F; (X0, Yo, 20)Z (to)
' f Surface §¢ |
= VF(Xo,yo,Zo) . g (to) .FH,_‘,”.;- i‘.l.

————— Y~

Gradient Tangent
Vector

LY
IlI.l
“\ql’
=l o
=
o e

F f}_,.f; |
This result means that all tangent lines on S lie /é’”{n--"w %) |
in a plane that is normal to VF(x, v, Zz9) and | .’
contains P. :



TANGENT PLANES AND NORMAL VECTORS TO LEVEL SURFACES
F(x,y,z) =c

Definitions of Tangent Plane and Normal Line
Let F be dilferentiable at the point P(x,, ¥, Z,) on the surface § given by
F(x. v.z) = 0 such that
VF(xg, ¥o. %) # 0.
1. The plane through P that is normal to VF(x,, v, z,) 1s called the tangent
plane to S at P.

2. The line through P having the direction of VF(x,. v,. z,) is called the
normal line to S at P.

Equation of Tangent Plane
Il F is dilferentiable at (x,, v, 2), then an equation of the tangent plane to the
surface given by Flx, v, 2) = 0 at (x,, v 2,) i8

F (X0 Yor 20)(x — x0) + F (%0, Yo, 2}y — ¥p) + F.lxg. Yo %)z — 29} = 0.



TANGENT PLANES AND NORMAL VECTORS TO LEVEL SURFACES
F(x,y,z) =c

Example Find an equation of the tangent plane to the hyperboloid

z? — 2x% — 2y*? = 12 at the point (1, —1,4).
E.(x,y,z) =—4x
Fy,(x,y,z) = —4y
E,(x,y,z) =2z

z? —2x? -2y —-12=0

F(x,y,z) = z*> — 2x* — 2y% — 12
So, an equation of the tangent plane at (1,—1,4) is
F,(1,-14) = —4
F,(1,-1,4) = 4
E,(1,-1,4) =8

—4(x—-1)+4(y+1)+8(z—4)=0
—4x + 4y + 8z = 24
x—y—2z+6=0



TANGENT PLANES AND NORMAL VECTORS TO LEVEL SURFACES

F(x,y,z) =c

Example Find an equation for the tangent plane and parametric equations
for the normal line to the surface z = xzy at the point (2,1,4).

z—x*y=0 F(x,v,z) =z—x°y

VF(x,v,z) = —2xyi — x%j+ k
VF(2,1,4) = —4i—4j+Kk
So, the tangent plane has equation
—4(x—2)—4(y—-1)+(z—-4)=0
—4x—4y+z+8=0

And the normal line has
parametric equations:

x=2—4t
y=1-—-4t
z=4+t



Course: Calculus (3) Lecture No: [28]

PARTIAL DERIVATIVES

MAXIMA AND MINIMA OF FUNCTIONS OF TWO VARIABLES



EXTREMA

A function f of two variables is said to have
a relative maximum at a point (xq, V) if
there is a disk centered at (x,, yg) such that
f(x0,v0) = f(x,y) for all points (x,y) that
lie inside the disk.

And f is said to have an absolute maximum

at (xo,¥0) if f(x0,¥0) = f(x,y) for all
points (x,y) in the domain of f.

Absolute
A Maximurm
2= f(x, y)
Relative
Maximum

Relative minimum

Absolute minimum

T,




EXTREMA

A function f of two variables is said to have
a relative minimum at a point (xg,yp) if
there is a disk centered at (x,, yg) such that
f(x0,Y0) < f(x,y) for all points (x,y) that
lie inside the disk.

And f is said to have an absolute minimum

at (xO'yO) if f(inyO) Sf(x)y) for all
points (x,y) in the domain of f.

Absolute
A Maximurm
2= f(x, y)
Relative
Maximum

Relative minimum

Absolute minimum

T,




BOUNDED SETS

A set of points in 2 —space is called And is called unbounded if there is

bounded if the entire set can be no rectangle that contains all the

contained within some rectangle. points of the set.
l_j" AV
X
. -
-
A bounded set An {Jﬂgﬂunded
in 2-space set In 2-space

(the first quadrant)



THE EXTREME-VALUE THEOREM

If f(x,y) is continuous on a closed and bounded set R, then f has

both an absolute maximum and an absolute minimum on R.

NOTE If any of the conditions in the Extreme-Value Theorem fail to
hold, then there is no guarantee that an absolute maximum

or absolute minimum exists on the region R.



FINDING RELATIVE EXTREMA

Definition of Critical Point

Let f be defined on an open region R containing (x,, v,). The point (x,. v,) is
a critical point of fif one of the following is true.

1. f,(xg, yy) = 0 and .ﬁ.'{xﬂr Yo) = 0
2. f.(x,, vy) or f.(xy v,) does not exist.

NOTE |If f is differentiable and
Vf(x0,¥0) = fx(X0, Y0)i+ £y, (%0, ¥0)j = 0i + 0j = 0

then every directional derivative at (x,, y5) must be 0.



FINDING RELATIVE EXTREMA

Relative Extrema Occur Only at Critical Points

If fhas a relative extremum at (x,, y,) on an open region R, then (x,, y,) is a
critical point of f. Az

Relalive
MMAXITILT

2= L% ) z= fx, )

._ v
ﬂr--"f_‘;;} "““a& |
VG

X



FINDING RELATIVE EXTREMA

Example Find the critical value(s) of f(x,y) = 2x% + y? + 8x — 6y + 20.

fx(,y) =4x+8=0 x = —2
fix,y)=2y—6=0 y=3

The critical pointis (—2,3).

From the figure, f has a relative minimum at
(—2,3), and the value of this relative
minimum is f(—2,3) = 3.




FINDING RELATIVE EXTREMA

Example Find the critical value(s) of f(x,y) = 1 — (x? 4+ y?)1/3.
—2X
3(x2 + y2)2/3

fr(x,y) =0 — % (x? + yz)_2/3 (2x) =



FINDING RELATIVE EXTREMA

Example Find the critical value(s) of f(x,y) = 1 — (x? 4+ y?)1/3.

—2X

_ Both partial derivatives exist for all points in
fX(xly) - 3(x2 n y2)2/3

the xy —plane except for (0,0).

£,.(x,y) = —2y The partial derivatives cannot both be 0
Y 3(x2 + y2)2/3 unless both x and y are 0.
The only critical point is (0,0). L (0.0.1)
: B |
From the figure, f has a relative maximum at o . .
(0,0), and the value of this relative minimum (G N

is £(0,0) = 1.



FINDING RELATIVE EXTREMA

: . 2 2
Example Find the critical value(s) of f(x,y) = y* — x“. PP

A s
f,y)=—2x=0 x=0 .
fy(x, y) =2y =0 y=0 (0, 0) .

The critical pointis (0,0).

 The function f has neither a relative maximum nor a relative
minimum at (0,0).

« The point (0,0) is called a saddle point (z _~ 4as) of f.



THE SECOND PARTIALS TEST

13.8.6 THEOREM (The Second Partials Test)y Let | be a function of two variables with
continuous second-order partial derivatives in some disk centered at a critical peint

(X, Vo). and let
i D = f,:(x0. y0) fyy(%o, Yo) — [ (%o Yo)

(a) If D = 0and f,.(xq, vo) = 0. then [ has a relative minimum at (xq, vo).
(B If D = 0and f..(xq vo) < O then | has a relative maximum at (xo, Vo).
(¢) If D = 0, then f has a saddle point at (xy, vp).

(d) If D=0, then no conclusion can be drawn.

| (x0,Y0)  fry (X0, Y0)

NOTE D =
fxy(xOJYO) fyy(xOJYO)



THE SECOND PARTIALS TEST

Example f(x,y) = 2x% + y? + 8x — 6y + 20.

The critical pointis (—=2,3). fer(x,y) =4 fex(=2,3) =4 >0
fi(x,y) = 4x + 8 fyy) =2  fy(=23)=2
fy(x,y) =2y —6 foy(,y) =0 fiy(=23)=0

D = fux(=2,3)f,,(=2,3) — £5(=2,3) = (4)(2) — (0)* =8 >0

f has a relative minimum at (—2,3) by the second partial test,
and the value of this relative minimum is f(—2,3) = 3.



THE SECOND PARTIALS TEST

Example f(x,y) = y% — x2.

The critical point is (0,0).

frllr,y) = =2x  fx(0,0) = =2

f(x,y) =2y fyy(0,0) = 2
fxy(ofo) =0

f has a saddle point at (0,0) by the second partial test.



THE SECOND PARTIALS TEST

Example Locate all relative extrema and saddle points of

flx,y) =4xy —x*—y*

frlx,y) =4y —4x> =0 y=x3:| x = (x3)3 = x°

fyty) =4x—4y> =0  x=y° >—x=0 x(x*-1)=0

X = X
fex (6, y) = 1242 —
fyy(x;Y) = —12)72 0 0

fxy(er) =4 1 1




THE SECOND PARTIALS TEST

Example Locate all relative extrema and saddle points of

flx,y) =4xy —x*—y*

X|ly=x
frex (X, ¥) = —12x* 1| -1
fyy(x;Y) = —12}’2 0 0

fxy(xr y) =4

" . 2
Critical Point | f fyy fiy |D = faxSyy — [fxy] Type

(-1,-1) |—-12 —12 4 128 Local Max
(0,0) 0 0 4 —16 Saddle
(1,1) —12 —12 4 128 Local Max




FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
flx,y)=3xy—6x—3y+7
on the closed triangular region R with vertices (0,0), (3,0), and
(0,5).

(0,5)

® >
(0,0) (3,0)



FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
flx,y)=3xy—6x—3y+7
on the closed triangular region R with vertices (0,0), (3,0), and

(0,5).

(0,5)
1. Inside the region R.
fx(x,y) =3y -6 =0 (1,2) is critical point R
fy(xy)=3x=3 =0 saddle Point
D = frx(1,2)fyy(1,2) — £2,(1,2) (0.0) (30)

= (0)(0)-(3)?=-9 <0 Bounded



FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
flx,y)=3xy—6x—3y+7

on the closed triangular region R with vertices (0,0), (3,0), and

(0,5).
2. On the line through the points (0,0) and (3, 0).
y=0 f(x,0)=—-6x+7

(0,5)

(0,0) (3,0)

Bounded




FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
flx,y)=3xy—6x—3y+7
on the closed triangular region R with vertices (0,0), (3,0), and

0,5).
(0,5) (0,5)
2. On the line through the points (0,0) and (3, 0).
y=0 u(x)=—-6x+7 ; x€]0,3] .
Sinceu'(x) =—-6<0 u(x) decreases on [0,3]
0,0 3,0
(0,0) MAX (0.0) (3.0)

(3,0) MIN Bounded



FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
flx,y)=3xy—6x—3y+7

on the closed triangular region R with vertices (0,0), (3,0), and

(0,5).
3. On the line through the points (0,0) and (0, 5).
x=0 fO0,y)=-3y+7

(0,5)

(0,0) (3,0)

Bounded




FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
flx,y)=3xy—6x—3y+7
on the closed triangular region R with vertices (0,0), (3,0), and

(0,5).

(0,5)
3. On the line through the points (0,0) and (0, 5).
x=0 w(ly)=-3y+7 ; y€]0,5] .
Sincew'(y) = —-3<0  w(y) decreases on |0,5]
0,0 3,0
(0,0) MAX 0.0 30

(0,5) MIN Bounded



FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
flx,y)=3xy—6x—3y+7
on the closed triangular region R with vertices (0,0), (3,0), and

(0,5). 0.5)
4. On the line through the points (3,0) and (0, 5).
5 5—-0 5
y=—§x+5 m=m=—§ R
Yy — Yo = m(x — xo)
(0,0) (3,0)

5
y—0=-2(x=3)
Bounded



FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of

(0,5).

flx,y)=3xy—6x—3y+7
on the closed triangular region R with vertices (0,0), (3,0), and

4. On the line through the points (3,0) and (0, 5).

5

y=—=zx+5

d

3

5 5
x,—§x+5>=3x<—§x+5>—6x—3(

—5x% + 14x — 8

> + 5
3%

)+7

(0,5)
R
(0,0) (3,0)
Bounded




FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
flx,y)=3xy—6x—3y+7

on the closed triangular region R with vertices (0,0), (3,0), and

(0,5).

4. On the line through the points (3,0) and (0, 5).

5

y=——x+5 g(x)=—5x%+14x—8

3

g (x)=—10x+14 =0

7
* =5

; x €1]0,3]

T~

0

—8

Ul © U1l 3 @

3

—11

(0,5)
R
(0,0) (3,0)
Bounded




FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
flx,y)=3xy—6x—3y+7

on the closed triangular region R with vertices (0,0), (3,0), and

(0,5).

4. On the line through the points (3,0) and (0, 5).

5

y=——x+5 gx)=-5x*+14x—-8 ; x€[0,3]

3

g (x)=—10x+14 =0

7
* =5

iy MAX
5°3

(3,00 MIN
(0,5) MIN

(0,5)
R
(0,0) (3,0)
Bounded




FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
flx,y)=3xy—6x—3y+7

on the closed triangular region R with vertices (0,0), (3,0), and

(0,5).

Point f(x,y)
(1,2) 1
(0,0) 7
(3,00 -—11
(0,5) -8
(53) 3

Type
Saddle
MAX
MIN
MIN
MAX

Absolute
Absolute
Relative
Relative

(0,5)

(0,0) (3,0)

Bounded




Course: Calculus (3) Lecture No: [30]

PARTIAL DERIVATIVES

LAGRANGE MULTIPLIERS



EXTREMUM PROBLEMS WITH CONSTRAINTS

* In this section we will study a powerful new method for maximizing or
minimizing a function subject to constraints on the variables.

* This method will help us to solve certain optimization problems that are
difficult or impossible to solve using the methods studied in the last
section.

* We wish to:

Find extrema of the function z = f(x,y) subject to a constraint given

by g(x,y) = c.



EXTREMUM PROBLEMS WITH CONSTRAINTS

Lagrange’s Theorem

Let fand g have continuous first partial derivatives such that f'has an
extremum at a point (x,, y,) on the smooth constraint curve g(x, y) = ¢. If
Ve(x, v,) # 0, then there is a real number A such that

'\7'_}“(,1"“, }3{}) — ""-vg(r’ttlﬂ }’{})~

NOTE The scalar A is called a Lagrange multiplier.



EXTREMUM PROBLEMS WITH CONSTRAINTS

Method of Lagrange Multipliers

Let fand g satisly the hypothesis ol Lagrange’s Theorem. and let f have a
minimum or maximum subject to the constraint g(x, v) = ¢. To find the
minimum or maximum of f, use these steps.

1. Simultaneously solve the equations Vf(x, v) = AVg(x, v) and glx, v) = ¢
by solving the following sysiem ol equations.
II-LII{-]:‘ }l} — hgll{x. }1}
Kl y) = Ag,lx, y)
glx,v) = ¢
2. Evaluate f at each solution point obtained in the first step. The greatest value

yields the maximum of f subject to the constraint g(x, v) = ¢, and the least
value yields the minimum of fsubject to the constraint g(x, v) = ¢.



EXTREMUM PROBLEMS WITH CONSTRAINTS

— gx,y) =x+y—3

Example At what point(s) on the line x + y = 3 does

f(xry) — 9—X2 _y2
have an absolute maximum, and what is that maximum?

fx(x»Y) = Agx(x»Y) —2x = 1—
fxy) =24g,(x,y) —2y=21—
glx,y)=20 x+y—3=0

—> —2x = =2y




EXTREMUM PROBLEMS WITH CONSTRAINTS

/,agQwO=x+y—3

Example At what point(s) on the line x + y = 3 does

f(xry) — 9—X2 _y2
have an absolute maximum, and what is that maximum?

fx(x»Y) = Agx(x»Y) —2x = /1__> =
fy) =2g,(x,y) 2y =A1— \

glx,y)=20 x+y—3=0
2x —3 =0
3 3
SR (AR



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example At what point(s) on the line x + y = 3 does

f(xry) — 9—X2 _y2
have an absolute maximum, and what is that maximum?

33
XT3 Y75

* Subject to the constraint x +y = 3, the function f has

. 3 3
absolute maximum at (E’E)'

. . 3 3 9
* The value of the absolute maximum is f (5,5) =7



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Use Lagrange multipliers to find the maximum and minimum
values of

subject to the constraint x? + 3y? = 16. N

fr(x,y) = Agx(x,y) 1 =2Ax g(x,y) = x* +3y% —16

fy(ny) — Agy(xry) —3 = 6/1:)/
g(x,y) =0 x?+3y°—16=0



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Use Lagrange multipliers to find the maximum and minimum
values of

subject to the constraint x? + 3y? = 16.

1=2Ax ———x%+ 3y —-16=0 f(2,-2)=7 MAX
B 4x% —16 =0 f(=22)=-9 MIN
—3 = 61y
XxX=2 —y=-2
1 X




EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find three positive numbers whose sum is 48 and such that their
product is as large as possible.

Let the three numbers x, y and z.
Constraint: x +y + 2z = 48

Function: f(x,y,z) = xyz

Find the maximum value of f(x,y,z) = xyz subject to the
constraintx +y + z = 48.



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find the maximum value of f(x,y,z) = xyz subject to the
constraintx +y + z = 48.

\g(x,y,z)=x+y+z—48

fiey D) =10x(7,2) ya=2 } v
(Y, z) =Agy,(x,y,2z)  xz=2 X
fz(x,y,2) =Ag,(x,y,z) xy=2

g(x,y,z) =0 x+y+z—48=0



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find the maximum value of f(x,y,z) = xyz subject to the
constraintx +y + z = 48.

\g(x,y,z)=x+y+z—48

(6, y,2) =g, (x,y,2)  yz=2 -
y=X
f(x,y,z) =24g,(x,y,2) xz=2
f(0y,2) =g9,(x,y,z) xy=24
g(x,y,z) =0 x+y+z—-48=0



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find the maximum value of f(x,y,z) = xyz subject to the
constraintx +y + z = 48.

\g(x,y,z)=x+y+z—48

fX(x’yIZ):Agx(xryrZ) yZ=/1

y
f(xy,2) =Agy,(x,y,z) xz=2X } 7
fz(x,y,2z) =g, (x,y,z) xy=4 ) Y

g(x,y,z) =0 x+y+z—-48=0

X
1



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find the maximum value of f(x,y,z) = xyz subject to the
constraintx +y + z = 48.

\g(x,y,z)=x+y+z—48

9,2 = g6, yz=a s
y =X

fy(xiyrz):AQY(xlyJZ) xz=/1 } y=Z

fZ(xryJZ) = Agz(X,y,Z) Xy = A

g(x,y,z) =0 x+y+z—-48=0



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find the maximum value of f(x,y,z) = xyz subject to the
constraintx +y + z = 48.

fx(xX,y,2) = A9 (x,, 2)
fy(x,y,2) = Agy(x,y,2)
fo(x,y,2) = 2g,(x,y, 2)
g(x,y,z) =0

\g(x,y,z)=x+y+z—48

yz = A
y=x

xz = A >x=y=z
y =z

xy = A |

XxX+y+z—48=0<
3x—48=0 x=16 y=16 z=16
f(16,16,16) = 16> = 4096
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