
Chapter: [14]

MULTIPLE INTEGRALS

Section: [14.1]

DOUBLE INTEGRALS

Course: Calculus (3) Lecture No: [32]



THE AREA PROBLEM

Given a function � that is continuous and

nonnegative on an interval [�, �], find the area

between the graph of � and the interval [�, �]
on the � −axis.

Divide the interval [�, �] into 	 equal

subintervals, and over each subinterval

construct a rectangle that extends from the

� −axis to any point on the curve 
 = �(�)
that is above the subinterval.



THE AREA PROBLEM

• For each 	, the total area of the rectangles can be

viewed as an approximation to the exact area under

the curve over the interval [�, �].

• Moreover, it is evident intuitively that as 	 increases

these approximations will get better and better and

will approach the exact area as a limit.

• That is, if � denotes the exact area under the curve

and �� denotes the approximation to � using 	
rectangles, then

� = lim�→� ��



THE AREA PROBLEM

� � � � ��∗ Δ��
�

���

� = lim�→� � � ��∗ Δ��
�

���

� � � ��
�

�
= lim�→� � � ��∗ Δ��

�

���



THE VOLUME PROBLEM

Given a function � of two variables that is continuous

and nonnegative on a region  in the �
 −plane, find

the volume of the solid enclosed between the surface

! = �(�, 
) and the region  .

The procedure for finding the volume V of the solid in

the figure will be similar to the limiting process used for

finding areas, except that now the approximating

elements will be rectangular parallelepipeds rather than

rectangles.



THE VOLUME PROBLEM

We proceed as follows:

• Using lines parallel to the coordinate axes, divide

the rectangle enclosing the region  into sub-

rectangles, and exclude from consideration all

those sub-rectangles that contain any points

outside of  .

• Assume that there are 	 such rectangles, and denote the area of the "th such

rectangle by Δ��.

• Choose any arbitrary point in each sub-rectangle, and denote the point in the "th
sub-rectangle by ��∗ , 
�∗ .



THE VOLUME PROBLEM

• As shown in the figure, the product � ��∗ , 
�∗ Δ��
is the volume of a rectangular parallelepiped with

base area Δ�� and height � ��∗ , 
�∗ .

• So the following sum can be viewed as an

approximation to the volume V of the entire solid.

% � � � ��∗ , 
�∗ Δ��
�

���

% = lim�→� � � ��∗ , 
�∗ Δ��
�

���
& � �, 
 ��
'

= lim�→� � � ��∗ , 
�∗ Δ��
�

���
which is called the double integral of �(�, 
)
over  .



EVALUATING DOUBLE INTEGRALS

• The partial derivatives of a function �(�, 
) are calculated by holding one of the

variables fixed and differentiating with respect to the other variable.

• Let us consider the reverse of this process, partial integration.

� � �, 
 ��
�

�

 The partial definite integral with

respect to (.

 Is evaluated by holding 
 fixed

and integrating with respect to �.

� � �, 
 �

)

*

 The partial definite integral with

respect to +.

 Is evaluated by holding � fixed

and integrating with respect to 
.



EVALUATING DOUBLE INTEGRALS

Example (1) � �
,��
�

-
= 
, � ���

�

-
= 
,�,

2 /
-

�
= 
,

2

(2) � �
,�

�

-
= � � 
,�


�

-
= �
0

3 /
-

�
= �

3

• A partial definite integral with respect to � is a function of 
 and hence

can be integrated with respect to 
.

• A partial definite integral with respect to 
 can be integrated with respect

to �.

• This two-stage integration process is called iterated (or repeated)

integration.

NOTE



EVALUATING DOUBLE INTEGRALS

• We introduce the following notation:

� � � �, 

�

�
��

)

*
�
 = � � � �, 
 ��

�

�
�


)

*

� � � �, 

)

*
�


�

�
�� = � � � �, 
 �


)

*
��

�

�
• These integrals are called iterated integrals.



EVALUATING DOUBLE INTEGRALS

Example Evaluate � � 40 − 2�
 �
��
4

,

0

�

� � 40 − 2�
 �
��
4

,

0

�
= � � 40 − 2�
 �


4

,
��

0

�

= � 40
 − �
, ],4��
0

�

= � 160 − 16� − 80 − 4� ��
0

�
= � 80 − 12� ��

0

�
= 112



EVALUATING DOUBLE INTEGRALS

Homework Evaluate � � 40 − 2�
 ���

0

�

4

,

Fubini’s Theorem

Let R be the rectangle defined by = �, 
 ∶  � ≤ � ≤ � , ; ≤ 
 ≤ �= �, � × ;, �
If �(�, 
) is continuous on this rectangle, then

& � �, 
 ��
'

= � � � �, 
 �
��
)

*

�

�
= � � � �, 
 ���


�

�

)

* � �
;
�

= 112



EVALUATING DOUBLE INTEGRALS

Example Use a double integral to find the volume of the solid that is bounded above

by the plane � = 4 − � − � and below by the rectangle � = [0, 1] × [0, 2].

� � 4 − � − � ����
�

�

�

�
= � � 4 − � − � ��

�

�
��

�

�

= � 4� − �� − ��
2 �

�

�
��

�

�

= � 6 − 2� ��
�

�
= 5

� = � 4 − � − � ��
�

=

= � � 4 − � − � ����
�

�

�

�



PROPERTIES OF DOUBLE INTEGRALS

� �� �, � ��
�

= � � � �, � ��
�

� constant

� � �, � ± % �, � ��
�

= � � �, � ��
�

± � % �, � ��
�

� � �, � ��
�

= � � �, � ��
�&

+ � � �, � ��
�(



PROPERTIES OF DOUBLE INTEGRALS

NOTE If � = ), * × �, � is a rectangular region, and � �, � = % � ℎ � , then

� � �, � ��
�

= � % � ℎ � ��
�

= � % � ��
,

-
� ℎ � ��

.

/

Example � � 0123
�

�
����

�

�
= � � 0103

�

�
����

�

�

= � 01��
�

�
� 03��

�

�
= 0� − 1 0 − 1



EXERCISE SET 14.1 QUESTION 33

Homework Evaluate the integral by choosing a convenient order of integration:

� � cos �� cos� 4� ��
�

   ;    � = 0, �� × 0, 41
34 =



Chapter: [14]

MULTIPLE INTEGRALS

Section: [14.2]

DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Course: Calculus (3) Lecture No: [33]



ITERATED INTEGRALS WITH NONCONSTANT LIMITS OF INTEGRATION

In this section we will see that double integrals over nonrectangular regions can

often be evaluated as iterated integrals

Example � � ���
1(

71
����

�

�
= � � ���

1(

71
�� ��

�

�
= � ��8

3 �
71

1(
��

�

�

= � �9
3 + �:

3 ��
�

�
= �;

24 + �<
15 �

�

�
= 13

120



ITERATED INTEGRALS WITH NONCONSTANT LIMITS OF INTEGRATION

Example � � � sin �
>?@ 3

�
����

A 8⁄

�
= � � � sin �

>?@ 3

�
�� ��

A 8⁄

�

= � �� sin �
2 �

�

>?@ 3
��

A 8⁄

�

= � 1
2 cos� � sin � ��

A 8⁄

�

Let C = cos �
By Substitution

�C
�� = − sin �
�� = − �C

sin �
� = 4 3⁄ C = 1 2⁄

� = 0 C = 1

= − 1
2 � C� sin � �C

sin �
� �⁄

�

= 1
2 � C��C

�

� �⁄
= C8

6 �
� �⁄

�
= 7

48



DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Type I Region

is bounded on the left and right by

vertical lines � = ) and � = * and is

bounded below and above by continuous

curves � = %�F�G and � = %�F�G, where%�F�G H %�F�G for ) H � H *.

Type II Region

is bounded below and above by

horizontal lines � = � and � = �
and is bounded on the left and right

by continuous curves � = ℎ�F�G and� = ℎ� � satisfying ℎ�F�G H ℎ�F�G
for � H � H  �



DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

1) If � is a type I region on which �F�, �G is continuous, then

� � �, � ��
�

= � � � �, � ����
I( 1

I& 1

,

-

2) If � is a type II region on which �F�, �G is continuous, then

� � �, � ��
�

= � � � �, � ����
J( 3

J& 3

.

/



DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate over the region � enclosed between � = �
� �, � = �,� ����

�� = 2 and � = 4.

� ����
�

= � � ������
1

1 �⁄

:

�

Type I Region

= � � ����
1

1 �⁄
��

:

�

= � ���
2 �

1 �⁄

1
��

:

�
= � ��

2 − �8
8 ��

:

�
= 11

6



DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate over the triangular region � enclosed� 2� − �� �	



between the lines � = −� + 1, � = � + 1, and � = 3.

Type II Region� 2� − �� �	



= � � 2� − �� ����
���

���

�

�

= ��� − �������
�����

�

�

= � 2�� − 2�� ��
�

�
= − 68

3



DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate over the triangular region � enclosed� 2� − �� �	



between the lines � = −� + 1, � = � + 1, and � = 3.

Type I Region� 2� − �� �	





DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate over the triangular region � enclosed� 2� − �� �	



between the lines � = −� + 1, � = � + 1, and � = 3.

Type I Region� 2� − �� �	



= � 2� − �� �	

�

+ � 2� − �� �	

�

= � � 2� − �� ����
�

����

�

��
+ � � 2� − �� ����

�

���

�

�



DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate � � �������
�

� �⁄

�

�

Since there is no elementary antiderivative of ���
,

the integral cannot be evaluated by performing

the � −integration first.

We will try to evaluate this integral by expressing

it as an equivalent iterated integral with the order

of integration reversed.

� = 2�
� = 2

� = 2�

� = 1



DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate � � �������
�

� �⁄

�

�
� = 2

� = 2�

� = 1

� � �������
�

� �⁄

�

�
= � � �������

��

�

�

�
= � � �����

��

�
��

�

�

= �������
����

�

�

= � 2������
�

�
= � ��� 

�

�
= � − 1

By Substitution

Let  = ��



AREA CALCULATED AS A DOUBLE INTEGRAL

Example

Use a double integral to find the area of the

region � enclosed between the parabola � = �
� ��

and the line � = 2�.



AREA CALCULATED AS A DOUBLE INTEGRAL

Example Use a double integral to find the area of the

region � enclosed between the parabola � = �
� ��

and the line � = 2�.

Area of � = � �	



= � � ����
��

� �⁄

(

�

(Type II Region)

= ���� �⁄
�� ��

(

�

= � 2� − �
2  ��

(

�
= 16

3



AREA CALCULATED AS A DOUBLE INTEGRAL

Example Use a double integral to find the area of the

region � enclosed between the parabola � = �
� ��

and the line � = 2�.

Area of � = � �	



= � � ����
��

�� �⁄

)

�

(Type I Region)

= ����� �⁄��  ��
)

�

= � 2� − ��
2  ��

)

�
= 16

3



EXERCISE SET 14.2



Chapter: [14]

MULTIPLE INTEGRALS

Section: [14.3]

DOUBLE INTEGRALS IN POLAR COORDINATES

Course: Calculus (3) Lecture No: [35]



SIMPLE POLAR REGIONS

• Some double integrals are easier to evaluate if the region of integration is expressed

in polar coordinates.

• This is usually true if the region is bounded by any curve whose equation is simpler

in polar coordinates than in rectangular coordinates.

• Example: Consider the quarter-disk �� � �� � 4 in the first quadrant shown below.

Rectangular

Coordinates

0 � � � 2
0 � � � 4 
 ��

Polar

Coordinates

� � �
� � �

0 � � � 2
0 � � � 
 2⁄

� � 4 
 ��

� � 0

� � 2

� � 0∘

� � 90∘



SIMPLE POLAR REGIONS

• Double integrals whose integrands involve �� � �� also tend to be easier to evaluate

in polar coordinates because this sum simplifies to �� when the conversion formulas� � � cos � and � � � sin � are applied.

• The figure below shows a region � in a polar coordinate system that is enclosed

between two rays, � � � and � � �, and two polar curves, � � �� � and � � �� � .

• If the functions �� � and �� � are continuous and their graphs do not cross, then

the region � is called a simple polar region.



DOUBLE INTEGRALS IN POLAR COORDINATES

NOTE A polar rectangle is a simple polar region

for which the bounding polar curves are

circular arcs.

Theorem If � is a simple polar region whose

boundaries are the rays � � � and � � �
and the curves � � �� � and � � �� � ,

and if � �, � is continuous on �, then

� � �, � ��
�

�   � �, �  �����
"#$%&

"' %

(

)



DOUBLE INTEGRALS IN POLAR COORDINATES

Example Find the volume of the solid bounded by the cylinder �� � �� � 4 and

the plane � � * � 4.

+ � � 4 
 � ��
�

�   4 
 � sin �  �����
�

,

�-

,

�   4� 
 �� sin �  ��
�

,
��

�-

,

�  2�� 
 1
3 �0 sin � 1

,

�
��

�-

,
�  8 
 8

3 sin � ��
�-

,
� 8� � 8

3 cos � 1
,

�-
� 16




DOUBLE INTEGRALS IN POLAR COORDINATES

Example Evaluate   �� � �� 0 �⁄ ����
�45#

,

�

4�

  �� � �� 0 �⁄ ����
�45#

,

�

4�
�   �� 0 �⁄ �����

�

,

-

,

�   �6����
�

,

-

,
�  1

5 ��
-

,
� 


5



DOUBLE INTEGRALS IN POLAR COORDINATES

Example Evaluate � 1
1 � �� � �� ��

�
first quadrant bounded by � � 0, � � �, �� � �� � 1 and �� � �� � 4.

where � is the region in the

� � �

1 2

� 1
1 � �� � �� ��

�
�   1

1 � ��  �����
�

�

- 6⁄

,

tan � � �
� � �

� � 1
� � 


4

�   �
1 � �� ��

�

�
��

- 6⁄

,



DOUBLE INTEGRALS IN POLAR COORDINATES

Example Evaluate � 1
1 � �� � �� ��

�
first quadrant bounded by � � 0, � � �, �� � �� � 1 and �� � �� � 4.

where � is the region in the

� � �

1 2

� 1
1 � �� � �� ��

�
�   1

1 � ��  �����
�

�

- 6⁄

,

tan � � �
� � �

� � 1
� � 


4

�  1
2  2�

1 � �� ��
�

�
��

- 6⁄

,
�  1

2 ln 1 � �� 1
�

�
��

- 6⁄

,

�  1
2 ln 5

2 ��
- 6⁄

,
� 


8 ln 5
2



DOUBLE INTEGRALS IN POLAR COORDINATES

Example Use a double-integral to show that the area of the region � shown is
;-
� .

Area of � � � ��
�

�   �����
0

,

�- 0⁄

4- 0⁄

� � 
 3�

Arc of a circle of

radius 3 (centered

at origin)

�



DOUBLE INTEGRALS IN POLAR COORDINATES

Example Use a double-integral to show that the area of the region � shown is
;-
� .

Area of � � � ��
�

�   �����
0

,

�- 0⁄

4- 0⁄

� � 
 3�

Arc of a circle of

radius 3 (centered

at origin)

�

tan � � �
� � 
 3�

� � 
 3
� � 
 


3

� � 
 

3 � 


�   ���
0

,
��

�- 0⁄

4- 0⁄
�  ��

2 1
,

0
��

�- 0⁄

4- 0⁄

�  9
2 ��

�- 0⁄

4- 0⁄
� 9

2 �1
4- 0⁄

�- 0⁄
� 9


2



DOUBLE INTEGRALS IN POLAR COORDINATES

Example Evaluate  @45#��
A

,
� B

B� �  @45#��
A

,

�
�  @45#��

A

,
 @45#��
A

,

�  @45#��
A

,
 @4C#��
A

,

�   @45#@4C#����
A

,

A

,
�   @4 5#DC# ����

A

,

A

,



DOUBLE INTEGRALS IN POLAR COORDINATES

Example Evaluate  @45#��
A

,
� B

B� �   @4 5#DC# ����
A

,

A

,
�   @4"#�����

A

,

- �⁄

,

�   � @4"#��
A

,
��

- �⁄

,
By substitution. Let E � ��.

�  
1
2 @4F1

,

A
��

- �⁄

,
�  1

2 ��
- �⁄

,
� 


4

∴ H �  I4JKLJ
A

M
� N

K

�   1
2 @4F�E

A

,
��

- �⁄

,



DOUBLE INTEGRALS IN POLAR COORDINATES

Example Use a double-integral to show that the area of the region � shown is
��
� .

Area of � = 
 ��
�

= � � �����
�

�

�� �⁄

�� �⁄

� = − 3�

Arc of a circle of

radius 3 (centered

at origin)

�



DOUBLE INTEGRALS IN POLAR COORDINATES

Example Use a double-integral to show that the area of the region � shown is
��
� .

Area of � = 
 ��
�

= � � �����
�

�

�� �⁄

�� �⁄

� = − 3�

Arc of a circle of

radius 3 (centered

at origin)

�

tan � = �
� = − 3�

� = − 3
� = − �

3

� = − �
3 + �

= � � ���
�

�
��

�� �⁄

�� �⁄
= � ��

2 !
�

�
��

�� �⁄

�� �⁄

= � 9
2 ��

�� �⁄

�� �⁄
= 9

2 �!
�� �⁄

�� �⁄
= 9�

2



DOUBLE INTEGRALS IN POLAR COORDINATES

Example Evaluate � #�$%��
&

�
= '

'� = � #�$%��
&

�

�
= � #�$%��

&

�
� #�$%��
&

�

= � #�$%��
&

�
� #�(%��
&

�

= � � #�$%#�(%����
&

�

&

�
= � � #� $%)(% ����

&

�

&

�



DOUBLE INTEGRALS IN POLAR COORDINATES

Example Evaluate � #�$%��
&

�
= '

'� = � � #� $%)(% ����
&

�

&

�
= � � #�*%�����

&

�

� �⁄

�

= � � � #�*%��
&

�
��

� �⁄

�
By substitution. Let + = ��.

= � −1
2 #�-!

�

&
��

� �⁄

�
= � 1

2 ��
� �⁄

�
= �

4

∴ 0 = � 1�2342
&

5
= 6

3

= � � 1
2 #�-�+

&

�
��

� �⁄

�



Chapter: [14]

MULTIPLE INTEGRALS

Section: [14.5]

Triple Integral [Iterated Method]

Course: Calculus (3) Lecture No: [36]



EVALUATING TRIPLE INTEGRALS OVER RECTANGULAR BOXES

Let 7 be the rectangular box defined by the inequalities

8 ≤ � ≤ : , < ≤ � ≤ � , = ≤ > ≤ ℓ
If @ is continuous on the region 7, then

A @ �, �, > �B
C

= � � � @ �, �, > �>����
ℓ

D

E

F

G

H
Moreover, the iterated integral on the right can be replaced with any of the five other

iterated integrals that result by altering the order of integration.



EVALUATING TRIPLE INTEGRALS OVER RECTANGULAR BOXES

Example Evaluate the triple integral A 12���>��B
C

over the rectangular box

7 = −1,2 × 0,3 × 0,2

A 12���>��B =
C

� � � 12���>��>����
�

�

�

�

�

�K
= � � � 12���>��>

�

�
����

�

�

�

�K

= � � 48�������
�

�

�

�K
= � 432���

�

�K
= 648

A 12���>��B =
C

12 � ���
�

�K
� ����

�

�
� >��>

�

�
= 648



EVALUATING TRIPLE INTEGRALS OVER MORE GENERAL REGIONS

Example Evaluate � � � > �>����
K�(%

�

(

�

K

�

� � � > �>����
K�(%

�

(

�

K

�
= � � 1

2 >�!
�

K�(%
����

(

�

K

�
= � � 1

2 1 − �� ����
(

�

K

�

= � 1
2 1 − �� �!

�

(
��

K

�
= � 1

2 1 − �� ���
K

�

= 1
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