

Philadelphia University **Department of Basic Sciences and Mathematics**

Academic Year:	2017-2018	Course Name:	ODEs
Semester:	Second Semester	Course Number:	250203
Exam:	1	Instructor Name:	Feras Awad
Exam Date:	29/03/2018	Student Name:	
Exam Day:	Thursday	University ID:	
Mark:	[20+2]	Section:	[1]

Question ONE: (8 points) Write the symbol of the correct answer in the blank.

- 1. The differential equation $y'' + 2y' + 3x = \sin y$ is
 - (A) 1st order, linear

(B) 1st order, nonlinear

(C) 2nd order, linear

- (D) 2nd order, nonlinear
- 2. The set of values of m, for which $y = e^{mx}$ is solution to y'' 5y' + 6y = 0, is

 - (A) $\{2,3\}$ (B) $\{-2,-3\}$ (C) $\{1,5\}$
- 3. The solution of the initial value problem y' = xy; y(0) = 3 is

(A)
$$y = 2e^{x^2/3}$$
 (B) $y = 3 + e^x$ (C) $y = 3e^{x^2/2}$ (D) $y = 3e^{x^2}$

(B)
$$y = 3 + e^x$$

(C)
$$y = 3e^{x^2/2}$$

(D)
$$y = 3e^{x^2}$$

- 4. $\Big[\ \ \Big]$ The differential equation $(x^2+y^2)\,y'=xy$ is
 - (A) Bernoulli

(B) Exact

(C) Homogeneous

(D) Separable

Question TWO: (2 points)

Consider the initial value problem y' = x - 2y; $y(0) = \frac{1}{2}$. Determine which of the two curves shown in the figure is the possible solution curve. Explain your reasoning.

......

Consi	Stion THREE: der the differential equation $(2x^2 + y) dx + (x^2y - x) dy = 0$. (1 point) Show that the equation is NOT exact.		
(u)	(1 point) show that the equation is 110 1 state.		
(b)	(2 points) Find a special integrating factor that transforms the differential equation to exact equation.		
(c)	(4 points) Multiply the differential equation by the integrating factor from (b), then solve the resulting exact equation.		

Question FOUR : (5 points) Solve		
	$\frac{dy}{dx} - 5y = -\frac{5}{2}xy^3.$	(*)