Philadelphia University Department of Basic Sciences and Mathematics

Final Exam	Ordinary Differential Equations		31-1-2016
Name:	Number:	Serial:	Section: (1)

Question ONE : (12 points) Write the symbol of the correct answer.

[] Any linear nth-order initial value problem has
 (A) exactly n solutions
 (B) infinitely many solutions
 (C) exactly one solution
 (D) None of all

(A) $\frac{2}{x} - 1$ (B) $-1 - \frac{2}{x}$ (C) $1 - \frac{2}{x}$ (D) $1 - \frac{1}{x}$

3. $\begin{bmatrix} \\ \\ \\ \end{bmatrix}$ The Laplace transform of $f(t) = e^{2t} \cos(\sqrt{3}t)$ is (A) $\frac{p-2}{(p-2)^2+9}$ (B) $\frac{\sqrt{3}}{(p-2)^2+3}$ (C) $\frac{p-2}{p^2+3}$ (D) $\frac{p-2}{(p-2)^2+3}$

5. $\begin{bmatrix} \\ \\ \\ \end{bmatrix}$ Which one of the following is a form of the particular solution of the second – order differential equation $y'' - 4y' + 4y = xe^{2x}$? (A) Axe^{2x} (B) $x^2e^{2x}(Ax+B)$ (C) $xe^{2x}(Ax+B)$ (D) Ax^2e^{2x}

6.
$$\begin{bmatrix} \\ \\ \\ \end{bmatrix}$$
 The differential operator that annihilates the function $xe^{-2x} + xe^{-5x} \sin 3x$ is
(A) $(D+2)^2 [(D+5)^2 + 9]^2$ (B) $(D+2)^2 [(D+3)^2 + 25]^2$
(C) $(D+2)^2 [(D+3)^2 + 9]^2$ (D) $(D+2)^2 [(D+5)^2 + 9]$

MR. FERAS AWAD JANUARY 23, 2016 **Question TWO : (3 points)** Find the inverse Laplace transform for the function

$$F(p) = \frac{2p - 1}{p^2 - 4p + 6}$$

Question THREE : (4 points) Solve the nonlinear equation $y'' + (y')^2 + 1 = 0$.

Question FOUR : (5 points) Solve the following initial value problem using the method of Laplace transforms.

$$y'' + 4y' + 4y = t^2 e^t$$
; $y(0) = y'(0) = 0$.

Question FIVE : (5 points) Solve the given system of differential equations by systematic elimination.

$$\frac{dx}{dt} = 2x - y$$
$$\frac{dy}{dt} = x$$

Question SIX : (5 points) Find a power series solution $\sum_{n=0}^{\infty} c_n x^n$ of the differential equation y' = xy.

Question SEVEN : (3 points) Solve the Cauchy–Euler equation $x^2y'' - 3xy' - 2y = 0$.

Question EIGHT : (5 points) Solve the equation $y'' + y = \sec x$ by variation of parameters.