

Philadelphia University Department of Basic Sciences and Mathematics

Academic Year:	2015-2016	Course Name:	Experimental Design
Semester:	Summer Semester	Course Number:	250331
Exam:	1	Instructor Name:	Feras Awad
Exam Date:	31/07/2016	Student Name:	
Exam Date: Exam Day:	31/07/2016 Sunday	Student Name: University ID:	

Question ONE: Write the symbol of the most correct answer in the blank.

- 1. A population contains 8 members. The total number of samples of size 6 that you can select (without replacement) from this population is:
- (A) 28 (B) 48 (C) 63 (D) 56
- 2. The mean age of all cars registered in the United States is 7.7 years. The mean age of a random sample of 1000 cars is 7.5. The sampling error is:
- (A) -0.1 (B) 0.1 (C) 0.2 (D) -0.2
- 3. For a random variable, the population mean and the population standard deviation are 79 and 14, respectively. Assuming the population is normally distributed, the standard deviation of the sampling distribution of the sample mean for a sample of 16 elements taken from this population, rounded to two decimals, is:
- (A) 4.5 (B) 0.88 (C) 2.81 (D) 3.5
- 4. If the population from which samples are drawn is normally distributed, then the sampling distribution of the sample mean is:

(A) not normally distributed	(B) always normally distributed
(C) normally distributed if $n \ge 30$	(D) normally distributed if $n \leq 30$

5. [] The value of *t* for 19 degrees of freedom and a 98% confidence interval is:
(A) 2.861 (B) 2.539 (C) 2.845 (D) 2.552

Time: 50 Minutes

Form A

6. The values assigned to a population parameter based on the value(s) of a sample statistic are:

(A) the probabilities	(B) the probability distribution
(C) a sampling distribution	(D) estimate(s)

7. $\begin{bmatrix} & \\ & \\ & \end{bmatrix}$ A sample of size 225 from a population having standard deviation $\sigma = 3$ produced a mean of 41. The 99% confidence interval for the population mean (rounded to two decimal places) is:

(A) [40.49,41.51] (B) [40.53,41.47] (C) [40.74,41.26] (D) [40.67,41.33]

8. [] The standard IQ test has a mean of 96 and a standard deviation of 14. We want to be 90% certain that we are within 4 IQ points of the true mean. Determine the required sample size.

(A) 10 (B) 82 (C) 34 (D) 178

9. Find the value of *E*, the margin of error, for c = 0.99, n = 16 and s = 2.6.

- (A) 1.92 (B) 0.48 (C) 1.69 (D) 1.45
- - (A) $\overline{x} = 16, E = 8$ (B) $\overline{x} = 16, E = 4$ (C) $\overline{x} = 12, E = 8$ (D) $\overline{x} = 20, E = 4$
- 11. A researcher wishes to estimate the number of households with two cars. How large a sample is needed in order to be 95% confident that the sample proportion will not differ from the true proportion by more than 5%? **Note:** A previous study indicates that the proportion of households with two cars is 22%.

(A) 339 (B) 113 (C) 264 (D) 186

Time: 50 Minutes

Form A

Table 4 — Standard Normal Distribution

z	.09	.08	.07	.06	.05	.04	.03	.02	.01	.00
- 3.4	.0002	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003
- 3.3	.0003	.0004	.0004	.0004	.0004	.0004	.0004	.0005	.0005	.0005
- 3.2	.0005	.0005	.0005	.0006	.0006	.0006	.0006	.0006	.0007	.0007
- 3.1	.0007	.0007	.0008	.0008	.0008	.0008	.0009	.0009	.0009	.0010
- 3.0	.0010	.0010	.0011	.0011	.0011	.0012	.0012	.0013	.0013	.0013
- 2.9	.0014	.0014	.0015	.0015	.0016	.0016	.0017	.0018	.0018	.0019
- 2.8	.0019	.0020	.0021	.0021	.0022	.0023	.0023	.0024	.0025	.0026
- 2.7	.0026	.0027	.0028	.0029	.0030	.0031	.0032	.0033	.0034	.0035
-2.6	.0036	.0037	.0038	.0039	.0040	.0041	.0043	.0044	.0045	.0047
- 2.5	.0048	.0049	.0051	.0052	.0054	.0055	.0057	.0059	.0060	.0062
- 2.4	.0064	.0066	.0068	.0069	.0071	.0073	.0075	.0078	.0080	.0082
- 2.3	.0084	.0087	.0089	.0091	.0094	.0096	.0099	.0102	.0104	.0107
- 2.2	.0110	.0113	.0116	.0119	.0122	.0125	.0129	.0132	.0136	.0139
- 2.1	.0143	.0146	.0150	.0154	.0158	.0162	.0166	.0170	.0174	.0179
-2.0	.0183	.0188	.0192	.0197	.0202	.0207	.0212	.0217	.0222	.0228
- 1.9	.0233	.0239	.0244	.0250	.0256	.0262	.0268	.0274	.0281	.0287
- 1.8	.0294	.0301	.0307	.0314	.0322	.0329	.0336	.0344	.0351	.0359
- 1.7	.0367	.0375	.0384	.0392	.0401	.0409	.0418	.0427	.0436	.0446
- 1.6	.0455	.0465	.0475	.0485	.0495	.0505	.0516	.0526	.0537	.0548
- 1.5	.0559	.0571	.0582	.0594	.0606	.0618	.0630	.0643	.0655	.0668
- 1.4	.0681	.0694	.0708	.0721	.0735	.0749	.0764	.0778	.0793	.0808
- 1.3	.0823	.0838	.0853	.0869	.0885	.0901	.0918	.0934	.0951	.0968
- 1.2	.0985	.1003	.1020	.1038	.1056	.1075	.1093	.1112	.1131	.1151
- 1.1	.1170	.1190	.1210	.1230	.1251	.1271	.1292	.1314	.1335	.1357
- 1.0	.1379	.1401	.1423	.1446	.1469	.1492	.1515	.1539	.1562	.1587
-0.9	.1611	.1635	.1660	.1685	.1711	.1736	.1762	.1788	.1814	.1841
-0.8	.1867	.1894	.1922	.1949	.1977	.2005	.2033	.2061	.2090	.2119
-0.7	.2148	.2177	.2206	.2236	.2266	.2296	.2327	.2358	.2389	.2420
-0.6	.2451	.2483	.2514	.2546	.2578	.2611	.2643	.2676	.2709	.2743
-0.5	.2776	.2810	.2843	.2877	.2912	.2946	.2981	.3015	.3050	.3085
-0.4	.3121	.3156	.3192	.3228	.3264	.3300	.3336	.33/2	.3409	.3446
-0.3	.3483	.3520	.355/	.3594	.3632	.3669	.3/0/	.3745	.3783	.3821
-0.2	.3859	.389/	.3936	.39/4	.4013	.4052	.4090	.4129	.4168	.4207
-0.1	.4247	.4286	.4325	.4364	.4404	.4443	.4483	.4522	.4562	.4002
-0.0	.404	.4081	.4/21	.4/01	.4001	.4040	.4000	.4920	.4900	.5000

Critical Values

Table A-3, pp. 681–682 from *Probability and Statistics for Engineers and Scientists*, 6e by Walpole, Myers, and Myers. Copyright 1997. Reprinted by permission of Pearson Prentice Hall, Upper Saddle River, N.J.

Table 4—Standard Normal Distribution (continued)

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

Table 5—*t*-Distribution

	Level of					
	confidence, c	0.80	0.90	0.95	0.98	0.99
	One tail, α	0.10	0.05	0.025	0.01	0.005
d.f.	Two tails, $lpha$	0.20	0.10	0.05	0.02	0.01
1		3.078	6.314	12.706	31.821	63.657
2		1.886	2.920	4.303	6.965	9.925
3		1.638	2.353	3.182	4.541	5.841
4		1.533	2.132	2.776	3.747	4.604
5		1.476	2.015	2.571	3.365	4.032
6		1.440	1.943	2.447	3.143	3.707
7		1.415	1.895	2.365	2.998	3.499
8		1.397	1.860	2.306	2.896	3.355
9		1.383	1.833	2.262	2.821	3.250
10		1.372	1.812	2.228	2.764	3.169
11		1.363	1.796	2.201	2.718	3.106
12		1.356	1.782	2.179	2.681	3.055
13		1.350	1.771	2.160	2.650	3.012
14		1.345	1.761	2.145	2.624	2.977
15		1.341	1.753	2.131	2.602	2.947
16		1.337	1.746	2.120	2.583	2.921
17		1.333	1.740	2.110	2.567	2.898
18		1.330	1.734	2.101	2.552	2.878
19		1.328	1.729	2.093	2.539	2.861
20		1.325	1.725	2.086	2.528	2.845
21		1.323	1.721	2.080	2.518	2.831
22		1.321	1.717	2.074	2.508	2.819
23		1.319	1.714	2.069	2.500	2.807
24		1.318	1.711	2.064	2.492	2.797
25		1.316	1.708	2.060	2.485	2.787
26		1.315	1.706	2.056	2.479	2.779
27		1.314	1./03	2.052	2.4/3	2.//1
28		1.313	1./01	2.048	2.467	2./63
29		1.311	1.699	2.045	2.462	2./56
30		1.310	1.697	2.042	2.457	2.750
31		1.309	1.696	2.040	2.453	2.744
32		1.309	1.694	2.037	2.449	2./38
33		1.308	1.692	2.035	2.445	2./33
34		1.307	1.091	2.032	2.441	2.728
35		1.306	1.690	2.030	2.438	2.724
30		1.300	1.000	2.028	2.434	2./19
20		1.303	1.007	2.020	2.451	2./15
20		1.304	1.000	2.024	2.429	2./12
39		1.304	1.005	2.025	2.420	2.700
40		1.303	1.004	2.021	2.425	2.704
45		1.301	1.676	2.014	2.412	2.090
50 60		1.299	1.671	2.009	2.405	2.070
70		1.290	1.667	1 00/	2.390	2.000
80		1.294	1.664	1.994	2.301	2.040
00 QA		1.292	1.662	1.990	2.3/4	2.039
90		1.291	1.002	1.907	2.500	2.052
500		1 290	1.649	1.904	2.204	2.020
1000		1 205	1.646	1.905	2.334	2.500
×		1.282	1.645	1,960	2.326	2.576

c-confidence interval

Left-tailed test

Right-tailed test

Two-tailed test

The critical values in Table 5 were generated using Excel 2013.