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Sometimes we are interested in how a random 
variable changes over time.

The study of how a random variable evolves over 
time includes stochastic processes (عمليّة عشوائيّة).

An explanation of stochastic, a type of stochastic
process known as a Markov chain is included.

We begin by defining the concept of a stochastic
process.
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• Suppose we observe some characteristic of a system at discrete points in

time (labeled 0, 1, 2, . . .).

• Let 𝑋𝑡 be the value of the system characteristic at time 𝑡.

• In most situations, 𝑋𝑡 is not known with certainty before time 𝑡 and may be

viewed as a random variable.

• A discrete-time stochastic process is simply a description of the relation

between the random variables 𝑋0, 𝑋1, 𝑋2, ⋯ .

Stochastic Process



At time 0,
I have $2.

At times 1, 2,⋯, 
I play a game in 
which I bet 
.1$ (يراهن)

The Gambler’s Ruin Example [1]

With probability 𝑝, I
win the game,

and with probability
1 − 𝑝 , I lose the
game.

My goal is to increase my
capital ( المالرأس ) to $4,

and as soon as I do, the
game is over.

The game is also over if
my capital is reduced to
$0.

Define 𝑋𝑡 to be my capital position
after the time 𝑡 game (if any) is played.

𝑋0 = 2 𝑋1, 𝑋2, 𝑋3, ⋯



Choosing Balls Example [2]

A box contains two
unpainted balls at
present.

We choose a
ball at random
and flip a coin.

H

If the chosen ball is unpainted
and the coin comes up heads, we
paint the chosen unpainted ball
red.

T

if the chosen ball is unpainted
and the coin comes up tails, we
paint the chosen unpainted ball
black.

If the ball has already been
painted, then (whether heads
or tails has been tossed) we
change the color of the ball
(from red to black or from
black to red).

We define time 𝑡 to be the
time after the coin has been

flipped for the 𝑡th time and
the chosen ball has been
painted.



We define time 𝑡 to be the
time after the coin has been

flipped for the 𝑡th time and
the chosen ball has been
painted.

The state at any time may be
described by the vector

[ 𝒖 𝒓 𝒃 ]
number of
unpainted
balls

number of
black balls

number of
red balls

𝑋0 = 2 0 0

After the first coin toss

𝑋1 = 1 1 0 𝑋1 = 1 0 1or

If 𝑋𝑡 = 0 2 0 then

𝑋𝑡+1 = 0 1 1

Choosing Balls Example [2]

= 200

= 011



Continuous–Time Stochastic Process

• Is simply a stochastic process in which the state of the system

can be viewed at any time, not just at discrete instants in time.

• For example, the number of people in a supermarket 𝑡

minutes after the store opens for business may be viewed as a

continuous-time stochastic process.
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Definition

A discrete–time stochastic process is a Markov chain if, for 𝑡 = 0,1,2,⋯ and all
states,

𝑃 𝑋𝑡+1 = 𝑖𝑡+1 𝑋𝑡 = 𝑖𝑡 , 𝑋𝑡−1 = 𝑖𝑡−1, ⋯ , 𝑋1 = 𝑖1, 𝑋0 = 𝑖0
= 𝑃 𝑋𝑡+1 = 𝑖𝑡+1 𝑋𝑡 = 𝑖𝑡

(1)

• Equation (1) says that the probability distribution of the state at time 𝑡 + 1

depends on the state at time 𝑡 (𝑖𝑡) and does not depend on the states the

chain passed through on the way to it at time 𝑡.

• For all states 𝑖 and 𝑗 and all 𝑡, 𝑃 𝑋𝑡+1 = 𝑗 𝑋𝑡 = 𝑖 is independent of 𝑡. This

assumption allows us to write

𝑃 𝑋𝑡+1 = 𝑗 𝑋𝑡 = 𝑖 = 𝑝𝑖𝑗 (2)



Notes

If the system moves from
state 𝑖 during one period to
state 𝑗 during the next
period, we say that a
transition (انتقال) from 𝑖 to 𝑗

has occurred.

𝑝𝑖𝑗 is the probability that

given the system is in state 𝑖
at time 𝑡, it will be in a state 𝑗
at time 𝑡 + 1.

1

2

The 𝑝𝑖𝑗’s are often referred to as the transition

probabilities for the Markov chain.

3

• Equation (2) implies that the probability law
relating the next period’s state to the
current state does not change and remains
stationary over time.

• Any Markov chain that satisfies (2) is called a
stationary Markov chain.

4



Notes

We call the vector
q = 𝑞1 𝑞2 ⋯ 𝑞𝑠

the initial probability distribution
for the Markov chain.

We also must define 𝑞𝑖 to be the
probability that the chain is in state
𝑖 at the time 𝟎; in other words,
𝑃 𝑋0 = 𝑖 = 𝑞𝑖.

5

6

In most applications, the transition
probabilities are displayed as an 𝑠 × 𝑠
transition probability matrix P.

7

P =

𝑝11 𝑝12 ⋯ 𝑝1𝑠
𝑝21 𝑝22 ⋯ 𝑝2𝑠
⋮ ⋮ ⋱ ⋮
𝑝𝑠1 𝑝𝑠2 ⋯ 𝑝𝑠𝑠

0 ≤ 𝑝𝑖𝑗 ≤ 1

∀𝑖 = 1,2,⋯ , 𝑠෍

𝑗=1

𝑠

𝑝𝑖𝑗 = 1

∑ = 1

∑ = 1

⋮

∑ = 1



Example: The Gambler’s Ruin (Continued)

Find the transition matrix for Example 1.

0 1 2 3 4

0
1
2
3
4

1
1 − 𝑝
0
0
0

0
0

1 − 𝑝
0
0

0
𝑝
0

1 − 𝑝
0

0
0
𝑝
0
0

0
0
0
𝑝
1

𝑃 =

0 1 2 3 4

0
1
2
3
4

1
1 − 𝑝
0
0
0

0
0

1 − 𝑝
0
0

0
𝑝
0

1 − 𝑝
0

0
0
𝑝
0
0

0
0
0
𝑝
1

0 1 2 3 4

0
1
2
3
4

1
1 − 𝑝
0
0
0

0
0

1 − 𝑝
0
0

0
𝑝
0

1 − 𝑝
0

0
0
𝑝
0
0

0
0
0
𝑝
1

0 1 2 3 4

0
1
2
3
4

1
1 − 𝑝
0
0
0

0
0

1 − 𝑝
0
0

0
𝑝
0

1 − 𝑝
0

0
0
𝑝
0
0

0
0
0
𝑝
1

0 1 2 3 4

0
1
2
3
4

1
1 − 𝑝
0
0
0

0
0

1 − 𝑝
0
0

0
𝑝
0

1 − 𝑝
0

0
0
𝑝
0
0

0
0
0
𝑝
1

0 1 2 3 4

0
1
2
3
4

1
1 − 𝑝
0
0
0

0
0

1 − 𝑝
0
0

0
𝑝
0

1 − 𝑝
0

0
0
𝑝
0
0

0
0
0
𝑝
1

0 1 2 3 4

0
1
2
3
4

1
1 − 𝑝
0
0
0

0
0

1 − 𝑝
0
0

0
𝑝
0

1 − 𝑝
0

0
0
𝑝
0
0

0
0
0
𝑝
1

0 1 2 3 4

0
1
2
3
4

1
1 − 𝑝
0
0
0

0
0

1 − 𝑝
0
0

0
𝑝
0

1 − 𝑝
0

0
0
𝑝
0
0

0
0
0
𝑝
1

0 1 2 3 4

0
1
2
3
4

1
1 − 𝑝
0
0
0

0
0

1 − 𝑝
0
0

0
𝑝
0

1 − 𝑝
0

0
0
𝑝
0
0

0
0
0
𝑝
1

0 1 2 3 4

0
1
2
3
4

1
1 − 𝑝
0
0
0

0
0

1 − 𝑝
0
0

0
𝑝
0

1 − 𝑝
0

0
0
𝑝
0
0

0
0
0
𝑝
1

0 1 2 3 4

0
1
2
3
4

1
1 − 𝑝
0
0
0

0
0

1 − 𝑝
0
0

0
𝑝
0

1 − 𝑝
0

0
0
𝑝
0
0

0
0
0
𝑝
1

0 1 2 3 4

0
1
2
3
4

1
1 − 𝑝
0
0
0

0
0

1 − 𝑝
0
0

0
𝑝
0

1 − 𝑝
0

0
0
𝑝
0
0

0
0
0
𝑝
1

0 1 2 3 4

0
1
2
3
4

1
1 − 𝑝
0
0
0

0
0

1 − 𝑝
0
0

0
𝑝
0

1 − 𝑝
0

0
0
𝑝
0
0

0
0
0
𝑝
1

0 1 2 3 4

0
1
2
3
4

1
1 − 𝑝
0
0
0

0
0

1 − 𝑝
0
0

0
𝑝
0

1 − 𝑝
0

0
0
𝑝
0
0

0
0
0
𝑝
1

0 1 2 3 4

0
1
2
3
4

1
1 − 𝑝
0
0
0

0
0

1 − 𝑝
0
0

0
𝑝
0

1 − 𝑝
0

0
0
𝑝
0
0

0
0
0
𝑝
1

A transition matrix may be represented
by a graph in which each node
represents a state and arc (𝑖, 𝑗)
represents the transition probability 𝑝𝑖𝑗.

0 1 2 3 4

1 − 𝑝

𝑝

1 − 𝑝

𝑝

1 − 𝑝

𝑝

1 1



Example: Choosing Balls (Continued)

Find the transition matrix for Example 2.

𝑃 =

200 110 101 011 020 002
200
110
101
011
020
002

0
0
0
0
0
0

0.50
0

0.50
0
0
0

0.50
0.50
0
0
0
0

0
0.25
0.25
0
1
1

0
0.25
0

0.50
0
0

0
0

0.25
0.50
0
0

𝑃 101 200 = 𝑃 Unpaint ∩ Tail = 1 × 0.5 = 0.5

𝑃 011 101 = 𝑃 Unpaint ∩ Head = 0.5 × 0.5 = 0.25

200 110 020

101 011

002
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The Idea

A question of interest when studying a Markov chain is

If a Markov chain is in a state 𝑖 at time 𝑚, what is the probability
that 𝑛 periods later than the Markov chain will be in state 𝑗?

Time 0 Time 1 Time 2

1

2

k

s

i ⋮

⋮

𝑝𝑖1

𝑝𝑖2

𝑝𝑖𝑘

𝑝𝑖𝑠

j

𝑝1𝑗

𝑝2𝑗

𝑝𝑘𝑗

𝑝𝑠𝑗

𝑃𝑖𝑗 2 = 𝑝𝑖1𝑝1𝑗 + 𝑝𝑖2𝑝2𝑗 +⋯𝑝𝑖𝑠𝑝𝑠𝑗

?
=

Row 𝒊 of 𝑷 Column 𝒋 of 𝑷 Element 𝒑𝒊𝒋 of 𝑷𝟐

For 𝑛 > 1: 𝑃𝑖𝑗 𝑛 = 𝑖𝑗th element of 𝑃𝑛.



The Idea

This probability will be independent of 𝑚, so we may write
𝑃 X𝑚+𝑛 = 𝑗 X𝑚 = 𝑖 = 𝑃 X𝑛 = 𝑗 X0 = 𝑖

= 𝑃𝑖𝑗 𝑛

where 𝑃𝑖𝑗 𝑛 is called the 𝑛 −step probability of a transition from state 𝑖 to

state 𝑗.

𝑃𝑖𝑗 0 = ቊ
1 : 𝑖 = 𝑗
0 : 𝑖 ≠ 𝑗

P𝑛 = P P𝑛−1

= P𝑛−1 P
P𝑛 = P𝑛−𝑚 P𝑚

= P𝑚 P𝑛−𝑚 ; 0 < 𝑚 < 𝑛



The Cola Example

Suppose the entire cola industry produces only two colas. Given that a
person last purchased cola 1, there is a 90% chance that her next purchase
will be cola 1. Given that a person last purchased cola 2, there is an 80%
chance that her next purchase will be cola 2.

1. If a person is currently a cola 2
purchaser, what is the probability
that she will purchase cola 1 two
purchases from now?

State 1 =

person has last purchased cola 2

person has last purchased cola 1

State 2 =

Cola 1 Cola 2

Cola 1
Cola 2

ቈ
0.90
0.20

ቃ
0.10
0.80

𝑃 =

𝑃2 =
0.9 0.1
0.2 0.8

0.9 0.1
0.2 0.8

=
0.83 0.17
0.34 0.66

𝑃 X2 = 1 X0 = 2 = 𝑃21 2 = 0.34



The Cola Example

Suppose the entire cola industry produces only two colas. Given that a
person last purchased cola 1, there is a 90% chance that her next purchase
will be cola 1. Given that a person last purchased cola 2, there is an 80%
chance that her next purchase will be cola 2.

2. If a person is currently a cola 1
purchaser, what is the probability
that she will purchase cola 1 three
purchases from now?

State 1 =

person has last purchased cola 2

person has last purchased cola 1

State 2 =

Cola 1 Cola 2

Cola 1
Cola 2

ቈ
0.90
0.20

ቃ
0.10
0.80

𝑃 =

𝑃2 =
0.83 0.17
0.34 0.66

𝑃 X3 = 1 X0 = 1 = 𝑃11 3 = 0.781

𝑃3 =
0.9 0.1
0.2 0.8

0.83 0.17
0.34 0.66

=
0.781 0.219
0.438 0.562



Note

• In many situations, we do not know the state of the Markov chain at time 0.

• As defined in Section 17.2, let 𝑞𝑖 be the probability that the chain is in state

𝑖 at time 0.

• Then we can determine the probability that the system is in state 𝑖 at time 𝑛

by using the following formula:

Probability of
being in state
𝑗 at time 𝑛

=

1

2

k

s

⋮

⋮

j

𝑃1𝑗 𝑛

𝑃2𝑗 𝑛

𝑃𝑘𝑗 𝑛

𝑃𝑠𝑗 𝑛

⋮
⋮

⋮
⋮

𝑞1

𝑞2

𝑞𝑘

𝑞𝑠

෍

𝑖=1

𝑠

𝑞𝑖𝑃𝑖𝑗 𝑛

= 𝑞1 𝑞2 ⋯ 𝑞𝑠
Column
𝑗 of 𝑃𝑛

= q
Column
𝑗 of 𝑃𝑛



The Cola Example (Continue)

Suppose the entire cola industry produces only two colas. Given that a
person last purchased cola 1, there is a 90% chance that her next purchase
will be cola 1. Given that a person last purchased cola 2, there is an 80%
chance that her next purchase will be cola 2.

Suppose 60% of all people now drink
cola 1, and 40% now drink cola 2. Three
purchases from now, what fraction of
all purchasers will be drinking cola 1?

Cola 1 Cola 2

Cola 1
Cola 2

ቈ
0.90
0.20

ቃ
0.10
0.80

𝑃 =

𝑃3 =
0.781 0.219
0.438 0.562

q = 0.6 0.4Prob. = 0.6 0.4
0.781
0.438

= 0.6438



The Cola Example (For Large 𝒏)

Suppose the entire cola industry produces only two colas. Given that a
person last purchased cola 1, there is a 90% chance that her next purchase
will be cola 1. Given that a person last purchased cola 2, there is an 80%
chance that her next purchase will be cola 2.

To illustrate the behavior of the 𝑛 −step
transition probabilities for large values
of 𝑛, we have computed several of the 𝑛
−step transition probabilities for the
Cola example in the following table.
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Classifications

We use the following transition matrix to
illustrate the following definitions.

𝑃 =

0.4 0.6 0 0 0
0.5 0.5 0 0 0
0 0 0.3 0.7 0
0 0 0.5 0.4 0.1
0 0 0 0.8 0.2

1 2

4

53

DEFINITION [1]

Given two states 𝑖 and 𝑗, a path from 𝑖 to 𝑗 is a
sequence of transitions that begins in 𝑖 and ends
in 𝑗, such that each transition in the sequence
has a positive probability of occurring.

For example, 3 − 4 − 5 is a path from 3 to 5.



Classifications

We use the following transition matrix to
illustrate the following definitions.

𝑃 =

0.4 0.6 0 0 0
0.5 0.5 0 0 0
0 0 0.3 0.7 0
0 0 0.5 0.4 0.1
0 0 0 0.8 0.2

1 2

4

53

DEFINITION [2]

A state 𝑗 is reachable from state 𝑖 if there is a
path leading from 𝑖 to 𝑗.

For example, state 5 is reachable from state 3
via the path 3–4–5, but state 5 is not reachable
from state 1 since there is no path from 1 to 5.



Classifications

We use the following transition matrix to
illustrate the following definitions.

𝑃 =

0.4 0.6 0 0 0
0.5 0.5 0 0 0
0 0 0.3 0.7 0
0 0 0.5 0.4 0.1
0 0 0 0.8 0.2

1 2

4

53

DEFINITION [3]

Two states 𝑖 and 𝑗 are said to communicate if 𝑗 is
reachable from 𝑖, and 𝑖 is reachable from 𝑗.

For example, states 1 and 2 communicate since
we can go from 1 to 2 and from 2 to 1.



Classifications

We use the following transition matrix to
illustrate the following definitions.

𝑃 =

0.4 0.6 0 0 0
0.5 0.5 0 0 0
0 0 0.3 0.7 0
0 0 0.5 0.4 0.1
0 0 0 0.8 0.2

1 2

4

53

DEFINITION [4]

A set of states 𝑆 in a Markov chain is a closed set
if no state outside of 𝑆 is reachable from any
state in 𝑆.

For example, 𝑆1 = {1, 2} and 𝑆2 = {3, 4, 5} are
both closed sets.

𝑆1

𝑆2



Classifications

DEFINITION [5]

A state 𝑖 is an absorbing state if 𝑝𝑖𝑖 = 1.

• Whenever we enter an absorbing state, we never leave the state.

• For example, the gambler’s ruin, states 0 and 4 are absorbing states.

• Of course, an absorbing state is a closed set containing only one state.

0 1 2 3 4

1 − 𝑝

𝑝

1 − 𝑝

𝑝

1 − 𝑝

𝑝

1 1



Classifications

DEFINITION [6]

A state 𝑖 is a transient state if there exists a state 𝑗 that is
reachable from 𝑖, but the state 𝑖 is not reachable from state 𝑗.

• In other words, a state 𝑖 is transient if there is a way to leave state 𝑖 that never

returns to state 𝑖.

• For example, In the gambler’s ruin example, states 1, 2, and 3 are transient states.

• After a large number of periods, the probability of being in any transient state 𝑖 is

zero.
0 1 2 3 4

1 − 𝑝

𝑝

1 − 𝑝

𝑝

1 − 𝑝

𝑝

1 1



Classifications

DEFINITION [7]

If a state is not transient, it is called a recurrent state.

For example, In the gambler’s ruin example, states 0 and 4 are

recurrent states (and also called absorbing states).

0 1 2 3 4

1 − 𝑝

𝑝

1 − 𝑝

𝑝

1 − 𝑝

𝑝

1 1



Classifications

DEFINITION [8]

A state 𝑖 is periodic with period 𝑘 > 1 if 𝑘 is the smallest
number such that all paths leading from state 𝑖 back to state 𝑖
have a length that is a multiple of 𝑘. If a recurrent state is not
periodic, it is referred to as aperiodic.

For the Markov chain with transition matrix 𝑃 =
0 1 0
0 0 1
1 0 0

each state has period 3.

For example, if we begin in state 1, the only way to return to state 1 is to follow the
path 1–2–3–1 for some number of times 𝑚. Hence, any return to state 1 will take 3𝑚
transitions, so state 1 has period 3. This means that 𝑃11 3𝑚 = 1.

1

2

3

1

1

1



Classifications

DEFINITION [9]

If all states in a chain are recurrent, aperiodic, and communicate
with each other, the chain is said to be ergodic.

For example,

𝑃1 =

1
3

2
3 0

1
2 0 1

2

0 1
4

3
4

1

2

3
Ergodic

𝑃2 =

1
2

1
2 0 0

1
2

1
2 0 0

0 0 2
3

1
3

0 0 1
4

3
4

1 2

3 4

Not Ergodic
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Introduction

• In our discussion of the cola example, we
found that after a long time, the probability
that a person’s next cola purchase would be
cola 1 approached .67 and .33 that it would
be cola 2.

• These probabilities did not depend on
whether the person was initially a cola 1 or a
cola 2 drinker.

• In this section, we discuss the important
concept of steady-state probabilities, which
can be used to describe the long-run
behavior of a Markov chain.

lim
𝑛→∞

𝑃𝑛 =
0.67 0.33
0.67 0.33



Theorem 1

Let 𝑃 be the transition matrix for an 𝑠 −state ergodic chain. Then there exists a
vector 𝜋 = 𝜋1 𝜋2 ⋯ 𝜋𝑠 such that

lim
𝑛→∞

𝑃𝑛 =

𝜋1 𝜋2 ⋯ 𝜋𝑠
𝜋1 𝜋2 ⋯ 𝜋𝑠
⋮ ⋮ ⋱ ⋮
𝜋1 𝜋2 ⋯ 𝜋𝑠

• Recall that the 𝑖𝑗th element of 𝑃𝑛 is 𝑃𝑖𝑗 𝑛 . Theorem 1 tells us that for any

initial state 𝑖,
lim
𝑛→∞

𝑃𝑖𝑗 𝑛 = 𝜋𝑗

• Observe that for large 𝑛, 𝑃𝑛 approaches a matrix with identical rows. This
means that after a long time, the Markov chain settles down ,(تستقر) and
(independent of the initial state 𝑖) there is a probability 𝜋𝑗 that we are in

state 𝑗.



Steady-State Distribution

The vector 𝜋 = 𝜋1 𝜋2 ⋯ 𝜋𝑠 is often called the steady-state distribution,
or equilibrium distribution, for the Markov chain.

For a given chain with
transition matrix 𝑃, how can
we find the steady-state
probability distribution?

• If 𝑛 is large, solve the system 𝝅 = 𝝅𝑷.
• Unfortunately, this system of equations

has an infinite number of solutions.
• Note that for any 𝑛 and any 𝑖,

𝑃𝑖1 𝑛 + 𝑃𝑖2 𝑛 +⋯+ 𝑃𝑖𝑠 𝑛 = 1
• Letting 𝑛 approach infinity, we obtain

𝜋1 + 𝜋2 +⋯+ 𝜋𝑠 = 1
• To obtain unique values of the steady-

state probabilities, replace any equation
in 𝝅 = 𝝅𝑷 by 𝜋1 + 𝜋2 +⋯+ 𝜋𝑠 = 1.



The Cola Example

• To illustrate how to find the steady-state probabilities, we find the steady-
state probabilities for the cola example.

• Recall that the transition matrix for the cola example was 𝑃 =
0.9 0.1
0.2 0.8

.

𝜋 = 𝜋 𝑃

𝜋1 𝜋2 = 𝜋1 𝜋2
0.9 0.1
0.2 0.8

𝜋1 = 0.9𝜋1 + 0.2𝜋2
𝜋2 = 0.1𝜋1 + 0.8𝜋2

Replacing the first equation with
the condition 𝜋1 + 𝜋2 = 1, we
obtain the system:

1 = 𝜋1 + 𝜋2
𝜋2 = 0.1𝜋1 + 0.8𝜋2

Solving for 𝜋1 and 𝜋2 we obtain

𝜋1 =
2

3
and 𝜋2 =

1

3
.



Use of Steady-State Probabilities in Decision Making

In the Cola example, suppose that each customer makes one purchase of cola
during any week (52 weeks = 1 year). Suppose there are 100 million cola customers.
One selling unit of cola costs the company $1 to produce and is sold for $2. For $500
million per year, an advertising firm ( إعلاناتشركة ) guarantees to decrease from 10%
to 5% the fraction of cola 1 customers who switch to cola 2 after a purchase. Should
the company that makes cola 1 hire the advertising firm?

• At present, a fraction 𝜋1 =
2

3
of all purchases are cola 1 purchases.

• Each purchase of cola 1 earns the company a $1 profit.

• Since there are a total of 5200000000 cola purchases each year, the cola 1

company’s current annual profit is
2

3
× 5200000000 = $3466666667



Use of Steady-State Probabilities in Decision Making

In the Cola example, suppose that each customer makes one purchase of cola
during any week (52 weeks = 1 year). Suppose there are 100 million cola customers.
One selling unit of cola costs the company $1 to produce and is sold for $2. For $500
million per year, an advertising firm ( إعلاناتشركة ) guarantees to decrease from 10%
to 5% the fraction of cola 1 customers who switch to cola 2 after a purchase. Should
the company that makes cola 1 hire the advertising firm?

• The advertising firm is

offering to change the 𝑃

matrix to

𝑃∗ =
0.95 0.05
0.20 0.80

• For 𝑃∗, the steady-state equations become

𝜋1 = 0.95𝜋1 + 0.20𝜋2
𝜋2 = 0.05𝜋1 + 0.80𝜋2

• Replacing the second equation by 𝜋1 + 𝜋2 = 1 and

solving, we obtain 𝜋1 = 0.8 and 𝜋2 = 0.2.



Use of Steady-State Probabilities in Decision Making

In the Cola example, suppose that each customer makes one purchase of cola
during any week (52 weeks = 1 year). Suppose there are 100 million cola customers.
One selling unit of cola costs the company $1 to produce and is sold for $2. For $500
million per year, an advertising firm ( إعلاناتشركة ) guarantees to decrease from 10%
to 5% the fraction of cola 1 customers who switch to cola 2 after a purchase. Should
the company that makes cola 1 hire the advertising firm?

• Now the cola 1 company’s annual profit will be

.80 5,200,000,000 − 500,000,000 = $3,660,000,000

• Hence, the cola 1 company should hire the ad agency.



Mean First Passage Times

• For an ergodic chain, let 𝑚𝑖𝑗 = expected number of transitions before we first

reach state 𝑗, given that we are currently in state 𝑖.

• 𝑚𝑖𝑗 is called the mean first passage time from state 𝑖 to state 𝑗.

• In the Cola Example, 𝑚12 would be the expected number of bottles of cola

purchased by a person who just bought cola 1 before first buying a bottle of

cola 2.

• By solving the following linear equations, we may find all the mean first
passage times.

𝑚𝑖𝑖 =
1

𝜋𝑖
, 𝑚𝑖𝑗 = 1 +෍

𝑘≠𝑗

𝑝𝑖𝑘𝑚𝑘𝑗



Mean First Passage Times

• To illustrate the use of these equations, let’s solve for the mean first passage

times in the Cola Example.

• Recall that 𝑃 =
0.9 0.1
0.2 0.8

, 𝜋1 =
2

3
and 𝜋2 =

1

3
.

• Then 𝑚11 =
1

Τ2 3
= 1.5 and 𝑚22 =

1

Τ1 3
= 3.

• Now,
𝑚12 = 1 + 𝑝11𝑚12 = 1 + 0.9𝑚12 ⇒ 𝑚12 = 10
𝑚21 = 1 + 𝑝22𝑚21 = 1 + 0.8𝑚12 ⇒ 𝑚21 = 5

• This means, for example, that a person who last drank cola 1 will drink an

average of ten bottles of soda before switching to cola 2.



Exercise [8]

Three balls are divided between two containers. During each period a ball is

randomly chosen and switched to the other container.

a) Find (in the steady state) the fraction of the time that a container will contain

0, 1, 2, or 3 balls.

𝑃 =

0 1 2 3
0
1
2
3

0
Τ1 3
0
0

1
0
Τ2 3
0

0
Τ2 3
0
1

0
0
Τ1 3
0

𝜋0 =
1

3
𝜋1

𝜋1 = 𝜋0 +
2

3
𝜋2

𝜋2 =
2

3
𝜋1 + 𝜋3

𝜋3 =
1

3
𝜋2

1 = 𝜋0 + 𝜋1 + 𝜋2 + 𝜋3

𝜋0 =
1

8

𝜋1 =
3

8

𝜋2 =
3

8

𝜋3 =
1

8



Exercise [8]

Three balls are divided between two containers. During each period a ball is

randomly chosen and switched to the other container.

b) If container 1 contains no balls, on the average how many periods will go by

before it again contains no balls?

𝑚00 =
1

𝜋0
=

1

Τ1 8
= 8

𝜋0 =
1

8

𝜋1 =
3

8

𝜋2 =
3

8

𝜋3 =
1

8



Chapter: [17]
Markov Chains

Section: [17.6]
Absorbing Chains
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Absorbing States and Absorbing Chains

• Many interesting applications of Markov chains involve chains in which some of

the states are absorbing and the rest are transient states.

• Such a chain is called an absorbing chain.

• Consider an absorbing Markov chain: If we begin in a transient state, then

eventually we are sure to leave the transient state and end up in one of the

absorbing states.

• A state in a Markov chain is called an

absorbing state if, once the state is

entered, it is impossible to leave.

𝑃 =
𝐴
𝐵
𝐶

1 0 0
0.5 0.5 0
0 0.5 0.5

State 𝐴 is absorbing state.



Absorbing States and Absorbing Chains

• A state in a Markov chain is absorbing if and only if the row of the transition

matrix corresponding to the state has a 1 on the main diagonal and 0’s

elsewhere.

• The presence of an absorbing state in a transition matrix does not guarantee

that the powers of the matrix approach a limiting matrix.

Definition A Markov chain is an absorbing chain if:

1. There is at least one absorbing state; and

2. It is possible to go from each nonabsorbing state to at least one absorbing state

in a finite number of steps.



Standard Form

• For any absorbing chain, one might want to know certain things.

1. If the chain begins in a given transient state, and before we reach an

absorbing state, what is the expected number of times that each state will

be entered? How many periods do we expect to spend in a given transient

state before absorption takes place?

2. If a chain begins in a given transient state, what is the probability that we

end up in each absorbing state?

• To answer these questions, we need to write the transition matrix with the

states listed in the following order: transient states first, then absorbing states.



Standard Form

𝑃 =
𝑄 𝑅
0 𝐼

• 𝑰 is an 𝑚 ×𝑚 identity matrix reflecting the fact that we can never leave an

absorbing state.

• 𝑸 is an 𝑠 − 𝑚 × 𝑠 −𝑚 matrix that represents transitions between transient

states.

• 𝑹 is an 𝑠 − 𝑚 ×𝑚 matrix representing transitions from transient states to

absorbing states.

• 𝟎 is an 𝑚 × 𝑠 −𝑚 matrix consisting entirely of zeros. This reflects the fact that

it is impossible to go from an absorbing state to a transient state.



Example

Consider the following transition

matrix:

The matrix P can be rearranged

and partitioned as:

𝑄 =
0.2 0.4
0.5 0.0

𝑅 =
0.3 0.1
0.3 0.2



Goal

Given the definition of 𝑹 and 𝑸 and the unit column vector 𝟏 (of all 1 elements),

it can be shown that

• Expected time in state 𝑗 starting in state 𝑖 = element 𝑖, 𝑗 of 𝑰 − 𝑸 −1.

• Expected time to absorption = 𝑰 − 𝑸 −1 𝟏.

• Probability of absorption = 𝑰 − 𝑸 −1𝑹.



Example: The Gambler’s Ruin

In the Gambler’s Ruin example let

𝑝 = 0.5, then the transition matrix

is

𝑝 =

0 1 2 3 4
0
1
2
3
4

1
0.5
0
0
0

0
0
0.5
0
0

0
0.5
0
0.5
0

0
0
0.5
0
0

0
0
0
0.5
1

We write the matrix 𝑝 in standard form

𝑝 =

0 1 2 3 4
3
1
2
0
4

0
0.5
0
1
0

0
0
0.5
0
0

0.5
0.5
0
0
0

0
0
0.5
0
0

0.5
0
0
0
1

𝑝 =

3 1 2 0 4
3
1
2
0
4

0
0
0.5
0
0

0
0
0.5
0
0

0.5
0.5
0
0
0

0
0.5
0
1
0

0.5
0
0
0
1



Example: The Gambler’s Ruin

𝑝 =

3 1 2 0 4
3
1
2
0
4

0
0
0.5
0
0

0
0
0.5
0
0

0.5
0.5
0
0
0

0
0.5
0
1
0

0.5
0
0
0
1

𝑸 =

3 1 2
3
1
2

0 0 0.5
0 0 0.5
0.5 0.5 0

𝑹 =

0 4
3
1
2

0 0.5
0.5 0
0 0

𝑰 − 𝑸 =
1 0 0
0 1 0
0 0 1

−
0 0 0.5
0 0 0.5
0.5 0.5 0

=
1 0 −0.5
0 1 −0.5

−0.5 −0.5 1

𝑰 − 𝑸 −1 =
1.5 0.5 1
0.5 1.5 1
1 1 2



Example: The Gambler’s Ruin

𝑝 =

3 1 2 0 4
3
1
2
0
4

0
0
0.5
0
0

0
0
0.5
0
0

0.5
0.5
0
0
0

0
0.5
0
1
0

0.5
0
0
0
1

𝑹 =

0 4
3
1
2

0 0.5
0.5 0
0 0

𝑰 − 𝑸 −1 =
1.5 0.5 1
0.5 1.5 1
1 1 2

𝑰 − 𝑸 −1𝟏 =
3
1
2

1.5 0.5 1
0.5 1.5 1
1 1 2

1
1
2

=
3
3
4

Expected time to absorption

𝑰 − 𝑸 −1𝑹 =
3
1
2

1.5 0.5 1
0.5 1.5 1
1 1 2

0 0.5
0.5 0
0 0

=
0.25 0.75
0.75 0.25
0.5 0.5

Probability of absorption



Psychology Example

A rat is placed in room F or room B of

the maze shown in the figure. The rat

wanders from room to room until it

enters one of the rooms containing

food, L or R. Assume that the rat

chooses an exit from a room at random

and that once it enters a room with

food it never leaves.

a) What is the long-run probability
that a rat placed in room B ends
up in room R?

b) What is the average number of
exits that a rat placed in room B
will choose until it finds food?



Psychology Example

a) What is the long-run probability
that a rat placed in room B ends
up in room R?

b) What is the average number of
exits that a rat placed in room B
will choose until it finds food?

𝑃 =

𝐵 𝐹 𝐿 𝑅
𝐵
𝐹
𝐿
𝑅

0
0.50
0
0

0.40
0
0
0

0.40
0.25
1
0

0.20
0.25
0
1

𝑄 =
0 0.4
0.5 0

𝑅 =
0.40 0.20
0.25 0.25

𝐼 − 𝑄 −1 =
1.25 0.50
0.625 1.25

𝐼 − 𝑄 −1𝑅 =
1.25 0.50
0.625 1.25

0.40 0.20
0.25 0.25

=
0.6250 0.3750
0.5625 0.4375



Psychology Example

a) What is the long-run probability
that a rat placed in room B ends
up in room R?

b) What is the average number of
exits that a rat placed in room B
will choose until it finds food?

𝑃 =

𝐵 𝐹 𝐿 𝑅
𝐵
𝐹
𝐿
𝑅

0
0.50
0
0

0.40
0
0
0

0.40
0.25
1
0

0.20
0.25
0
1

𝑄 =
0 0.4
0.5 0

𝑅 =
0.40 0.20
0.25 0.25

𝐼 − 𝑄 −1 =
1.25 0.50
0.625 1.25

𝐼 − 𝑄 −1𝟏 =
1.25 0.50
0.625 1.25

1
1

=
1.750
1.875



Chapter: [20]
Queuing Theory

Section: [20.1]
Some Queuing Terminology
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• Each of us has spent a great deal of time waiting in lines.

• To describe a queuing system, an input process and an output 

process must be specified.

• Examples of input and output processes are:

Description

Situation Input Process Output Process

Bank Customers arrive 
at bank

Tellers serve the 
customers

Pizza parlor Request for pizza 
delivery are 
received

Pizza parlor send 
out truck to 
deliver pizzas



• The input process is usually called the arrival process.

• Arrivals are called customers.

• We assume that no more than one arrival can occur at a given instant.

• If more than one arrival can occur at a given instant, we say that bulk arrivals

.are allowed (وصول بالجملة)

• Models in which arrivals are drawn from a small population are called finite 

source models.

• If a customer arrives but fails to enter the system, we say that the customer 

has balked .(تم رفض العميل)

The Input or Arrival Process



• To describe the output process of a queuing system, we usually specify a 

probability distribution – the service time distribution – which governs a 

customer’s service time.

• We study two arrangements of servers: servers in parallel and servers in 

series.

• Servers are in parallel if all server provide the same type of service and a 

customer need only pass through one server to complete service.

• Servers are in series if a customer must pass through several servers before 

completing service.

The Output or Service Process



• The queue discipline  describes the method used to determine (ضبب  ال بوابير)

the order in which customers are served.

• The most common queue discipline is the FCFS discipline (first come, first 

served), in which customers are served in the order of their arrival.

• Under the LCFS discipline (last come, first served), the most recent arrivals 

are the first to enter service.

• If the next customer to enter service is randomly chosen from those customers 

waiting for service it is referred to as the SIRO discipline (service in random 

order). 

Queue Discipline



• Finally we consider priority queuing disciplines. 

• A priority discipline classifies each arrival into one of several categories.

• Each category is then given a priority level, and within each priority level, 

customers enter service on an FCFS basis.

• Another factor that has an important effect on the behavior of a queuing 

system is the method that customers use to determine which line to join.

Queue Discipline



Chapter: [20]
Queuing Theory

Section: [20.2]
Modeling Arrival and Service Processes

Course: Applied Probability MW [2:15 – 3:30]



• As previously mentioned, we assume that at most one arrival can occur at a 

given instant of time.

• We define 𝑡𝑖 to be the time at which the 𝑖th customer arrives.

• For 𝑖 ≥ 1, we define 𝑇𝑖 = 𝑡𝑖+1 − 𝑡𝑖 to be the 𝑖𝑡ℎ interarrival time.

• In modeling the arrival process, we assume that the 𝑇𝑖’s are independent, 

continuous random variables described by the random variable 𝑨.

Modeling the Arrival Process



• The assumption that each 𝑇𝑖 is continuous is usually a good approximation of 

reality.

• The assumption that each interarrival time is governed by the same random 

variable implies that the distribution of arrivals is independent of the time of 

day or the day of the week. This is the assumption of stationary interarrival 

times.

• Stationary interarrival times is often unrealistic, but we may often 

approximate reality by breaking the time of day into segments.

Modeling the Arrival Process



• We assume that 𝑨 has a density function 𝑎(𝑡).

• Of course, a negative interarrival time is impossible. This allows us to write

𝑃 𝑨 ≤ 𝑐 = න

0

𝑐

𝑎 𝑡 𝑑𝑡 and 𝑃 𝑨 > 𝑐 = න

𝑐

∞

𝑎 𝑡 𝑑𝑡

• We define 
1

𝜆
to be the mean or average interarrival time (will have units of 

hours per arrival).

𝐸 𝑨 =
1

𝜆
= න

0

∞

𝑡𝑎 𝑡 𝑑𝑡

• We define 𝜆 to be the arrival rate, which will have units of arrivals per hour.

Modeling the Arrival Process



• In most applications of queuing, an important question is how to choose 𝑨 to 

reflect reality and still be computationally tractable?

• The most common choice for 𝑨 is the exponential distribution.

• An exponential distribution with parameter 𝜆 has a density 𝑎 𝑡 = 𝜆𝑒−𝜆𝑡.

• Using integration by parts, we have:

𝐸 𝑨 =
1

𝜆

var 𝑨 =
1

𝜆2

𝑃 𝑨 ≤ 𝑐 = 1 − 𝑒−𝜆𝑐 and 𝑃 𝑨 > 𝑐 = 𝑒−𝜆𝑐

Modeling the Arrival Process



Example: In each of the following cases, determine the average arrival rate per 

hour, and the average interarrival time in hours.

a) One arrival occurs every 20 minutes.

𝜆 =
60

20
= 3 arrivals/hour

1

𝜆
=
1

3
hour/arrival

b) Number of arrivals in a 30-minute period is 10.

𝜆 = 2 × 10 = 20 arrivals/hour
1

𝜆
=

1

20
hour/arrival

Modeling the Arrival Process



Lamma 1 (No-Memory Property): If 𝑨 has an exponential distribution, then for 

all nonnegative values of 𝑡 and ℎ,

𝑃 𝑨 > 𝑡 + ℎ 𝑨 > 𝑡 = 𝑃 𝑨 > ℎ

Modeling the Arrival Process

Proof: The RHS = 𝑃 𝑨 > ℎ = 𝑒−𝜆ℎ. Now,

LHS = 𝑃 𝑨 > 𝑡 + ℎ 𝑨 > 𝑡

=
𝑃 𝑨 > 𝑡 + ℎ ∩ 𝑨 > 𝑡

𝑃 𝑨 > 𝑡

=
𝑃 𝑨 > 𝑡 + ℎ

𝑃 𝑨 > 𝑡

=
𝑒−𝜆 𝑡+ℎ

𝑒−𝜆𝑡
= 𝑒−𝜆ℎ= RHS



• The no-memory property of the exponential distribution is important, 

because it implies that if we want to know the probability distribution of the 

time until the next arrival, then it does not matter how long it has been since 

the last arrival.

• This means that to predict future arrival patterns, we need not keep track of 

how long it has been since the last arrival.

Modeling the Arrival Process



Example: The time between arrivals at the State Revenue Office is exponential 

with mean value .04 hour. The office opens at 8:00A.M .

1) Write the exponential distribution that describes the interarrival time.

1

𝜆
= 0.04 ⇒ 𝜆 = 25

𝑓 𝑡 = 25𝑒−25𝑡 ; 𝑡 > 0

2) Find the probability that no customers will arrive at the office by 8:15 A.M.

𝑃 𝑡 >
15

60
= 𝑃 𝑡 > 0.25 = 𝑒−25×0.25 ≈ 0.00193

Using Excel = 1 - EXPON.DIST(0.25, 25, TRUE)

Modeling the Arrival Process



Example: The time between arrivals at the State Revenue Office is exponential 

with mean value .04 hour. The office opens at 8:00A.M .

3) It is now 8:35 A.M. The last customer entered the office at 8:26. What is the 

probability that the next customer will arrive before 8:38 A.M.?

𝑃 𝑡 <
3

60
= 𝑃 𝑡 < 0.05 = 1 − 𝑒−25×0.05 ≈ 0.713

Using Excel = EXPON.DIST(0.05, 25, TRUE)

4) What is the average number of arriving customers between 8:10 and 8:45 A.M?

25 ×
45 − 10

60
= 25 ×

35

60
≈ 14.58 arrivals

Modeling the Arrival Process



Relation Between Poisson Distribution and Exponential Distribution

If interarrival times are exponential, the probability distribution of the number of 

arrivals occurring in any time interval of length 𝑡 is given by the following 

important theorem.

Modeling the Arrival Process

Theorem 1

Interarrival times are exponential with parameter 𝜆 if and only if the number of 

arrivals to occur in an interval of length 𝑡 follows a Poisson distribution with 

parameter 𝜆𝑡.



• A discrete random variable 𝑵 has a Poisson distribution with parameter 𝜆 if, 

for 𝑛 = 0,1,2,⋯,

𝑃 𝑵 = 𝑛 =
𝑒−𝜆𝜆𝑛

𝑛!

• If 𝑵 is a Poisson random variable, it can be shown that 𝐸 𝑵 = var 𝑵 = 𝜆.

• If we define 𝑵𝑡 to be the number of arrivals to occur during any time interval 

of length 𝑡, Theorem 1 states that

𝑃 𝑵𝑡 = 𝑛 =
𝑒−(𝜆𝑡)(𝜆𝑡)𝑛

𝑛!
for 𝑛 = 0,1,2,⋯

• Since 𝑵𝑡 is Poisson with parameter 𝜆𝑡, then 𝐸 𝑵𝑡 = var 𝑵𝑡 = 𝜆𝑡.

Modeling the Arrival Process



Example: The number of cups of coffee ordered per hour at a coffeeshop follows 

a Poisson distribution, with an average of 30 cups per hour being ordered.

1. Find the probability that exactly 50 cups are ordered between 10 A.M. and 12 

midday.

𝜆𝑡 = 30 2 = 60

𝑃 𝑁2 = 50 =
𝑒−60 ⋅ 6050

50!
≈ 0.023271

Using Excel = POISSON.DIST(50, 60, FALSE)

Modeling the Arrival Process



Example: The number of cups of coffee ordered per hour at a coffeeshop follows 

a Poisson distribution, with an average of 30 cups per hour being ordered.

2. Find the mean and standard deviation of the number of coffee cups ordered 

between 9 A.M. and 1 P.M..

mean = 𝜆𝑡 = 30 4 = 120

s.d = 120 ≈ 10.95

Using Excel = SQRT(120)

Modeling the Arrival Process



What assumptions are required for interarrival times to be exponential?

1. if the arrival rate is stationary,

2. if bulk arrivals cannot occur,

3. if past arrivals do not affect future arrivals.

Modeling the Arrival Process

Theorem 2

If the above assumptions hold, then 𝑵𝑡 follows a Poisson distribution with 

parameter 𝜆𝑡, and interarrival times are exponential with parameter 𝜆.



Notes:

1. For small Δ𝑡, the probability of one arrival occurring between times 𝑡

and t + Δ𝑡 is 𝜆Δ𝑡 + 𝑜 Δ𝑡 , where 𝑜 Δ𝑡 refers to any quantity satisfying

lim
Δ𝑡→0

𝑜 Δ𝑡

Δ𝑡
= 0

2. The probability of no arrival during the interval between 𝑡 and t + Δ𝑡 is 

1 − 𝜆Δ𝑡 + 𝑜 Δ𝑡 .

3. The probability of more than one arrival occurring between 𝑡 and t + Δ𝑡

is 𝑜 Δ𝑡 .

Modeling the Arrival Process



Example: The number of cups of coffee ordered per hour at a coffeeshop follows 

a Poisson distribution, with an average of 30 cups per hour being ordered.

3. Find the probability that the time between two consecutive orders is 

between 1 and 3 minutes.

𝑃
1

60
≤ 𝑡 ≤

3

60
= 𝑃 𝑡 ≤

3

60
− 𝑃 𝑡 ≤

1

60

= 1 − 𝑒−30⋅
3
60 − 1 − 𝑒−30⋅

1
60

= 𝑒−0.5 − 𝑒−1.5 ≈ 0.383

Using Excel
= EXPON.DIST(3/60,30,TRUE) - EXPON.DIST(1/60,30,TRUE)

Modeling the Arrival Process



The Erlang Distribution

1. If interarrival times do not appear to be exponential they are often modeled 

by an Erlang distribution.

2. An Erlang distribution is a continuous random variable (call it 𝑻) whose 

density function 𝑓(𝑡) is specified by two parameters:

• a rate parameters 𝑅,

• and a shape parameters 𝑘 (𝑘 must be a positive integer).

Modeling the Arrival Process



The Erlang Distribution

3. Given values of 𝑅 and 𝑘, the Erlang density has the following probability 

density function:

𝑓 𝑡 =
𝑅 𝑅𝑡 𝑘−1𝑒−𝑅𝑡

𝑘 − 1 !

4. Using integration by parts, we can show that if 𝑻 is an Erlang distribution 

with rate parameter 𝑅 and shape parameter 𝑘, then

𝐸 𝑻 =
𝑘

𝑅
and var(𝑻) =

𝑘

𝑅2

Modeling the Arrival Process



The Erlang Distribution

Modeling the Arrival Process

If we model interarrival times as an
Erlang distribution with shape parameter
𝑘 , we are really saying that the
interarrival process is equivalent to a
customer going through 𝑘 phases (each
of which has the no-memory property)
before arriving.



• We assume that the service times of different customers are independent 

random variables and that each customers service time is governed by a 

random variable 𝑺 having a density function 𝑠(𝑡).

• We let 
1

𝜇
= 0׬

∞
𝑡𝑠 𝑡 𝑑𝑡 be then mean service time for a customer.

• The variable 
1

𝜇
will have units of hours per customer, so 𝜇 has units of 

customers per hour. For this reason, we call 𝜇 the service rate.

Modeling the Service Process



• For example, 𝜇 = 5 means that if customers were always present, the server 

could serve an average of 5 customers per hour, and the average service time 

of each customer would be 
1

5
hour.

• Unfortunately, actual service times may not be consistent with the no-

memory property.

• For this reason, we often assume that 𝑠(𝑡) is an Erlang distribution with shape 

parameters 𝑘 and rate parameter 𝑘𝜇.

Modeling the Service Process



• In certain situations, interarrival or service times may be modeled as having 

zero variance; in this case, interarrival or service times are considered to be 

deterministic.

• If interarrival times are deterministic, then each interarrival time will be 

exactly 
1

𝜆
, and if service times are deterministic, each customers service time is 

exactly 
1

𝜇
.

Modeling the Service Process



• Standard notation used to describe many queuing systems.

• The notation is used to describe a queuing system in which all arrivals wait in 

a single line until one of 𝑠 identical parallel servers is free. Then the first 

customer in line enters service, and so on.

• To describe such a queuing system, Kendall devised a notation in which each 

queuing system is described by six characters: 1/2/3/4/5/6

The Kendall–Lee Notation for Queuing Systems



The Kendall–Lee Notation for Queuing Systems

1 / 2 / 3 / 4 / 5 / 6

• Specifies the nature of the arrival process.

• The following standard abbreviations are used:

𝑀 = Interarrival times are independent, identically exponential distributed (iid)

𝐷 = Interarrival times are iid and deterministic

𝐸𝑘 = Interarrival times are iid Erlangs with shape parameter 𝑘.

𝐺𝐼 = Interarrival times are iid and governed by some general distribution



The Kendall–Lee Notation for Queuing Systems

1 / 2 / 3 / 4 / 5 / 6

• Specifies the nature of the service process.

• The following standard abbreviations are used:

𝑀 = Service times are iid and exponentially distributed

𝐷 = Service times are iid and deterministic

𝐸𝑘 = Service times are iid Erlangs with shape parameter 𝑘.

𝐺𝐼 = Service times are iid and governed by some general distribution



The Kendall–Lee Notation for Queuing Systems

1 / 2 / 3 / 4 / 5 / 6

• Specifies the number of parallel servers.



The Kendall–Lee Notation for Queuing Systems

1 / 2 / 3 / 4 / 5 / 6

• Specifies the queue discipline.

• The following standard abbreviations are used:

𝐹𝐶𝐹𝑆 = First come, first served

𝐿𝐶𝐹𝑆 = Last come, first served

𝑆𝐼𝑅𝑂 = Service in random order.

𝐺𝐷 = General queue discipline



The Kendall–Lee Notation for Queuing Systems

1 / 2 / 3 / 4 / 5 / 6

• Specifies the maximum allowable

number of customers in the

system.

• Specifies the size of the

population from which

customers are drawn.



• In many important models 4/5/6 is 𝐺𝐷/1/1. If this is the case, then 4/5/6 is 

often omitted.

• Example: Τ𝑀 Τ𝐸2 Τ8 Τ𝐹𝐶𝐹𝑆 Τ10 ∞ might represent a health clinic with 8 

doctors, exponential interarrival times, two-phase Erlang service times, an 

FCFS queue discipline, and a total capacity of 10 patients.

The Kendall–Lee Notation for Queuing Systems



Chapter: [20]
Queuing Theory
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• We use birth-death processes to answer questions about several different 

types of queuing systems.

• We define the number of people present in any queuing system at time 𝑡 to be 

the state of the queuing systems at time 𝑡.

• We call 𝜋𝑗 the steady state (equilibrium) probability, of state 𝑗.

• For 𝑡 = 0, the state of the system will equal the number of people initially 

present in the system.

• The quantity 𝑃𝑖𝑗 𝑡 is defined as the probability that 𝑗 people will be present 

in the queuing system at time 𝑡, given that at time 0, 𝑖 people are present.

Introduction



• Note that 𝑃𝑖𝑗 𝑡 is analogous (مُماثببل) to the 𝑛 −step transition probability 

𝑃𝑖𝑗 𝑡 (the probability that after 𝑛 transitions, a Markov chain will be in state 𝑗, 

given that the chain began in state 𝑖).

• The behavior of 𝑃𝑖𝑗 𝑡 before the steady state is reached is called the 

transient behavior of the queuing system.

• The question of how large 𝑡 must be before the steady state is approximately 

reached is difficult to answer. For now, when we analyze the behavior of a 

queuing system, we assume that the steady state has been reached.

Introduction



• For a birth–death process, it is easy to determine the steady-state 

probabilities (if they exist).

• A birth-death process is a continuous-time stochastic process for which the 

system’s state at any time is a nonnegative integer.

• If a birth–death process is in state 𝑗 at time 𝑡, then the motion of the process is 

governed by the following laws.

Introduction



• A birth increases the system state by 1, to 𝑗 + 1.

▪ The variable 𝑗 is called the birth rate in state 𝑗.

▪ In most queuing systems, a birth is simply an arrival.

• A death decreases the system state by 1, to 𝑗 − 1.

▪ The variable 𝑗 is the death rate in state 𝑗.

▪ In most queuing systems, a death is a service completion.

▪ Note that 𝜇0 = 0 must hold, or a negative state could occur.

• Births and deaths are independent of each other.

Laws of Motion for Birth–Death Processes



Example: Consider 𝑀/𝑀/3/𝐹𝐶𝐹𝑆/∞/∞

queuing system in which interarrival times 

are exponential with 𝜆 = 4 and service times 

are exponential with 𝜇 = 5. To model this 

system as a birth-death process, we would 

use the following parameters

Laws of Motion for Birth–Death Processes

𝜆𝑗 = 4 for 𝑗 = 0,1,2,⋯

𝜇0 = 0
𝜇1 = 5
𝜇2 = 10
𝜇𝑗 = 15 for 𝑗 = 3,4,5,⋯



In steady-state, the following balance 

equation must hold for every state 𝑗:

Computing Steady-State Probabilities for Birth-Death 
Processes

𝜇1 𝜇2 𝜇𝑗 𝜇𝑗+1

𝜆0 𝜆1 𝜆𝑗−1 𝜆𝑗

Rate IN = Rate OUT

• At state 𝟎:

𝜆0𝜋0 = 𝜇1𝜋1

• At state 𝒋:

𝜆𝑗 + 𝜇𝑗 𝜋𝑗 = 𝜆𝑗−1𝜋𝑗−1 + 𝜇𝑗+1𝜋𝑗+1
for 𝑗 = 1,2,3,⋯

• Remember: σ𝜋𝑗 = 1



We obtain the flow balance equations for a birth–death process:

Computing Steady-State Probabilities for Birth-Death 
Processes

𝜆0𝜋0 = 𝜇1𝜋1
𝜆1 + 𝜇1 𝜋1 = 𝜆0𝜋0 + 𝜇2𝜋2
𝜆2 + 𝜇2 𝜋2 = 𝜆1𝜋1 + 𝜇3𝜋3

⋮

𝜆𝑗 + 𝜇𝑗 𝜋𝑗 = 𝜆𝑗−1𝜋𝑗−1 + 𝜇𝑗+1𝜋𝑗+1

𝑗 = 0
𝑗 = 1
𝑗 = 2
⋮

any 𝑗



• To solve the previous set of equations, we begin by expressing all the 𝜋𝑗’s in

terms of 𝜋0.

• From the equation 𝜆0𝜋0 = 𝜇1𝜋1, we obtain 𝜋1 =
𝜆0𝜋0

𝜇1
.

• Substituting this result into the equation 𝜆1 + 𝜇1 𝜋1 = 𝜆0𝜋0 + 𝜇2𝜋2 yields:

𝜆1 + 𝜇1
𝜆0𝜋0
𝜇1

= 𝜆0𝜋0 + 𝜇2𝜋2

𝜋2 =
𝜆0𝜆1𝜋0
𝜇1𝜇2

• In general,

𝜋𝑗 =
𝜆0𝜆1⋯𝜆𝑗−1
𝜇1𝜇2⋯𝜇𝑗

𝜋0

Solution of Birth–Death Flow Balance Equations



• If we let 𝑐𝑗 =
𝜆0𝜆1⋯𝜆𝑗−1

𝜇1𝜇2⋯𝜇𝑗
, we obtain 𝜋𝑗 = 𝑐𝑗𝜋0 for 𝑗 = 1,2,3,⋯.

• Since at any given time, we must be in some state, the steady-state

probabilities must sum to 1:

𝜋0 + 𝜋1 + 𝜋2 +⋯ = 1
𝜋0 + 𝑐1𝜋0 + 𝑐2𝜋0 + 𝑐3𝜋0 +⋯ = 1

𝜋0 1 + 𝑐1 + 𝑐2 + 𝑐3 +⋯ = 1

𝜋0 =
1

1 + σ𝑗=1
∞ 𝑐𝑗

• Ifσ𝑗=1
∞ 𝑐𝑗 is finite (converges), then we can obtain 𝜋0.

• It can be shown that if σ𝑗=1
∞ 𝑐𝑗 is infinite (diverges), then no steady-state

distribution exists.

Solution of Birth–Death Flow Balance Equations



Example: A grocery operates with three check-out counters. The manager uses the 

following schedule to determine the number of counters in operation, depending on 

the number of customers in store:

Solution of Birth–Death Flow Balance Equations

Number of counters 
in operation

Number of 
customers in store

11, 2, 3

24, 5, 6

3More that 6

Customers arrive in the counters area 

according to a Poisson distribution with 

mean rate 10 customers per hour. The 

average check-out time per customer is 

exponential with mean 12 minutes. 

Determine the steady-state probability 

𝜋𝑛 of 𝑛 customers in check-out area.

𝜆𝑛 = 10 for 𝑛 = 0,1,2,⋯

𝜇1 = 𝜇2 = 𝜇3 =
60

12
= 5

𝜇4 = 𝜇5 = 𝜇6 = 2 × 5 = 10
𝜇𝑗 = 3 × 5 = 15 for 𝑗 = 7,8,9,⋯



Example: (Continue)

Solution of Birth–Death Flow Balance Equations

𝜆𝑛 = 10 for 𝑛 = 0,1,2,⋯

𝜇1 = 𝜇2 = 𝜇3 =
60

12
= 5

𝜇4 = 𝜇5 = 𝜇6 = 2 × 5 = 10
𝜇𝑗 = 3 × 5 = 15 for 𝑗 = 7,8,9,⋯

𝑐1 =
𝜆0
𝜇1

=
10

5
= 2

𝑐2 =
𝜆0𝜆1
𝜇1𝜇2

=
𝜆1
𝜇2

𝑐1 =
10 ⋅ 2

5
= 4

𝑐3 =
𝜆2
𝜇3

𝑐2 =
10 ⋅ 4

5
= 8

𝑐4 =
𝜆3
𝜇4

𝑐3 =
10 ⋅ 8

10
= 8

𝑐5 =
𝜆4
𝜇5

𝑐4 =
10 ⋅ 8

10
= 8

𝑐6 =
𝜆5
𝜇6

𝑐5 =
10 ⋅ 8

10
= 8

𝑐7 =
𝜆6
𝜇7

𝑐6 =
10 ⋅ 8

15
= 8 ⋅

2

3

𝑐8 =
𝜆7
𝜇8

𝑐7 =
10 ⋅ 8 ⋅

2
3

15
= 8 ⋅

2

3

2

𝑐𝑛 = 8 ⋅
2

3

𝑛−6

for 𝑛 = 7,8,9,⋯

⋮



Example: (Continue)

Solution of Birth–Death Flow Balance Equations

𝑐1 = 2 𝑐2 = 4 𝑐3 = 8 𝑐4 = 8 𝑐5 = 8 𝑐6 = 8 𝑐𝑛 = 8 ⋅
2

3

𝑛−6

for 𝑛 = 7,8,9,⋯, , , , , ,

To evaluate 𝜋0 we need to find σ𝑗=1
∞ 𝑐𝑗:

෍

𝑗=1

∞

𝑐𝑗 = 𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 + 𝑐5 + 𝑐6 + 𝑐7 + 𝑐8 +⋯

෍

𝑗=7

∞

8 ⋅
2

3

𝑛−6

=෍

𝑗=0

∞

8 ⋅
2

3

𝑛+1

෍

𝑗=1

∞

𝑐𝑗 = 2 + 4 + 8 + 8 + 8 + 8 +
8 ⋅

2
3

1 −
2
3

= 38 + 16 = 54



Example: (Continue)

Solution of Birth–Death Flow Balance Equations

𝑐1 = 2 𝑐2 = 4 𝑐3 = 8 𝑐4 = 8 𝑐5 = 8 𝑐6 = 8 𝑐𝑛 = 8 ⋅
2

3

𝑛−6

for 𝑛 = 7,8,9,⋯, , , , , ,

∴ 𝜋0 =
1

1 + σ𝑗=1
∞ 𝑐𝑗

=
1

1 + 54
=

1

55
= 0.018

𝜋1 = 𝑐1𝜋0 =
2

55

𝜋2 = 𝑐2𝜋0 =
4

55

𝜋3 = 𝑐3𝜋0 =
8

55
= 𝜋4 = 𝜋5 = 𝜋6

𝜋𝑛 = 𝑐𝑛𝜋0 =
8

55
⋅
2

3

𝑛−6

for 𝑛 = 7,8,⋯



Example: (Continue using Excel)

Solution of Birth–Death Flow Balance Equations

STATE J LAMBDA MU CJ PROB.

0 10 0 1.00000 0.0182 =1/SUM(D2:D22)

1 10 5 2.00000 =B2/C3*D2 0.0364 =D3*$F$2

2 10 5 4.00000 =B3/C4*D3 0.0728 =D4*$F$2

3 10 5 8.00000 =B4/C5*D4 0.1456 =D5*$F$2

4 10 10 8.00000 =B5/C6*D5 0.1456 =D6*$F$2

5 10 10 8.00000 =B6/C7*D6 0.1456 =D7*$F$2

6 10 10 8.00000 =B7/C8*D7 0.1456 =D8*$F$2

7 10 15 5.33333 =B8/C9*D8 0.097066 =D9*$F$2

8 10 15 3.55556 =B9/C10*D9 0.064711 =D10*$F$2

9 10 15 2.37037 =B10/C11*D10 0.043141 =D11*$F$2

10 10 15 1.58025 =B11/C12*D11 0.02876 =D12*$F$2

11 10 15 1.05350 =B12/C13*D12 0.019174 =D13*$F$2

12 10 15 0.70233 =B13/C14*D13 0.012782 =D14*$F$2

13 10 15 0.46822 =B14/C15*D14 0.008522 =D15*$F$2

14 10 15 0.31215 =B15/C16*D15 0.005681 =D16*$F$2

15 10 15 0.20810 =B16/C17*D16 0.003787 =D17*$F$2

16 10 15 0.13873 =B17/C18*D17 0.002525 =D18*$F$2

17 10 15 0.09249 =B18/C19*D18 0.001683 =D19*$F$2

18 10 15 0.06166 =B19/C20*D19 0.001122 =D20*$F$2

19 10 15 0.04111 =B20/C21*D20 0.000748 =D21*$F$2

20 10 15 0.02740 =B21/C22*D21 0.000499 =D22*$F$2



Example: Indiana Bell customer service representatives receive an average of 1,700 

calls per hour. The time between calls follows an exponential distribution. A 

customer service representative can handle an average of 30 calls per hour. The time 

required to handle a call is also exponentially distributed. Indiana Bell can put up to 

25 people on hold. If 25 people are on hold, a call is lost to the system. Indiana Bell 

has 75 service representatives.

1. What fraction of the time are all operators busy?

2. What fraction of all calls are lost to the system?

Solution of Birth–Death Flow Balance Equations

𝜆𝑗 = 1700 for 𝑗 = 0,1,⋯ , 99

𝜇𝑗 = 30 × 75 = 2250 for 𝑗 > 75

𝜇𝑗 = 30𝑗 for 𝑗 = 1,2,⋯ , 75

𝜆100 = 0



Example: Using Excel:

Solution of Birth–Death Flow Balance Equations

1. What fraction of the time are all operators busy?

=SUMIF(A2:A102,">75",H2:H102)

0.009638 

2. What fraction of all calls are lost to the system?

=H102

2.82465E-06
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• An 𝑀/𝑀/1/𝐺𝐷/∞/∞ queuing system may be modeled as a birth-death 

process with the following parameters:

𝜆𝑗 = 𝜆 𝑗 = 0,1,2,⋯

𝜇0 = 0

𝜇𝑗 = 𝜇 𝑗 = 1,2,3,⋯

• Then, the steady-state probabilities are:

𝜋1 =
𝜆

𝜇
𝜋0 , 𝜋2 =

𝜆2

𝜇2
𝜋0 , 𝜋3 =

𝜆3

𝜇3
𝜋0 , ⋯ , 𝜋𝑗 =

𝜆𝑗

𝜇𝑗
𝜋0

• Define 𝜌 =
𝜆

𝜇
. Then we obtain

𝜋1 = 𝜌𝜋0 , 𝜋2 = 𝜌2𝜋0 , 𝜋3 = 𝜌3𝜋0 , ⋯ , 𝜋𝑗 = 𝜌𝑗𝜋0

Derivation of Steady-State Probabilities



• Since 𝜋0 + 𝜋1 + 𝜋2 +⋯ = 1, then:

𝜋0 1 + 𝜌 + 𝜌2 +⋯ = 1

𝜋0
1

1 − 𝜌
= 1 if 𝜌 < 1

𝜋0 = 1 − 𝜌 if 𝜌 < 1 or 0 ≤ 𝜆 < 𝜇

• So that, 𝜋𝑗 = 𝜌𝑗 1 − 𝜌 where 0 ≤ 𝜌 < 1.

• If 𝜌 ≥ 1, no steady-state distribution exists

Derivation of Steady-State Probabilities



Example: if 𝜆 = 6 and 𝜇 = 4, then 𝜌 = 1.5 ≥ 1. Even if the server were 

working all the time, she could only serve an average of 4 people per 

hour. Thus, the average number of customers in the system would 

grow by at least 6 − 4 = 2 customers per hour. This means that after a 

long time, the number of customers present would “blow up,” and no 

steady-state distribution could exist.

Derivation of Steady-State Probabilities



Derivation of Steady-State Probabilities



• Throughout the rest of this section, we assume that 𝜌 < 1, ensuring that a 

steady-state probability distribution does exist.

• We now use the steady-state probability distribution to determine several 

quantities of interest.

• For example, assuming that the steady state has been reached, the average 

number of customers present in the queuing system (call it 𝐿) is given by

𝐿 =෍

𝑗=0

∞

𝑗𝜋𝑗 =෍

𝑗=0

∞

𝑗𝜌𝑗 1 − 𝜌 = 1 − 𝜌 ෍

𝑗=0

∞

𝑗𝜌𝑗

Derivation of 𝑳



• Define 𝑆 = σ𝑗=0
∞ 𝑗𝜌𝑗 = 𝜌 + 2𝜌2 + 3𝜌3 +⋯

• Multiply 𝑆 by 𝜌 to obtain 𝜌𝑆 = 𝜌2 + 2𝜌3 + 3𝜌4 +⋯

• So,

𝑆 = 𝜌 + 2𝜌2 + 3𝜌3 +⋯
𝜌𝑆 = 𝜌2 + 2𝜌3 + 3𝜌4 +⋯

Derivation of 𝑳

−

𝑆 − 𝜌𝑆 = 𝜌 + 𝜌2 + 𝜌3 +⋯ =
𝜌

1 − 𝜌
𝑆 =

𝜌

1 − 𝜌 2

𝐿 = 1 − 𝜌 ෍

𝑗=0

∞

𝑗𝜌𝑗 = 1 − 𝜌
𝜌

1 − 𝜌 2
=

𝜌

1 − 𝜌
=

𝜆

𝜇 − 𝜆



• In some situations, we are interested in the expected number of people 

waiting in the queue, and we denote this number by 𝐿𝑞.

• Note that if 0 or 1 customer is present in the system, then nobody is waiting in 

line, but if 𝑗 people are present 𝑗 ≥ 1 , there will be 𝑗 − 1 people waiting in 

line.

• Thus, if we are in the steady state,

𝐿𝑞 =෍

𝑗=1

∞

𝑗 − 1 𝜋𝑗 =෍

𝑗=1

∞

𝑗𝜋𝑗 −෍

𝑗=1

∞

𝜋𝑗

=
𝜌

1 − 𝜌
− 1 − 𝜋0 =

𝜌

1 − 𝜌
− 𝜌 =

𝜌2

1 − 𝜌
=

𝜆2

𝜇 𝜇 − 𝜆

Derivation of 𝑳𝒒



• Also of interest is 𝐿𝑠, the expected number of customers in service.

• For any queuing system,

𝐿 = 𝐿𝑠 + 𝐿𝑞
𝜌

1 − 𝜌
= 𝐿𝑠 +

𝜌2

1 − 𝜌

𝐿𝑠 =
𝜌

1 − 𝜌
−

𝜌2

1 − 𝜌
= 𝜌 =

𝜆

𝜇

Derivation of 𝑳𝒔



• Often we are interested in the amount of time that a typical customer 

spends in a queuing system.

• We define 𝑊 as the expected time a customer spends in the queuing system, 

including time in line plus time in service, and 𝑊𝑞 as the expected time a 

customer spends waiting in line.

• Both 𝑊 and 𝑊𝑞 are computed under the assumption that the steady state has 

been reached.

• By using a powerful result known as Little’s queuing formula, 𝑊 and 𝑊𝑞 may 

be easily computed from 𝐿 and 𝐿𝑞.

The Queuing Formula 𝑳 = 𝝀𝑾



We first define (for any queuing system or any subset of a queuing system) the 

following quantities:

• 𝜆 = average number of arrivals entering the system per unit time.

• 𝐿 = average number of customers present in the queuing system.

• 𝐿𝑞 = average number of customers waiting in line.

• 𝐿𝑠 = average number of customers in service.

• 𝑊 = average time a customer spends in the system.

• 𝑊𝑞 = average time a customer spends in line.

• 𝑊𝑠 = average time a customer spends in service.

The Queuing Formula 𝑳 = 𝝀𝑾



Theorem: For any queuing system in which a steady-state distribution exists, the 

following relations hold:

𝐿 = 𝜆𝑊

𝐿𝑞 = 𝜆𝑊𝑞

𝐿𝑠 = 𝜆𝑊𝑠

The Queuing Formula 𝑳 = 𝝀𝑾

• For an 𝑀/𝑀/1/𝐺𝐷/∞/∞ queuing system, we have

𝑊 =
1

𝜇 − 𝜆
, 𝑊𝑞 =

𝜆

𝜇 𝜇 − 𝜆
, 𝑊𝑠 =

1

𝜇



Example [1]: An average of 10 cars per hour arrive at a single-server drive-in teller. 

Assume that the average service time for each customer is 4 minutes, and both 

interarrival times and service times are exponential. Answer the following questions:

The Queuing Formula 𝑳 = 𝝀𝑾

1. What is the probability that the teller is idle?

Solution: 𝜋0 = 1 − 𝜌 = 1 −
2

3
=

1

3

2. What is the average number of cars waiting in line for the 

teller? (A car that is being served is not considered to be 

waiting in line.)

Solution: 𝐿𝑞 =
𝜌2

1−𝜌
=

2

3

2

1−
2

3

=
4

3
customers

𝜆 = 10

𝜇 =
60

4
= 15

𝜌 =
𝜆

𝜇
=
10

15
=
2

3



Example [1]: An average of 10 cars per hour arrive at a single-server drive-in teller. 

Assume that the average service time for each customer is 4 minutes, and both 

interarrival times and service times are exponential. Answer the following questions:

The Queuing Formula 𝑳 = 𝝀𝑾

3. What is the average amount of time a 

drive-in customer spends in the bank 

parking lot (including time in service)?

Solution: 𝑊 =
𝐿

𝜆
=

1

𝜇−𝜆
=

1

5
Hours

= 12 minutes



Example [2]: Our local MacDonald’s uses an average of 10,000 pounds of potatoes 

per week. The average number of pounds of potatoes on hand is 5,000. On the 

average, how long do potatoes stay in the restaurant before being used? Find 𝜇.

The Queuing Formula 𝑳 = 𝝀𝑾

Solution:

𝑊 =
𝐿

𝜆
=

5000

10000
=
1

2
Week

𝐿 =
𝜆

𝜇 − 𝜆
⇒ 5000 =

10000

𝜇 − 10000
⇒ 𝜇 = 10002



Example [3]: Suppose that all car owners fill up when their tanks are exactly half full. 

At the present time, an average of 7.5 customers per hour arrive at a single-pump gas 

station. It takes an average of 4 minutes to service a car. Assume that interarrival 

times and service times are both exponential.

The Queuing Formula 𝑳 = 𝝀𝑾

1. For the present situation, compute 𝐿 and 𝑊.

Solution:

𝜆 = 7.5

𝜇 =
60

4
= 15

𝜌 =
𝜆

𝜇
=
7.5

15
=
1

2
𝐿 =

𝜌

1 − 𝜌
= 1

𝑊 =
𝐿

𝜆
=

2

15
≈ 0.1ത3 hours = 8 minutes



Example [3]:

The Queuing Formula 𝑳 = 𝝀𝑾

2. Suppose that a gas shortage occurs and panic buying takes place. To model this 

phenomenon, suppose that all car owners now purchase gas when their tanks are 

exactly three-quarters full. Since each car owner is now putting less gas into the 

tank during each visit to the station, we assume that the average service time has 

been reduced to 10/3minutes. How has panic buying affected 𝐿 and 𝑊?

Solution: 𝜆 = 2 × 7.5 = 15

𝜇 =
60

10/3
= 18

𝜌 =
𝜆

𝜇
=
15

18
=
5

6

𝐿 =
𝜌

1 − 𝜌
= 5 𝑊 =

𝐿

𝜆
=

5

15
≈ 0. ത3 hours = 20 minutes

Thus, panic buying has caused long
lines.



The Queuing Formula 𝑳 = 𝝀𝑾
M/M/1 QUEUE Service Station Example

The Results

LAMBDA MU RHO STATE j PI_j

15 18 5/6 0 0.166666666667

1 0.138888888889

L 5.0000 2 0.115740740741

Lq 4.1667 3 0.096450617284

Ls 0.8333 4 0.080375514403

W 0.3333 5 0.066979595336

Wq 0.2778 6 0.055816329447

Ws 0.0556 7 0.046513607872

8 0.038761339894

9 0.032301116578

10 0.026917597148

11 0.022431330957

12 0.018692775797

13 0.015577313165

14 0.012981094304

15 0.010817578586

M/M/1 QUEUE Service Station Example

The Results

LAMBDA MU RHO STATE j PI_j

7.5 15 1/2 0 0.500000000000

1 0.250000000000

L 1.0000 2 0.125000000000

Lq 0.5000 3 0.062500000000

Ls 0.5000 4 0.031250000000

W 0.1333 5 0.015625000000

Wq 0.0667 6 0.007812500000

Ws 0.0667 7 0.003906250000

8 0.001953125000

9 0.000976562500

10 0.000488281250

11 0.000244140625

12 0.000122070313

13 0.000061035156

14 0.000030517578

15 0.000015258789



Chapter: [20]
Queuing Theory

Section: [20.5]
The M/M/1/GD/c/∞ Queuing System

Course: Applied Probability MW [2:15 – 3:30]



• The 𝑀/𝑀/1/𝐺𝐷/𝑐/∞ system is identical to the 𝑀/𝑀/1/𝐺𝐷/∞/∞ system 

except for the fact that when 𝑐 customers are present, all arrivals are turned 

away and are forever lost to the system.

• An 𝑀/𝑀/1/𝐺𝐷/𝑐/∞ queuing system may be modeled as a birth-death 

process with the following parameters:

𝜆𝑗 = 𝜆 𝑗 = 0,1,2,⋯ , 𝑐 − 1

𝜆𝑐 = 0

𝜇0 = 0

𝜇𝑗 = 𝜇 𝑗 = 1,2,3,⋯ , 𝑐

The Steady-State Probabilities



• The steady-state probabilities are:

𝜋1 =
𝜆

𝜇
𝜋0 , 𝜋2 =

𝜆2

𝜇2
𝜋0 , 𝜋3 =

𝜆3

𝜇3
𝜋0 , ⋯ , 𝜋𝑐 =

𝜆𝑐

𝜇𝑐
𝜋0

• Define 𝜌 =
𝜆

𝜇
. Then we obtain

𝜋1 = 𝜌𝜋0 , 𝜋2 = 𝜌2𝜋0 , 𝜋3 = 𝜌3𝜋0 , ⋯ , 𝜋𝑐 = 𝜌𝑐𝜋0

• Since 𝜋0 + 𝜋1 + 𝜋2 +⋯+ 𝜋𝑐 = 1, then:

𝜋0 1 + 𝜌 + 𝜌2 +⋯+ 𝜌𝑐 = 1

𝜋0
1 − 𝜌𝑐+1

1 − 𝜌
= 1 if 𝜌 ≠ 1

𝜋0 =
1 − 𝜌

1 − 𝜌𝑐+1
if 𝜌 ≠ 1 or 𝜆 ≠ 𝜇

The Steady-State Probabilities



• So if 𝜆 ≠ 𝜇, the steady-state probabilities for the 𝑀/𝑀/1/𝐺𝐷/𝑐/∞ model are 

given by

𝜋0 =
1 − 𝜌

1 − 𝜌𝑐+1

𝜋𝑗 =
𝜌𝑗 1 − 𝜌

1 − 𝜌𝑐+1
for 𝑗 = 1,2,⋯ , 𝑐

𝜋𝑗 = 0 for 𝑗 = 𝑐 + 1, 𝑐 + 2,⋯

• Also, we can show that when 𝜆 ≠ 𝜇,

𝐿 =
𝜌 1 − 𝑐 + 1 𝜌𝑐 + 𝑐𝜌𝑐+1

1 − 𝜌𝑐+1 1 − 𝜌

The Steady-State Probabilities



• If 𝜆 = 𝜇, then all the 𝑐𝑗’s equal 1, and all the 𝜋𝑗’s must be equal, and the 

steady-state probabilities for the 𝑀/𝑀/1/𝐺𝐷/𝑐/∞ system are

𝜋𝑗 =
1

𝑐 + 1
for 𝑗 = 0,1,2,⋯ , 𝑐

𝐿 =
𝑐

2

• For the other formulas, we have:

𝐿𝑠 = 1 − 𝜋0 , 𝐿𝑞 = 𝐿 − 𝐿𝑠 ,

𝑊 =
𝐿

𝜆 1 − 𝜋𝑐
, 𝑊𝑞 =

𝐿𝑞
𝜆 1 − 𝜋𝑐

, 𝑊𝑠 = 𝑊 −𝑊𝑞

• For an 𝑀/𝑀/1/𝐺𝐷/𝑐/∞ system, a steady state will exist even if 𝜆 ≥ 𝜇. This is 
because the finite capacity of the system prevents the number of people in the 
system from “blowing up.”

The Steady-State Probabilities



Important Note:

• Recall that, 𝜆 represents the average number of customers per unit time who 

actually enter the system.

• In our finite capacity model, an average of 𝜆 arrivals per unit time arrive, but 

𝜆𝜋𝑐 of these arrivals find the system filled to capacity and leave.

• Thus, an average of 𝜆 − 𝜆𝜋𝑐 = 𝜆 1 − 𝜋𝑐 arrivals per unit time will actually 

enter the system.

The Steady-State Probabilities



Barber Shop: A one-man barber shop has a total of 10 seats. Interarrival times are 

exponentially distributed, and an average of 20 prospective customers arrive each 

hour at the shop. Those customers who find the shop full do not enter. The barber 

takes an average of 12 minutes to cut each customer’s hair. Haircut times are 

exponentially distributed.

Example

1. On the average, how many haircuts per hour will the barber 
complete?

Solution: 𝜋0 =
1−𝜌

1−𝜌𝑐+1
=

1−4

1−411
=

1

1398101
.

Also, 𝜋10 =
𝜌𝑗 1−𝜌

1−𝜌𝑐+1
=

410 1−4

1−411
= 0.75. Thus, an average of 

20 1 − 0.75 = 5 customers per hour will receive haircuts.

𝑐 = 10
𝜆 = 20

𝜇 =
60

12
= 5

𝜌 =
𝜆

𝜇
=
20

5
= 4



Barber Shop: A one-man barber shop has a total of 10 seats. Interarrival times are 

exponentially distributed, and an average of 20 prospective customers arrive each 

hour at the shop. Those customers who find the shop full do not enter. The barber 

takes an average of 12 minutes to cut each customer’s hair. Haircut times are 

exponentially distributed.

Example

2. On the average, how much time will be spent in the shop by a 
customer who enters?
Solution: To determine 𝑊, we compute

𝐿 =
4 1 − 11 410 + 10 ⋅ 411

1 − 411 1 − 4
= 9.67 customers

So, 𝑊 =
𝐿

𝜆 1−𝜋𝑐
=

9.67

20 1−0.75
= 1.93 hours

𝑐 = 10
𝜆 = 20

𝜇 =
60

12
= 5

𝜌 =
𝜆

𝜇
=
20

5
= 4



Barber Shop:

Example
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The M/M/s/GD/∞/∞ Queuing System

Course: Applied Probability MW [2:15 – 3:30]



• We assume that interarrival times are exponential (with rate 𝜆), service times 

are exponential (with rate 𝜇), and there is a single line of customers waiting to 

be served at one of 𝑠 parallel servers.

• If 𝑗 ≤ 𝑠 customers are present, then all 𝑗 customers are in service

• If 𝑗 > 𝑠 customers are present, then all 𝑠 servers are occupied, and 𝑗 − 𝑠

customers are waiting in line.

• Any arrival who finds an idle server enters service immediately, but an arrival 

who does not find an idle server joins the queue of customers awaiting 

service.

Assumptions and Notes



• The 𝑀/𝑀/𝑠/𝐺𝐷/∞/∞ system can be modeled as a birth–death process with 

parameters

𝜆𝑗 = 𝜆 for 𝑗 = 0,1,2,⋯

𝜇𝑗 = 𝑗𝜇 for 𝑗 = 0,1,⋯ , 𝑠

𝜇𝑗 = 𝑠𝜇 for 𝑗 = 𝑠 + 1, 𝑠 + 2,⋯

• Define 𝜌 =
𝜆

𝑠𝜇
.

Model Parameters



• For 𝜌 < 1, the steady-state probabilities are:

𝜋0 =
1

𝑠𝜌 𝑠

𝑠! 1 − 𝜌
+ σ𝑖=0

𝑠−1 𝑠𝜌 𝑖

𝑖!

𝜋𝑗 =
𝑠𝜌 𝑗𝜋0
𝑗!

for 𝑗 = 1,2,⋯ , 𝑠

𝜋𝑗 =
𝑠𝜌 𝑗𝜋0
𝑠! ⋅ 𝑠𝑗−𝑠

for 𝑗 = 𝑠, 𝑠 + 1, 𝑠 + 2,⋯

• If 𝜌 ≥ 1, no steady state exists.

• It can be shown that the steady-state probability that all servers are busy is 
given by

𝑃 𝑗 ≥ 𝑠 =
𝑠𝜌 𝑠𝜋0

𝑠! 1 − 𝜌

Steady-State Probabilities



Steady-State Probabilities



• It can also be shown that:

𝐿𝑞 =
𝑃 𝑗 ≥ 𝑠 𝜌

1 − 𝜌

𝐿𝑠 =
𝜆

𝜇
= 𝑠𝜌

𝐿 = 𝐿𝑠 + 𝐿𝑞

𝑊𝑞 =
𝐿𝑞
𝜆
=
𝑃 𝑗 ≥ 𝑠

𝑠𝜇 − 𝜆

𝑊𝑠 =
𝐿𝑠
𝜆
=
1

𝜇
𝑊 = 𝑊𝑠 +𝑊𝑞

The Queuing Formulas



Consider a bank with two tellers. An average of 80 customers per hour arrive at the 

bank and wait in a single line for an idle teller. The average time it takes to serve a 

customer is 1.2 minutes. Assume that interarrival times and service times are 

exponential. Determine

Example

1. The expected number of customers present in the bank.
Solution: From the previous table, 𝑃 𝑗 ≥ 2 = 0.71. So,

𝐿𝑠 =
𝜆

𝜇
=
80

50
= 1.6

𝐿𝑞 =
𝑃 𝑗 ≥ 2 𝜌

1 − 𝜌
=

0.71 0.8

0.2
= 2.84

∴ 𝐿 = 𝐿𝑠 + 𝐿𝑞 = 1.6 + 2.84 = 4.44 customers

𝑠 = 2
𝜆 = 80

𝜇 =
60

1.2
= 50

𝜌 =
𝜆

𝑠𝜇
=

80

100
= 0.8



Consider a bank with two tellers. An average of 80 customers per hour arrive at the 

bank and wait in a single line for an idle teller. The average time it takes to serve a 

customer is 1.2 minutes. Assume that interarrival times and service times are 

exponential. Determine

Example

2. The expected length of time a customer spends in the 
bank.
Solution:

∴ 𝑊 =
𝐿

𝜆
=
4.44

80
= 0.055 hours = 3.3 minutes

𝑠 = 2
𝜆 = 80

𝜇 =
60

1.2
= 50

𝜌 =
𝜆

𝑠𝜇
=

80

100
= 0.8



Consider a bank with two tellers. An average of 80 customers per hour arrive at the 

bank and wait in a single line for an idle teller. The average time it takes to serve a 

customer is 1.2 minutes. Assume that interarrival times and service times are 

exponential. Determine

Example

3. The fraction of time that a particular teller is idle.
Solution: We need to evaluate the value 𝜋0 + 0.5𝜋1.

𝑃 𝑗 ≥ 𝑠 =
𝑠𝜌 𝑠𝜋0

𝑠! 1 − 𝜌
⇒ 0.71 =

2 × 0.8 2𝜋0
2! × 0.2

⇒ 𝜋0 = 0.11

𝜋𝑗 =
𝑠𝜌 𝑗𝜋0
𝑗!

⇒ 𝜋1 =
2 × 0.8 × 0.11

1!
= 0.176

∴ 𝜋0 + 0.5𝜋1 = 0.198

𝑠 = 2
𝜆 = 80

𝜇 =
60

1.2
= 50

𝜌 =
𝜆

𝑠𝜇
=

80

100
= 0.8
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• Simulation ( المحاكاا) is a very powerful and widely used management science 

technique for the analysis and study of complex systems.

• Simulation may be defined as a technique that imitates ( ّيقُلد) the operation of 

a real-world system as it evolves over time.

• The major advantage of simulation is that simulation methods are easier to 

apply than analytical methods.

• Once a model is built, it can be used repeatedly to analyze different policies, 

parameters, or designs.

• It must be emphasized that simulation is not an optimizing technique. It is 

most often used to analyze “what if” types of questions.

Introduction



• A system is a collection of entities ( وحد ت) that act and interact toward the 

accomplishment (تحقيق، إنجاز) of some logical end (نهاية منطقية).

• The state of a system is the collection of variables necessary to describe the 

status of the system at any given time.

• In a system, an object of interest is called an entity, and any properties of an 

entity are called attributes.

• Systems may be classified as discrete or continuous.

• A discrete system is one in which the state variables change only at discrete 

or countable points in time.

Definitions



• A continuous system is one in which the state variables change continuously 

over time.

• There are two types of simulation models: static (ثابت) and dynamic (مرن).

• A static simulation model is a representation of a system at a particular 

point in time.

• A dynamic simulation is a representation of a system as it evolves over time.

Definitions



Chapter: [21]
Simulation
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• A large proportion of the applications of simulations are for probabilistic 

models.

• The Monte Carlo technique is defined as a technique for selecting numbers 

randomly from a probability distribution for use in a trial (computer run) of a 

simulation model.

• The basic principle behind the process is the same as in the operation of 

gambling devices in casinos (such as those in Monte Carlo, Monaco).

Monte Carlo Process



The manager of ComputerWorld, a store that sells computers and related 

equipment ( مُعدّ ت), is attempting to determine how many laptop PCs the store 

should order each week.

• A primary consideration in this decision is the average number of laptop 

computers that the store will sell each week and the average weekly revenue 

generated from the sale of laptop PCs. A laptop sells for $4,300.

• The number of laptops demanded each week is a random variable (which we 

will define as 𝑥) that ranges from 0 to 4.

• From past sales records, the manager has determined the frequency of 

demand for laptop PCs for the past 100 weeks.

The Use of Random Numbers (Example)



The purpose of the Monte Carlo 

process is to generate the 

random variable, demand, by 

sampling from the probability 

distribution 𝑃(𝑥).

The Use of Random Numbers (Example)



• The partitioned roulette wheel replicates 

the probability distribution for demand if 

the values of demand occur in a random 

manner.

• The segment at which the wheel stops 

indicates demand for one week.

The Use of Random Numbers (Example)



• In addition to partitioning the wheel 

into segments corresponding to the 

probability of demand, we will put 

numbers along the outer rim, as on 

a real roulette wheel.

• When the manager spins this new 

wheel, the actual demand for PCs 

will be determined by a number.

The Use of Random Numbers (Example)



• For example, if the number 71 comes up on a spin, the demand is 2 

PCs per week.

• Obviously, it is not generally practical to generate weekly demand for 

PCs by spinning a wheel. Alternatively, the process of spinning a 

wheel can be replicated by using random numbers alone.

• First, we will transfer the ranges of random numbers for each 

demand value from the roulette wheel to a table

The Use of Random Numbers (Example)



• Next, instead of spinning the wheel 

to get a random number, we will 

select a random number using 

computer, Excel for example.

The Use of Random Numbers (Example)

• In Excel, by entering the command =RANDBETWEEN(0,99) in a cell, we 

generate a random number between 0 and 99.

• Random numbers between 0 and 1 can be generated in Excel by entering the 

formula =RAND() in a cell.



The Use of Random Numbers (Example)

• If you attempt to replicate this spreadsheet, you will generate different random 

numbers from those you have got before. In fact, any time you recalculate 

anything on your spreadsheet, the random numbers will change.

• The more periods simulated, the more accurate the results.

• Simulation results will not equal analytical results unless enough trials have been 

conducted to reach steady state.

• It is often difficult to validate results of simulation (that true steady state has 

been reached and that simulation model truly replicates reality).

• When analytical analysis is not possible, there is no analytical standard of 

comparison, thus making validation even more difficult.
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