Philadelphia University Department of Basic Sciences and Mathematics

Final Exam	Linear Algebra 2		15-1-2013
Name:	Number:	Serial:	Section: (1)
1. (5 points) Determine whether the statement is true (\mathbf{T}) or false (\mathbf{F}) :			
(a) [] A	positive definite matrix is in	vertible.	
(b) [] If	\mathbf{A} is positive definite, then -	$-\mathbf{A}$ is negative definite.	
(c) [] If able.	A is a square matrix, then	$\mathbf{A}^{\mathbf{T}}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{\mathbf{T}}$ are orthogonal	nogonally diagonaliz-
	A is both invertible and orthe diagonalizable.	nogonally diagonalizable	, then \mathbf{A}^{-1} is orthog-
(e) [] T.	he matrix $\begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$ is orthough	ogonal.	
	Express the quadratic form 6 ation $\mathbf{x}^{T}\mathbf{A}\mathbf{x}$, where \mathbf{A} is sym		$+4x_1x_3 + x_2x_3$ in the
,	Suppose that \mathbf{u} and \mathbf{v} are \mathbf{v} aluate $\langle \mathbf{u} - \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle$.	rectors such that $\langle \mathbf{u}, \mathbf{v} \rangle$	$= 3, \mathbf{u} = 5, \text{ and}$

4. (4 points) Let $\mathbf{f} = 1 - x^2$ and $\mathbf{g} = 3 + 12x - 4x^2$. Use the inner product

 $\langle \mathbf{f}, \mathbf{g} \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2$

on $\mathbf{P_2}$ to compute the cosine of the angle between \mathbf{f} and $\mathbf{g}.$

5. (4 points) What conditions must a and b satisfy for the matrix $\mathbf{A} = \begin{bmatrix} a+b & b-a \\ a-b & b+a \end{bmatrix}$ to be orthogonal.

6. (5 points) Prove that: there is no vector space consisting of exactly two elements.

7. (15 points) Find a matrix ${\bf P}$ that orthogonally diagonalizes

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

