Philadelphia University	PHILADELPHIA	Approval date: 8/10/2024
Faculty of Science	UNIVERSITY	Issue:
Department of Math	THE WAY TO THE FUTURE	Credit hours: 3
Academic year 2025/2026	Course Syllabus	Bachelor

Course information

Course#		Course title		Prere	equisite	
250372		Computer Aided Mathematics				DEs 0203
Course type		Class t	ime	Room #		
☐ University Requi	rersity Requirement		SM		2827	
☐ Major Requirement ☐ Elective ☐ Compulsory		14:15 –	15:05	2021		
Degree / NQF Level ☐ Diploma degree (6)		⊠ Bachelo	r degree (7)		

Instructor Information

Name	Office No.	Phone No.	Office Hours		E-mail
Eans Arred	922	2122	SM	12:45-13:45	form d@uhilodaluhia advis
Feras Awad	822	2132	ST	11:30-12:30	fawad@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method			
☐ Physical ☐ Online ☒ Blended			
Learning Model			
Dunaamtaga	Synchronous	Asynchronous	Physical
Precentage	0%	33%	67%

Course Description

The structure of Mathematica. Mathematica as a Calculator. Variables and functions. Lists. Logic and set theory. Number Theory. Computer algebra and Solving Equations. Single Variable Calculus.

Course Learning Outcomes

Course Learning Outcomes			
Number	Outcomes	Corresponding Program outcomes	
	Knowledge		
K1	Learn the use of commands and functions for solving and visualizing mathematical problems.	K _p 3	
	Skills		
S1	Use Wolfram Language to solve problems graphically, numerically and analytically.	Sp4	
Competencies			
C 1	Work in a team to implement one of the tasks of the course.	C _p 2	

Learning Resources

Course textbook	• Feras Awad (02/10/2025) A Glimpse to Mathematica [Wolfram Language]. Instructor Lectures and Notes.		
Supporting References	 Wellin, P. (2013) Programming with Mathematica: An Introduction (1st ed.). Cambridge University Press. Hastings, C., Mischo, K., Michael M. (2015) Hands-on start to Wolfram Mathematica (1st ed.). Champaign: Wolfram Media, Inc. 		
Supporting websites	WolframCloud: www.wolframcloud.com/		
Teaching Environment	□Classroom ⊠ laboratory ⊠Learning platform □Other		

Meetings and Subjects Timetable

	Meetings and Subjects Timetable			
Week	Торіс	Learning Methods	Tasks	Learning Material
	Explanation of the study plan for the course, and what is expected to be accomplished by the students.			Course Syllabus
1	Introduction: What Is the Wolfram Language? Wolfram Cloud. What is Mathematica? The Structure of Mathematica. Common Kinds of Interfaces to Mathematica. Notebook Interfaces. Palettes	Lecture		Chapter 1
2	Mathematica as a Calculator: Commands for Basic Arithmetic. Precedence. Built-in Constants and Functions. Numerical Notations. Prefix and Postfix Forms for Built-in Functions. Mathematica Help	Lecture		Chapter 2
3	Variables and Functions: Rules for Names. Immediate Assignment. Functions. Transformation Rule.	Lecture		Chapter 3
4	Anonymous Functions. Functions with Conditions.	Lecture	Quiz 1	Chapter 3
5	Lists: What is a List? Functions Producing Lists. Displaying Lists. Working with Elements of a List.	Lecture		Chapter 4
6	Useful Functions. Listable Functions.	Lecture		Chapter 4
7	Vectors. Matrices. Special Types of Matrices. Basic Matrix Operations	Lecture		Chapter 4
8	Logic and Set Theory: Being Logical. Truth Tables. Element "€". Handling Sets.	Lecture	Midterm	Chapter 5
9	Number Theory Primes. Integer Factorization. Digits in Numbers. Fibonacci Sequence. Number Theoretic Functions.	Lecture		Chapter 6
10	Computer Algebra and Solving Equations Working with Polynomials, Rational and Transcendental Functions.	Lecture		Chapter 7
11	Equations and Their Solutions. Inequalities	Lecture		Chapter 7

12	Single Variable Calculus: Limits. Differentiation. Maximum and Minimum.	Lecture	Quiz 2	Chapter 8
13	Integration. Sequences	Lecture		Chapter 8
14	Series. Taylor Polynomials	Lecture		Chapter 8
15	Review	Lecture	Quiz 3	
16	Final Exam			

^{*} Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Contributing to Learner Skill Development

8 1
Using Technology
Use Wolfram Language to solve mathematical problems.
Communication Skills
• Choose a mathematical problem and present it to the students and explaining its solution method using Wolfram Language.
Application of Concepts Learnt
Choose a famous math problem on YouTube and solve it using Wolfram Language.

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	30%	8	K 1
Various Assessments *	30%	Continuous	S1, C1
Final Exam	40%	16	K1
Total	100%		

^{*} Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Method*	Assessment Method**
	Knowledge		
K1	Learn the use of commands and functions for solving and visualizing mathematical problems.	Lecture	Exam
	Skills		
S1	Use Wolfram Language to solve problems graphically, numerically and analytically.	Lecture	Computer Assignment
	Competencies		
C1	Work in a team to implement one of the tasks of the course.	Project	Group Project

^{*} Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Polices

Policy	Policy Requirements	
Passing Grade	The minimum passing grade for the course is (50%) and the minimum final mark recorded on transcript is (35%).	
Missing	Missing an exam without a valid excuse will result in a zero grade to be assigned	
Exams	to the exam or assessment.	

^{**} Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

	• A Student who misses an exam or scheduled assessment, for a legitimate					
	reason, must submit an official written excuse within a week from an exam					
	assessment due date.					
	• A student who has an excuse for missing a final exam should submit the excuse					
	to the dean within three days of the missed exam date.					
	The student is not allowed to be absent more than (15%) of the total hours prescribed					
	for the course, which equates to six lectures days (M, W) and six lectures (S, T). If the					
	student misses more than (15%) of the total hours prescribed for the course without a					
Attendance	satisfactory excuse accepted by the dean of the faculty, s/he will be prohibited from					
	taking the final exam and the grade in that course is considered (zero), but if the					
	absence is due to illness or a compulsive excuse accepted by the dean of the college,					
	then withdrawal grade will be recorded.					
	Philadelphia University pays special attention to the issue of academic integrity, and					
Academic	the penalties stipulated in the university's instructions are applied to those who are					
Honesty	proven to have committed an act that violates academic integrity, such as: cheating,					
	plagiarism (academic theft), collusion, and violating intellectual property rights.					

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
Sp4	The use of technology and software in the various fields of mathematics.	Computer Aided	Project	100% of the students get 70% or
,	in the various fields of mathematics.	Mathematics	3	more on the rubric

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment
Sp4	The student is given a problem, and use Wolfram Language to write a code that solves the problem.

Assessment Rubric of the Program Learning Outcome

	Poor (1 pt.) Student is very confused and does not understand the topic, nor is able to clearly grasp how to apply it or when to use it.	Fair (2 pts) Student has a decent grasp of the process but makes some major mistakes.	Good (3 pts) Student is almost perfect in their understanding of the topic, with some minor confusion or mistakes.
Code Structure Structure of code, use of functions and procedures, code segmentation	Long code segments, improper usage of functions, functions with side effects.	Code structure needs work.	Code structure has perfectly followed guidelines. Short code segments, proper use of functions.
Code Reuse How well code reuse is implemented	Too much redundancy in code	Occasional code redundancy	No code redundancy
Correctness How correct is the output of the program	Program does not work correctly; output is wrong most of the time or there is no output.	Program works correctly in general in most areas but not in all areas.	Program works correctly in all areas and generates correct output.
Execution How smoothly does the program execute - are there any bugs	Program does not execute.	Program executes but crashes in some areas.	Program executes perfectly.