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Tangent Line

Equation of Line (Point-Slope Formula)

The slope m = tan θ

= y1 − y0

x1 − x0 θ

(x0, y0)

(x1, y1)

NOTE: The equation of the line with slope m and passes through the
point (x0, y0) is given by

y − y0 = m (x − x0)
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Tangent Line

Equation of Line (Point-Slope Formula)

Example 1
Find the equation of the line passes through the points (1, 4) and
(2, 7).

m = 7 − 4
2 − 1 = 3

y − 4 = 3(x − 1)
y − 4 = 3x − 3

y = 3x + 1

NOTE: The equation of the form y = mx + b is called the
slope-intercept formula, where m is the slope of the line, and b is
the y−intercept.
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Tangent Line

The Relations Between Lines

m > 0 m < 0 m = 0 m undefined

Let ℓ1 be a line with slope m1, and ℓ2 be a line with slope m2. Then
(1) ℓ1 and ℓ2 are parallel ⇔ m1 = m2.
(2) ℓ1 and ℓ2 are perpendicular ⇔ m1 × m2 = −1.
(3) Otherwise, ℓ1 and ℓ2 intersects at some point.
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Tangent Line

The Relations Between Lines

Example 2
(1) If the line y = mx − 5 is parallel to the line 6x − 3y = 12, then

m =

(A) 6 (B) 2 ✓ (C) −2 (D) −1/2

(2) If the line y = mx − 5 is perpendicular to the line 6x − 3y = 12,
then m =

(A) 6 (B) 2 (C) −2 (D) −1/2 ✓

Write the line 6x − 3y = 12 in standard form as y = 2x − 4.
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Tangent Line

The Equation of the Tangent Line

msec = f (x) − f (x0)
x − x0

mtan = lim
x→x0

msec

= lim
x→x0

f (x) − f (x0)
x − x0

= lim
h→0

f (x0 + h) − f (x0)
h

= f ′ (x0)

Tangent

P (x0, f (x0))

Q (x , f (x))
Secant

h = x − x0

h
h
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Tangent Line

The Equation of the Tangent Line

Example 3
Find the equation of the tangent line of f (x) = x2 at x0 = 3.

Point: (x0, f (x0)) = (3, f (3)) = (3, 9)

Slope: mtan = lim
x→3

f (x) − f (3)
x − 3 = lim

x→3

x2 − 9
x − 3 = 6

Equation: y − f (x0) = mtan (x − x0)
y − f (3) = 6(x − 3)

y − 9 = 6x − 18
y = 6x − 9
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The Derivative as a Function

The Definition of the Derivative

Definition 1
The 1st order derivative of y = f (x) at x = c is defined by

f ′(c) = lim
x→c

f (x) − f (c)
x − c = lim

h→0

f (c + h) − f (c)
h

NOTE: The first order derivative of the function y = f (x) is denoted
by

y ′ , f ′(x) , dy
dx , df

dx , d
dx f (x) , Dy
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The Derivative as a Function

The Definition of the Derivative

Example 4
If f (x) = x3, find f ′(c).

f ′(c) = lim
x→c

f (x) − f (c)
x − c

= lim
x→c

x3 − c3

x − c

= lim
x→c

(x − c) (x2 + cx + c2)
x − c

= lim
x→c

(
x2 + cx + c2

)
= 3c2
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The Derivative as a Function

When f (x) is Differentiable at x = c?

Definition 2
f (x) is differentiable at x = c if f ′(c) exists.

NOTE: f ′(c) exists ⇔ lim
x→c

f (x) − f (x)
x − c exists

⇔ lim
x→c+

f (x) − f (x)
x − c = lim

x→c−

f (x) − f (x)
x − c

⇔ f ′
+(c) = f ′

−(c)
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The Derivative as a Function

When f (x) is Differentiable at x = c?

Example 5
Show that f (x) = |x | is NOT differentiable at x = 0.

f ′(0) = lim
x→0

f (x) − f (0)
x − 0

= lim
x→0

|x |
x

f ′
+(0) = lim

x→0+

|x |
x = 1

f ′
−(0) = lim

x→0−

|x |
x = −1

∴ f ′(0) d.n.e

|x | =

x : x ≥ 0
−x : x < 0

|x |
x =

1 : x > 0
−1 : x < 0

Corner
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The Derivative as a Function

The Relation Between Continuity & Differentiablity

Theorem 1
(1) If f (x) is discontinuous at x = c, then f ′(c) d.n.e
(2) If f ′(c) exists, then f is continuous at x = c

Example 6

f (x) = 1
x is discontinuous at x = 0 ⇒ f ′(0) d.n.e

NOTE:
(1) If f is continuous at x = c , then f ′(c) may exist or may not.
(2) If f ′(c) d.n.e, then f may continuous at x = c or may not.
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Differentiation Rules, Chain Rule

Rules of Differentiation & Chain Rule

Rule [1]: d
dx
(
constant

)
= 0

For example, d
dx (1/2) = 0 ,

d
dx

(
π2
)

= 0

Rule [2]: d
dx
(
kf (x)

)
= kf ′(x) ; k is constant

Rule [3]: d
dx
(
f (x) ± g(x)

)
= f ′(x) ± g ′(x)

Rule [4]: d
dx
(
f (x) · g(x)

)
= f (x) · g ′(x) + f ′(x) · g(x)

d
dx
(
f · g · h

)
= f ′ · g · h + f · g ′ · h + f · g · h′

...
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Differentiation Rules, Chain Rule

Rules of Differentiation & Chain Rule

Rule [5]: d
dx

(
f
g

)
= g · f ′ − f · g ′

g2

d
dx

(
c
g

)
= −c · g ′

g2 ; c is constant

Rule [6]: Chain Rule
d
dx
(
(f ◦ g)(x)

)
= d

dx
(
f (g(x))

)
= f ′(g(x)) · g ′(x)

Rule [7]: d
dx (xn) = n · xn−1

d
dx ((g(x))n) = n · (g(x))n−1 · g ′(x)
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Differentiation Rules, Chain Rule

Rules of Differentiation & Chain Rule

Example 7

(1) d
dx
(
x
)

= 1 · x0 = 1

(2) d
dx (2x + 3) = 2 d

dx (x) + d
dx (3) = 2

(3) d
dx (4x2) = 4 d

dx (x2) = (4)(2x) = 8x

(4) d
dx

((
x2 − 3x

)3
)

= 3 ·
(
x2 − 3x

)2
· d

dx
(
x2 − 3x

)
= 3 ·

(
x2 − 3x

)2
· (2x − 3)
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Differentiation Rules, Chain Rule

Rules of Differentiation & Chain Rule

Example 8

(1) d
dx

(
x(1 − x)100

)
= x · d

dx
(
(1 − x)100

)
+ d

dx (x) · (1 − x)100

= x · 100(1 − x)99(−1) + (1 − x)100

= −100x(1 − x)99 + (1 − x)100

= (1 − x)99(1 − 101x)

(2) d
dx

(3
x

)
= 3 d

dx
(
x−1

)
= 3 · (−1)x−2 = −3

x2

d
dx

(3
x

)
= −3 · (x)′

x2 = −3
x2
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Differentiation Rules, Chain Rule

Rules of Differentiation & Chain Rule

Example 9

(1) d
dx

( x
x2 + 1

)
= (x2 + 1) · (x)′ − x · (x2 + 1)′

(x2 + 1)2

= (x2 + 1) · (1) − x · (2x)
(x2 + 1)2

= x2 + 1 − 2x2

(x2 + 1)2 = 1 − x2

(x2 + 1)2

(2) d
dt
(
(t − 1)(t + 1)

)
= d

dt (t2 − 1) = 2t

(3) d
dx

(
3

√
x2
)

= d
dx

(
x 2/3

)
= 2

3 · x −1/3 = 2
3 · 1

x 1/3
= 2

3 3
√

x
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Differentiation Rules, Chain Rule

Rules of Differentiation & Chain Rule

NOTE: d
dx (

√
x) = 1

2
√

x ; d
dx

(√
g(x)

)
= g ′(x)

2
√

g(x)

Example 10
d
dx

(√
x2 − 1

)
=

d
dx (x2 − 1)
2
√

x2 − 1
= 2x

2
√

x2 − 1
= x√

x2 − 1

Example 11
d
dx

(
x2 +

√
x

x

)
= d

dx

(
x2

x + x 1/2

x

)
= d

dx
(
x + x −1/2

)
= 1 − 1

2x −3/2

= 1 − 1
2

√
x3
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Differentiation Rules, Chain Rule

Rules of Differentiation & Chain Rule

Rule [8]: d
dx

(
bg(x)

)
= bg(x) · ln b · g ′(x)

Example 12

(1) d
dx (ex) = ex · ln e · d

dx (x) = ex

(2) d
dx

(
3x2+1

)
= 3x2+1 · ln 3 · d

dx (x2 + 1) = 2 ln 3 · x · 3x2+1

(3) d
dx (x · 2x) = x d

dx (2x) + 2x d
dx (x)

= x · 2x · ln 2 · 1 + 2x · 1 = 2x (x ln 2 + 1)
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Differentiation Rules, Chain Rule

Rules of Differentiation & Chain Rule

Example 13

(1) d
dx

(√
ex
)

= ex

2
√

ex = ex

2 (ex)1/2
= ex

2ex/2
= 1

2ex/2 = 1
2

√
ex

OR d
dx

(√
ex
)

= d
dx

(
ex/2

)
= ex/2 · d

dx (x/2) = 1
2ex/2 = 1

2
√

ex

(2) d
dx

( x
ex

)
= ex · 1 − x · ex

(ex)2 = ex(1 − x)
e2x = 1 − x

ex

OR d
dx

( x
ex

)
= d

dx
(
xe−x

)
= x · d

dx
(
e−x

)
+ e−x · d

dx (x)

= −xe−x + e−x = e−x(−x + 1) = 1 − x
ex
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Differentiation Rules, Chain Rule

Rules of Differentiation & Chain Rule

Rule [9]: d
dx (logb g(x)) = g ′(x)

g(x) ln b

Example 14

(1) d
dx (ln x) = 1

x ln e = 1
x

(2) d
dx (log3 (x2)) = 2x

x2 ln 3 = 2
x ln 3

(3) d
dx

(
x ln

(
x2 + 1

))
= x · d

dx
(
ln
(
x2 + 1

))
+ ln

(
x2 + 1

)
· d

dx (x)

= x · 2x
x2 + 1 + ln

(
x2 + 1

)
· 1

= 2x2

x2 + 1 + ln
(
x2 + 1

)
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Differentiation Rules, Chain Rule

Rules of Differentiation & Chain Rule

Example 15

(1) d
dx

(
52 log5 x

)
= d

dx

(
5log5(x2)

)
= d

dx (x2) = 2x

(2) d
dt (log10 (t · 10t)) = d

dt (log10 t + log10 (10t))

= d
dt (log10 t + t) = 1

t · ln 10 + 1

(3) d
dx

( x
ln x

)
=

(ln x) · 1 − x · 1
x

(ln x)2 = ln x − 1
(ln x)2
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Differentiation Rules, Chain Rule

Rules of Differentiation & Chain Rule

Rule [10]: d
dx
(

sin g(x)
)

= g ′(x) · cos(g(x))
d
dx
(

cos g(x)
)

= −g ′(x) · sin(g(x))
d
dx
(

tan g(x)
)

= g ′(x) · sec2(g(x))
d
dx
(

cot g(x)
)

= −g ′(x) · csc2(g(x))
d
dx
(

sec g(x)
)

= g ′(x) · sec(g(x)) tan(g(x))
d
dx
(

csc g(x)
)

= −g ′(x) · csc(g(x)) cot(g(x))
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Differentiation Rules, Chain Rule

Rules of Differentiation & Chain Rule

Example 16

(1) d
dx
(

tan x
)

= sec2 x · 1 = sec2 x

(2) d
dx (x sin (2x)) = x · d

dx (sin (2x)) + sin (2x) · d
dx (x)

= x · cos (2x) · 2x · ln 2 + sin (2x) · 1
= x 2x ln 2 cos (2x) + sin (2x)

(3) d
dx

(1 + cos x
sin x

)
= d

dx

( 1
sin x + cos x

sin x

)
= d

dx
(

csc x + cot x
)

= − csc x cot x − csc2 x
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Differentiation Rules, Chain Rule

Rules of Differentiation & Chain Rule

Example 17

(1) d
dx (4x cos x) = 4x cos x · ln 4 · d

dx (x cos x)

= 4x cos x · ln 4 ·
(

− x · sin x + cos x
)

(2) d
dx

( sin x
1 + cos x

)
= (1 + cos x) · (sin x)′ − (sin x)(1 + cos x)′

(1 + cos x)2

= (1 + cos x)(cos x) − (sin x)(− sin x)
(1 + cos x)2

= cos x + cos2 x + sin2 x
(1 + cos x)2

= cos x + 1
(1 + cos x)2 = 1

1 + cos x
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Differentiation Rules, Chain Rule

Rules of Differentiation & Chain Rule

Example 18

(1) d
dx

(
sin3 x

)
= d

dx
(
(sin x)3

)
= 3(sin x)2 d

dx (sin x) = 3 sin2 x cos x

(2) d
dx
(

(sec x + tan x) (sec x − tan x)
)

= d
dx

(
sec2 x − tan2 x

)
= d

dx (1) = 0
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Differentiation Rules, Chain Rule

Rules of Differentiation & Chain Rule

Example 19

If f (x) = ln
(

ex sin x√
x + 1

)
. Find f ′(x).

f (x) = ln (ex sin x) − ln
(√

x + 1
)

= ln (ex) + ln (sin x) − ln
(
(x + 1)1/2

)
= x + ln (sin x) − 1

2 ln(x + 1)

∴ f ′(x) = d
dx

(
x + ln (sin x) − 1

2 ln(x + 1)
)

= 1 + cos x
sin x − 1

2
1

x + 1 = 1 + cot x − 1
2(x + 1)
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Differentiation Rules, Chain Rule

Rules of Differentiation & Chain Rule

Rule [11]: d
dx

(
tan−1 g(x)

)
= g ′(x)

1 + g2(x)
d
dx

(
sin−1 g(x)

)
= g ′(x)√

1 − g2(x)
d
dx

(
sec−1 g(x)

)
= g ′(x)

|g(x)|
√

g2(x) − 1

Example 20
d
dx

(
sin−1 (x3)

)
= (x3)′√

1 − (x3)2
= 3x2

√
1 − x6
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Differentiation Rules, Chain Rule

Rules of Differentiation & Chain Rule

Example 21
d
dx

(
x tan−1

(√
x
))

= x · d
dx

(
tan−1

(√
x
))

+
(
tan−1

(√
x
))

· d
dx (x)

= x · (
√

x)′

1 + (
√

x)2 + tan−1
(√

x
)

= x ·
1

2
√

x

1 + x + tan−1
(√

x
)

= x · 1
2
√

x · 1
1 + x + tan−1

(√
x
)

=
√

x
2(1 + x) + tan−1

(√
x
)
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Differentiation Rules, Chain Rule

Rules of Differentiation & Chain Rule

NOTE: lim
h→0

f (x + ah) − f (x)
bh = a

b f ′(x)

Example 22

Let f (x) = ln x . Evaluate lim
h→0

f (1 − 2h) − f (1)
3h

lim
h→0

f (1 − 2h) − f (1)
3h = −2

3 f ′(1)

But f ′(x) = 1
x ⇒ f ′(1) = 1

1 = 1

∴ lim
h→0

f (1 − 2h) − f (1)
3h = −2

3 · 1 = −2
3
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Differentiation Rules, Chain Rule

Rules of Differentiation & Chain Rule

Example 23
Given that g(2) = 1/2, g ′(2) = −1/4, f ′ (1/2) = 1, find

(
f ◦ g

)′
(2)(

f ◦ g
)′

(2) = f ′(g(2)) · g ′(2) = f ′ (1/2) · −1/4 = 1 · −1/4 = −1/4

Example 24

Let d
dx (f (x2)) = x2. Find f ′ (x2).

d
dx

(
f
(
x2
))

= x2 ⇒ f ′
(
x2
)

· d
dx

(
x2
)

= x2

⇒ 2xf ′
(
x2
)

= x2 ⇒ f ′
(
x2
)

= x
2
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Differentiation Rules, Chain Rule

Rules of Differentiation & Chain Rule

Example 25

For what values of a and b, the function f (x) =

x2 + a : x ≤ 1
bx : x > 1

is

differentiable at x = 1.

f ′(1) exists.
f ′
+(1) = f ′

−(1)

f ′(x) =


2x : x < 1
b : x > 1
? : x = 1

b = 2(1) = 2

f (x) continuous at x = 1
lim
x→1

f (x) exists

lim
x→1+

f (x) = lim
x→1−

f (x)

b = 12 + a
a = b − 1 = 2 − 1 = 1

Feras Awad (Philadelphia University) Lecture Notes for Calculus 1 32 / 88



Differentiation Rules, Chain Rule

Think About It

Exercise 1
(1) If f (x) =

√
xg(x) where g(4) = 2, g ′(4) = 4, find f ′(4).

(2) Find the equation of the tangent line of f (x) = x − 1
x − 2 at x = 3.

(3) Find the points on the curve y = 2x3 + 3x2 − 12x + 1 where the
tangent is horizontal.

(4) If the tangent line to f (x) at (4, 3) passes through the point
(0, 2). Find f (4), f ′(4), and the equation of the tangent line.

(5) Let y = f (x2 + 1). If f (2) = 3 and f ′(2) = 5, find dy
dx at x = 1.
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Differentiation Rules, Chain Rule

Think About It

Exercise 2
The figure shows the graph of a function over a closed interval. At
what domain points does the function appear to be

(1) differentiable?
(2) continuous but not differentiable?
(3) neither continuous nor

differentiable?
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Differentiation Rules, Chain Rule

Think About It

Exercise 3
Suppose that the functions f and g and their derivatives with respect
to x have the following values at x = 0 and x = 1.

x f (x) g(x) f ′(x) g ′(x)
0 1 1 5 1/3
1 3 −4 −1/3 −8/3

Find the derivatives with respect to x of the following combinations
at the given value of x .
(1) f (x) · g3(x) at x = 0
(2) f (x + g(x)) at x = 0
(3) (x11 + f (x))−2 at x = 1
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Differentiation Rules, Chain Rule

The Chain Rule (Origin)

If y = f (t) and t = g(x) are both differentiable
functions, then

dy
dx = dy

dt · dt
dx

y

t

x
Example 26

If y = tan x and x = 4t3 + t, find dy
dt .

dy
dt = dy

dx · dx
dt

= sec2 x ·
(
12t2 + 1

)
=
(
12t2 + 1

)
sec2

(
4t3 + t

)
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Differentiation Rules, Chain Rule

The Chain Rule (Origin)

Example 27

Let y = 5 − et and t = 2x2 − 3. Find dy
dx

∣∣∣∣∣
x=1

.

Note that when x = 1, then t = 2(1)2 − 3 = −1.

dy
dx = dy

dt · dt
dx = (−et) · (4x) ⇒ dy

dx

∣∣∣∣∣
x=1

=
(
−e−1

)
· (4) = −4

e

Exercise 4

If dy
dx

∣∣∣∣∣
x=2

= 12 and t = x2 + 1. Find dy
dt

∣∣∣∣∣
t=5

.
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Higher Order Derivatives

Second Order Derivative

The second order derivative of f (x) is denoted by

f ′′(x) ,
d2

dx2 f (x) , f (2)(x)

and is defined by f ′′(c) = lim
h→0

f ′(c + h) − f ′(c)
h

= lim
x→c

f ′(x) − f ′(c)
x − c

and can be evaluated by the formula

f ′′(x) = d
dx
(
f ′(x)

)
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Higher Order Derivatives

nth Order Derivative

In general, the nth order derivative of f (x) is

f (n)(x) = dn

dxn f (x) = d
dx

(
f (n−1)(x)

)
Example 28
Let f (x) = x3 − 4x . Find

(1) f ′(2)
f ′(x) = 3x2 − 4
f ′(2) = 3 · (2)2 − 4 = 8

(2) f ′′(1)
f ′′(x) = d

dx
(
3x2 − 4

)
= 6x

f ′′(1) = 6 × 1 = 6

(3) f ′′′(x) = d
dx (6x) = 6

(4) f (4)(x) = d
dx (6) = 0
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Higher Order Derivatives

nth Order Derivative

Example 29

Find d2

dx2

(
sin
(
x2
) )∣∣∣∣∣

x=0

d
dx
(

sin
(
x2
) )

= cos
(
x2
)

· d
dx

(
x2
)

= 2x cos
(
x2
)

d2

dx2

(
sin
(
x2
) )

= d
dx

(
2x cos

(
x2
))

= 2x · d
dx

(
cos

(
x2
))

+ cos
(
x2
)

· d
dx (2x)

= −4x2 sin
(
x2
)

+ 2 cos
(
x2
)

∴
d2

dx2

(
sin
(
x2
) )∣∣∣∣∣

x=0
= 0 + 2(1) = 2
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Higher Order Derivatives

nth Order Derivative

Example 30
Find a formula for the nth order derivative of f (x) = xex .

f ′(x) = x · d
dx (ex) + ex · d

dx (x) = xex + ex = (x + 1)ex

f ′′(x) = (x + 1) · d
dx (ex) + ex · d

dx (x + 1) = (x + 1)ex + ex

= (x + 2)ex

f ′′′(x) = (x + 2) · d
dx (ex) + ex · d

dx (x + 2) = (x + 2)ex + ex

= (x + 3)ex

∴ f (n)(x) = (x + n)ex
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Higher Order Derivatives

nth Order Derivative

Example 31
Let f (x) = sin x . Find f (87)(x).

f (0)(x) = sin x
f (1)(x) = cos x
f (2)(x) = − sin x
f (3)(x) = − cos x

Since 87 mod 4 = 3, then
f (87)(x) = f (3)(x) = − cos x .

NOTE: dn

dxn

(
sin x

)
= sin

(nπ

2 + x
)

dn

dxn

(
cos x

)
= cos

(nπ

2 + x
)
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Implicit Differentiation

Implicit Equation

An equation in x and y can implicitly define more than one function
of x , so it is not a graph of a function.

Example 32

= ∪

x2 + y 2 = 4 y =
√

4 − x2 y = −
√

4 − x2

= ∪
x = y 2 y =

√
x y = −

√
x
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Implicit Differentiation

The Derivative of Implicit Equation

(1) Differentiate both sides of the implicit equation, treating y as a
function of x .

(2) Collect the terms with y ′.
(3) Solve for y ′.

Example 33
Find y ′ if x = y 2.

x = y 2 ⇒ d
dx (x) = d

dx
(
y 2
)

⇒ 1 = 2y · y ′

⇒ y ′ = 1
2y
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Implicit Differentiation

The Derivative of Implicit Equation

Example 34

Find dy
dx if y = sin(xy).

d
dx (y) = d

dx (sin(xy)) ⇒ y ′ = cos(xy) · d
dx (xy)

⇒ y ′ = cos(xy) · (xy ′ + y)
⇒ y ′ = xy ′ cos(xy) + y cos(xy)
⇒ y ′ − xy ′ cos(xy) = y cos(xy)
⇒ y ′(1 − x cos(xy)) = y cos(xy)

⇒ y ′ = y cos(xy)
1 − x cos(xy)
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Implicit Differentiation

The Derivative of Implicit Equation

Example 35
Find the equation of tangent line of x2 + y 2 = 25 at (3, 4).

* Point: (3, 4)

* Slope: d
dx

(
x2 + y 2

)
= d

dx (25) ⇒ 2x + 2yy ′ = 0

⇒ y ′ = −x
y

∴ m = y ′(3, 4) = −3/4

* Equation: y − y0 = m (x − x0)
y − 4 = −3/4(x − 3)

y = −3/4x + 25/4
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Implicit Differentiation

The Derivative of Implicit Equation

Example 36

Find d2y
dx2 if 4x2 − 2y 2 = 9.

d
dx

(
4x2 − 2y 2

)
= d

dx (9)

8x − 4yy ′ = 0

y ′ = 2x
y

d
dx (y ′) = d

dx

(
2x
y

)

y ′′ = y · 2 − 2x · y ′

y 2

=
2y − 2x · 2x

y

y 2

= 2y 2 − 4x2

y 3 = −9
y 3
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Implicit Differentiation

The Derivative of Implicit Equation

Rule: d
dx (f −1(x)) = 1

f ′ (f −1(x))

Example 37
Using the values in the table for a function f (x), find (f −1)′ (2).

x f (x) f ′(x)
1 2 3
2 9 12

(
f −1

)′
(2) = 1

f ′ (f −1(2)) = 1
f ′(1) = 1

3
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Implicit Differentiation

The Derivative of Implicit Equation

Example 38
Given that y = x sin x , find y ′.

ln y = ln
(
x sin x

)
⇒ ln y = sin x ln x

d
dx (ln y) = d

dx (sin x ln x) ⇒ y ′

y = sin x · 1
x + ln x · cos x

⇒ y ′ = y
(sin x

x + cos x ln x
)

⇒ y ′ = x sin x
(sin x

x + cos x ln x
)
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Indeterminate Forms

Indeterminate Forms & L’Hospital’s Rule

b
0 = ∞
b
∞

= 0

ln(0) = −∞
ln(∞) = ∞

e∞ = ∞
e−∞ = 0

tan−1(∞) = π

2
tan−1(−∞) = −π

2
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Indeterminate Forms

Indeterminate Forms & L’Hospital’s Rule

Type [1]: 0
0 or ∞

∞
≡ lim

x→c

f (x)
g(x)

= lim
x→c

f ′(x)
g ′(x) (by L’Hospital’s Rule)

Example 39

Evaluate lim
x→0

ex − 1
x3 = 0

0

= lim
x→0

d
dx (ex − 1)

d
dx (x3)

= lim
x→0

ex

3x2 = 1
0

= ∞ d.n.e
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Indeterminate Forms

Indeterminate Forms & L’Hospital’s Rule

Example 40

Evaluate lim
x→1

ln x
x − 1 = 0

0

= lim
x→1

d
dx (ln x)

d
dx (x − 1)

= lim
x→1

1/x
1 = 1

Example 41

Evaluate lim
x→∞

ex

x2 = ∞
∞

= lim
x→∞

ex

2x = ∞
∞

= lim
x→∞

ex

2 = ∞
2 = ∞ d.n.e
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Indeterminate Forms

Indeterminate Forms & L’Hospital’s Rule

Type [2]: 0 · ∞ ≡ lim
x→c

f (x) · g(x) =


lim
x→c

f (x)
1/g(x) = 0

0
lim
x→c

g(x)
1/f (x) = ∞

∞

Example 42
Evaluate lim

x→0+
x ln x = 0 · (−∞)

= lim
x→0+

ln x
1/x = −∞

∞

= lim
x→0+

1/x
−1/x2 = lim

x→0+
(−x) = 0
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Indeterminate Forms

Indeterminate Forms & L’Hospital’s Rule

Example 43
Evaluate lim

x→∞
xe−x = ∞ · 0

= lim
x→∞

x
ex = ∞

∞
= lim

x→∞

1
ex = 1

∞
= 0

Exercise 5

Evaluate (1) lim
x→0

5x − sin(5x)
4x − tan(4x)

(2) lim
x→π/4

(1 − tanx) · sec(2x)
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Indeterminate Forms

Indeterminate Forms & L’Hospital’s Rule

Type [3]:
∞ − ∞

−∞ + ∞
≡ lim

x→c

(
f (x) − g(x)

) Common Denominator
Factoring
Conjugate

Example 44

Evaluate lim
x→0+

(1
x − 1

sin x

)
= ∞ − ∞

= lim
x→0+

sin x − x
x sin x = 0

0
= lim

x→0+

cos x − 1
x cos x + sin x = 0

0

= lim
x→0+

− sin x
−x sin x + 2 cos x = 0

2 = 0

NOTE: ∞ + ∞ = ∞ and −∞ − ∞ = −∞
Feras Awad (Philadelphia University) Lecture Notes for Calculus 1 55 / 88



Indeterminate Forms

Indeterminate Forms & L’Hospital’s Rule

Example 45
Evaluate

lim
x→∞

(√
x + 1 −

√
x
)

= ∞ − ∞

= lim
x→∞

(√
x + 1 −

√
x
)

·
√

x + 1 +
√

x√
x + 1 +

√
x

= lim
x→∞

(x + 1) − x√
x + 1 +

√
x

= lim
x→∞

1√
x + 1 +

√
x

= 1
∞

= 0
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Indeterminate Forms

Indeterminate Forms & L’Hospital’s Rule

Example 46
Evaluate lim

t→∞

(
te1/t − t

)
= ∞ − ∞

= lim
t→∞

t ·
(
e1/t − 1

)
= ∞ · 0

= lim
t→∞

e1/t − 1
1/t = 0

0

= lim
t→∞

(−1/t2) · e1/t

−1/t2

= lim
t→∞

e1/t = e0 = 1
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Indeterminate Forms

Indeterminate Forms & L’Hospital’s Rule

Type [4]: 00 , ∞0 , 1∞ ≡ lim
x→c

(
f (x)g(x)

)
Example 47
Evaluate lim

x→0+

(
1 + sin x

)1/x
= 1∞

Let y =
(
1 + sin x

)1/x

ln y = ln
(
(1 + sin x)1/x

)
= ln(1 + sin x)

x

lim
x→0+

ln y = lim
x→0+

ln(1 + sin x)
x = lim

x→0+

cos x
1 + sin x = 1

lim
x→0+

y = e1 = e
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Indeterminate Forms

Indeterminate Forms & L’Hospital’s Rule

Example 48

Evaluate lim
x→∞

(
1 + 2

x

)3x
= 1∞

Let y =
(

1 + 2
x

)3x
⇒ ln y = 3x ln

(
1 + 2

x

)
lim

x→∞
ln y = lim

x→∞
3x ln

(
1 + 2

x

)
= ∞ · 0

= 3 lim
x→∞

ln
(
1 + 2

x

)
1
x

= 3 lim
x→∞

−2/x2

1+2/x

−1/x2
= 3 lim

x→∞

2
1 + 2/x

= 6

lim
x→∞

y = e6
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Indeterminate Forms

Indeterminate Forms & L’Hospital’s Rule

NOTE: lim
x→∞

(
1 + a

x

)bx
= eab

lim
x→0

(1 + ax)b/x = eab

Exercise 6
Evaluate (1) lim

x→0+
(ex − 2x)3/x

(2) lim
x→0+

(1 + 3 sin x)2 cot x
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Mean Value Theorem for Derivatives

Rolle’s Theorem
If f (x) is continuous on [a, b]

f (x) is differentiable on (a, b)
f (a) = f (b) = 0

Then there exists at least one
c ∈ (a, b) such that f ′(c) = 0.

a bc

NOTE:
(1) Rolle’s Theorem still hold if

f (a) = f (b) ̸= 0.
(2) The derivative at any endpoint of

a closed interval does not exist.
a bc
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Mean Value Theorem for Derivatives

Rolle’s Theorem

Example 49
Verify that the hypotheses of Rolle’s Theorem are satisfied for the
function f (x) = x2 − 8x + 15 on the interval [3, 5], and find all
values of c in that interval that satisfy the conclusion of the theorem.

(1) Since f (x) is a polynomial, then it is continuous on [3, 5].
(2) f ′(x) = 2x − 8 always exists ∀x ∈ (3, 5) since it is a polynomial.
(3) f (3) = f (5) = 0.

∴ There exists c ∈ (3, 5) such that f ′(c) = 0
2c − 8 = 0

c = 4 ∈ (3, 5)
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Mean Value Theorem for Derivatives

Mean Value Theorem (MVT)

If f (x) is continuous on [a, b]
f (x) is differentiable on (a, b)

Then there exists at least one c ∈ (a, b)

such that f ′(c) = f (b) − f (a)
b − a .

a bc

Example 50
Verify that the hypotheses of the MVT are
satisfied for the function f (x) = x2 − x on
the interval [−3, 5], and find all values of c
in the interval that satisfy the conclusion of
the theorem.

f ′(c) = f (5) − f (−3)
5 − (−3)

2c − 1 = 20 − 12
8

2c − 1 = 1
∴ c = 1 ∈ (−3, 5)
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Mean Value Theorem for Derivatives

Think About It

Exercise 7
(1) Verify that the hypotheses of Rolle’s Theorem are satisfied on

the given interval, and find all values of c in that interval that
satisfy the conclusion of the theorem.
(a) f (x) = 1

2x −
√

x ; x ∈ [0, 4]
(b) g(x) = cos x ; x ∈ [π/2, 3π/2]

(2) Verify that the hypotheses of the Mean-Value Theorem are
satisfied on the given interval, and find all values of c in that
interval that satisfy the conclusion of the theorem.
(a) f (x) = x − 1

x ; x ∈ [3, 4]
(b) g(x) =

√
25 − x2 ; x ∈ [−5, 3]
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Analyzing the Graphs of Functions

Increasing and Decreasing Functions

* f (x) increases
* If x1 < x2 then f (x1) < f (x2)
* All tangents have positive slopes
* f ′(x) > 0

x1 x2

f (x1)

f (x2)

* f (x) decreases
* If x1 < x2 then f (x1) > f (x2)
* All tangents have negative slopes
* f ′(x) < 0

x1 x2

f (x1)

f (x2)
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Analyzing the Graphs of Functions

Increasing and Decreasing Functions

Theorem 2
Let f be a function that is continuous on a closed interval [a, b] and
differentiable on the open interval (a, b). If
(1) f ′(x) > 0 for all x ∈ (a, b), then f is increasing on [a, b].
(2) f ′(x) < 0 for all x ∈ (a, b), then f is decreasing on [a, b].
(3) f ′(x) = 0 for all x ∈ (a, b), then f is constant on [a, b].

Definition 3
A critical number of a function f is any number c in the domain of
f at which f ′(c) = 0︸ ︷︷ ︸

Stationary

or f ′(c) d.n.e

Feras Awad (Philadelphia University) Lecture Notes for Calculus 1 66 / 88



Analyzing the Graphs of Functions

Maximum & Minimum Values

(1) A function f has relative (local)
maximum at c if f (c) ≥ f (x) for
all x in some open interval
containing c .

(2) A function f has relative (local)
minimum at c if f (c) ≤ f (x) for all
x in some open interval containing c .

min (abs)

max (abs)

min (local)

max (local)

min (local)

(3) A function f has absolute maximum at c if f (c) ≥ f (x) for all
x in the domain of f .

(4) A function f has absolute minimum at c if f (c) ≤ f (x) for all
x in the domain of f .
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Analyzing the Graphs of Functions

Maximum & Minimum Values

Theorem 3
If f has a relative extremum (min or max) at x0, then either
f ′ (x0) = 0 or f ′ (x0) d.n.e

NOTE: A function f has a relative extremum at those critical points
where f ′ changes sign.
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Analyzing the Graphs of Functions

Maximum & Minimum Values

Example 51
Determine the intervals where the function f (x) = x3 − 3x2 + 2
increasing and where it is decreasing, and find the extremum points.

* The domain of f is R.
* Critical numbers:

f ′(x) = 3x2 − 6x = 3x(x − 2)
f ′(x) = 0 if x = 0, x = 2

* f ′(x) always exists.

−∞ ∞
f ′

0 2

+ − +

* f decreases on [0, 2]
* f increases on

(−∞, 0], [2, ∞)
* f has local max at x = 0 with

f (0) = 2
* f has local min at x = 2 with

f (2) = 0
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Analyzing the Graphs of Functions

Absolute Extremum

NOTE: The figure shows the graph of
f (x) = x3 − 3x2 + 2 in the previous
example.

Theorem 4
If f is continuous on a closed interval [a,b], then f attains an
absolute maximum value f (c) for some number c ∈ [a, b] and an
absolute minimum value f (d) for some number d ∈ [a, b].
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Analyzing the Graphs of Functions

Absolute Extremum

Example 52
Determine the intervals where the function f (x) = 3x4 − 4x3 − 8
increasing and where it is decreasing on [−1, 2]. Also, find the
extremum points and identify their types.

Critical numbers:
f ′(x) = 12x3 − 12x2

= 12x2(x − 1)
f ′(x) = 0 if x = 0, x = 1

−1 2
f ′

0 1

− − +

* f increases on [1, 2]
* f decreases on [−1, 1]
*

x f (x) Type
−1 −1 local max

2 8 abs. max
1 −9 abs. min
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Analyzing the Graphs of Functions

Concavity: Up & Down

* Increasing Slopes
* (f ′)′ > 0 ⇒ f ′′(x) > 0

* decreasing Slopes
* (f ′)′ < 0 ⇒ f ′′(x) < 0

Feras Awad (Philadelphia University) Lecture Notes for Calculus 1 72 / 88



Analyzing the Graphs of Functions

Concavity: Up & Down

Theorem 5
Let f be a function whose 2nd derivative exists on (a, b).
(1) If f ′′(x) > 0 for all x ∈ (a, b) then the graph of f is concave

upward on (a, b).
(2) If f ′′(x) < 0 for all x ∈ (a, b) then the graph of f is concave

downward on (a, b).

Definition 4
If f (x) is continuous at c and f
changes concavity at c , then the point
(c , f (c)) is an inflection point of f .
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Analyzing the Graphs of Functions

Concavity: Up & Down
Theorem 6
If (c , f (c)) is a point of inflection of the graph of f then either
f ′′(c) = 0 or f ′′(c) does not exist.

Example 53
Determine the inflection points and the intervals of concavity for
f (x) = x4 − 4x3 + 12.

f ′(x) = 4x3 − 12x2

f ′′(x) = 12x2 − 24x
= 12x(x − 2)

f ′′(x) = 0 if x = 0, x = 2

−∞ ∞
f ′′

0 2

+ − +
∪ ∩ ∪

* f concave-up on (−∞, 0], [2, ∞)
* f concave-down on [0, 2]
* (0, 12), (2, −4) are inflection points
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Analyzing the Graphs of Functions

Concavity: Up & Down

NOTE: Some functions change concavity
without having points of inflection. For
example, f (x) = 1

x .

up

down

NOTE: Some continuous functions have
an inflection point even though the 2nd
derivative does not exist. For example,
f (x) = 3

√
x .

down

up

Feras Awad (Philadelphia University) Lecture Notes for Calculus 1 75 / 88



Analyzing the Graphs of Functions

Second Derivative Test

Theorem 7
Suppose f ′(x) = 0, and f ′′(x) is continuous over an interval
containing c.

1. If f ′′(c) > 0, then f has a local minimum at c.
2. If f ′′(c) < 0, then f has a local maximum at c.
3. If f ′′(c) = 0, then the test is inconclusive.

Note: For case (3). when f ′′(c) = 0, then f may have a local
maximum, local minimum, or neither at c .
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Analyzing the Graphs of Functions

Second Derivative Test

Example 54
Use the second derivative to find the location of all local extrema for
f (x) = x5 − 5x3.

* Find the critical numbers:
f ′(x) = 0 ⇒ 5x4 − 15x2 = 0 ⇒ 5x2

(
x2 − 3

)
= 0

⇒ x = 0, x = ±
√

3
* Find the second derivative: f ′′(x) = 20x3 − 30x

x f ′′(x) Conclusion
−

√
3 −30

√
3 max

0 0 inconclusive√
3 30

√
3 min
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Analyzing the Graphs of Functions

More Examples

Example 55
Let f (x) = xex ; x ∈ R. Find the
(1) critical numbers

Solution: f ′(x) = xex + ex ⇒ ex(1 + x) = 0 ⇒ x = −1

(2) intervals of increasing and
decreasing
Solution: f decreases on
(−∞, −1) and increases on
(−1, ∞)

−∞ ∞
f ′

−1
(min)

− +

(3) maximum & minimum values and classify them
Solution: (−1, f (−1)) =

(
−1, −1

e

)
is an absolute minimum.
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Analyzing the Graphs of Functions

More Examples

Example 55 (Continued)
Let f (x) = xex ; x ∈ R. Find the
(4) intervals of concavity and inflection points

Solution: f ′(x) = ex(1 + x) ⇒ f ′′(x) = ex(2 + x)
⇒ ex(2 + x) = 0 ⇒ x = −2

−∞ ∞
f ′′

−2

− +
∩ ∪

∴ f is concave down on (−∞, −2) and concave up on (−2, ∞).
The point (−2, f (−2)) =

(
−2, − 2

e2

)
is an inflection point.
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Analyzing the Graphs of Functions

More Examples

Example 55 (Continued)
Let f (x) = xex ; x ∈ R. Find the
(5) graph of f

Solution:
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Analyzing the Graphs of Functions

More Examples

Example 56
Let f (x) = tan−1 x ; x ∈ R. Find the
(1) critical numbers

Solution: f ′(x) = 1
1 + x2 ⇒ f ′ exists and not 0

⇒ No critical numbers
(2) intervals of increasing and decreasing

Solution: f increases on (−∞, ∞)
−∞ ∞

f ′
+

(3) maximum & minimum values and classify them
Solution: No extremum
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Analyzing the Graphs of Functions

More Examples

Example 56 (Continued)
Let f (x) = tan−1 x ; x ∈ R. Find the
(4) intervals of concavity and inflection points

Solution: f ′(x) = 1
1 + x2 ⇒ f ′′(x) = −2x

(1 + x2)2

⇒ −2x
(1 + x2)2 = 0 ⇒ x = 0

−∞ ∞
f ′′

0

+ −∪ ∩

∴ f is concave up on (−∞, 0) and concave down on (0, ∞).
The point (0, f (0)) = (0, 0) is an inflection point.
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Analyzing the Graphs of Functions

More Examples

Example 56 (Continued)
Let f (x) = tan−1 x ; x ∈ R. Find the
(5) graph of f

Solution:
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Analyzing the Graphs of Functions

More Examples

Example 57
Let f (x) = sin x ; x ∈

[
0, 2π

]
. Find the

(1) critical numbers
Solution: f ′(x) = cos x ⇒ cos x = 0 ; x ∈

[
0, 2π

]
⇒ x = π/2 , x = 3π/2

f ′(x) does not exist at x = 0 , x = 2π

(2) intervals of increasing and decreasing
Solution: f decreases on

(
π
2 , 3π

2

)
and

increases on
(
0, π

2

)
,
(

3π
2 , 2π

)
0 2π

f ′
π
2

3π
2

+ − +

min max min max
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Analyzing the Graphs of Functions

More Examples

Example 57 (Continued)
Let f (x) = sin x ; x ∈

[
0, 2π

]
. Find the

(3) maximum & minimum values and classify them
Solution:

x f (x) = sin x Type
0 0 min (local)
3π
2 −1 min (abs)

π
2 1 max (abs)
2π 0 max (local)
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Analyzing the Graphs of Functions

More Examples

Example 57 (Continued)
Let f (x) = sin x ; x ∈

[
0, 2π

]
. Find the

(4) intervals of concavity and inflection points
Solution: f ′(x) = cos x ⇒ f ′′(x) = − sin x

⇒ − sin x = 0 ⇒ x = 0, π, 2π

0 2π
f ′′

π

− +∩ ∪

∴ f is concave down on (0, π) and concave up on (π, 2π). The
point (π, f (π)) = (π, 0) is an inflection point.
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Analyzing the Graphs of Functions

Think About It

Exercise 8
For each of the following functions find
(1) critical numbers
(2) intervals of increasing and decreasing
(3) maximum & minimum values and classify them
(4) intervals of concavity and inflection points

* f (x) = 2x3 − 6x ; x ∈ [−3, 4]
* g(x) = x2/3 ; x ∈ R

* h(x) = x2

x − 1 ; x ∈ R
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Analyzing the Graphs of Functions

Think About It

Exercise 9
(1) Let f (x) = x2 + bx + c. Find the values of b and c such that

f (1) = 3 is an extreme value of f on [0, 2]. Is this value a
maximum or minimum?

(2) Use the graph of the equation y = f (x) in the figure to find the

signs of dy
dx and d2y

dx s at the points A, B, and C.

A

B C
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