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MATHEMATICAL MODELS

Mathematical Model A function or an equation describes a particular
phenomenon mathematically to understand real-world

problems.
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PROPORTIONALITY

Definition Two variables y and x are proportional to each other if
one is always a constant multiple of the other, and we

write y « x.

\ y = kx for some nonzero constant k

If a proportionality is reasonable, a plot
of one variable against the other should
approximate a straight line through the

origin.




PROPORTIONALITY

Example Consider a spring-mass system shown in the Figure. _
We conduct an experiment to measure the stretch of Mass Elongation

the spring (Elongation e) as a function of the mass 4 1.000
(m) placed on the spring. 100 | 875
150 2.750

s [ w— 200 3.250
< < 250 4.375
"E -~ 300 4.875
= > 350 5.675
:;'.m :;. 400 6.500
________ = “I" 450 7.250
. W 500 8.000

550 8.750




PROPORTIONALITY

Example _ .
Mass  Elongation 1 e xXm
50 1.000 ’ e = km
100 L.875 . e = 0.01575m
150 2.750 N
200 3.250
250 4.375 B0 200 300 400 500
300 4.875
350 5.675
400 6.500 The scatterplot reveals a straight line passing
450 7250 approximately through the origin,
500 8.000
7.250 — 5.675
550 8.750 k(slope) = — 0.01575

450 — 350




MODELING CHANGE

Idea Often, we wish to predict the future based on what we know in the
present.

future value = present value + change * Collecting dota over period

of time.

We begin by studying the ch itself. ——
€ begin Dy studying the change Itse * Plotting the data.

Chanae = future value - present value * Observing any pattern.
Discrete Time Period Continuous Time Period
Difference Differential

Eduation Eduation
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SEQUENCES

Definition

Example

A sequence a, is a function whose domain is the set of all
nonnegative integers and whose range is a subset of the real

numbers.
/N&@v]@ml Term

Write out the first five terms of the sequence a,, = 4".

ay=4"=1 We can write a, usivg the recursiov
a, = 41 = 4 formula:

a, =4* =16 Anyr = 4a, ; n=012,

a; = 43 = 64 iy =

a, = 4% = 256



SEQUENCES

Example

Example

Write out the first five terms of the sequence

2

ag—1=2*-1=3
ai —1=32-1=8
a5 —1=8%—-1=63

a5 —1=63%—-1=3968

— 2
An+1 = A — 1
Ag =

Find a formula for the nth term of the sequence 1, 3,7, 15, 31, ---

2

4

°

10

22

211

224

224

244

254

21

22

2%

24

25

a,=2"-1; n=123,--




MODELING OBSERVED CHANGES

Definition  For a sequence of numbers A = {ay, a,, a,, as, - } the first differences

are
Aao — a1 — ao
Aa1 — az — a1
Aap, = an1 — an
Example By examining the sequence {1,2,5,12,27, --- }, write a difference equation

to represent the change during the nth interval as a function of the

previous term in the sequence.

Aag =a; —ap=2—-1=1 Aa, = a1 —a, =a, +n
Aa, =a,—a, =5—2=3
Al ? ! 19— —7 A1 = 24, +n
Ay = A3 — Ay = — 5 =

2 3 2 ap =1
Aa; =a,—a3=27—-12=15



MODELING OBSERVED CHANGES

Example Write out the first five terms of the sequence satisfying the difference
equations

Ap,, = 0.001(500 — p,,)

po = 10
App = Pn+1 — Pn po = 10
0.001(500 — p,,) = Pps1 — Pny p; = (0.999)(10) + 0.5 = 10.49
Pniq = 0.001(500 — p,,) + p,, p, = (0.999)(10.49) + 0.5 = 10.97951
Pnitr = 0.999p, + 0.5 ps = (0.999)(10.97951) + 0.5 = 11.46853
Po.= 20 S Pwanical p, = (0.999)(11.46853) + 0.5 = 11.95706

System



MODELING OBSERVED CHANGES

Definition A dynamical system is a relationship among terms in a sequence.

Example SAVINGS CERTIFICATE (A2 culalgd)

A savings certificate is initially valued at $1000 and earns compound
interest (4:S_ 81l8) at a monthly rate of 1%. Formulate a dynamical
system that exactly models the value of the certificate over time.

Aa, =0.01la, =a,.; —a, The valne of the certificate for the
first few months:

an+1 = ay, +0.01a, 1000
1010
a,+1 = 1.01a, 102.041
a, = 1000 1050.501

104.0.0401



MODELING OBSERVED CHANGES

Example

GRANDPARENTS ANNUITY

Your grandparents ((»2adl) have an annuity (=& <l ). The value of the
annuity increases each month by an automatic deposit (¢'xl) of 1%
interest on the previous month’s balance (x<=_). Your grandparents
withdraw (—=~) $1000 at the beginning of each month for living
expenses (“duxall <lass). Currently, they have $60,000 in the annuity.
Model the annuity with a dynamical system.

an+1 = a, + 0.01a,, — 1000

a,., = 1.01a, — 1000
a, = 60000
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LINEAR DYNAMICAL SYSTEMS a,,.; = ra,,, FOR 7 CONSTANT

Note

Theorem

Example

Given a dynamical system a,, .1 = ra,, where a, is an initial value, then
_ _ .2
Any1 =T(rap-1) =7r%ay1
=r2(ran_;) =rap_, = =1r""a,

The solution of the linear dynamical system a,,,.1 = ra,, for any nonzero
constantr is

a, =r"a,
where ag is a given initial value.

Find the solution to the difference equations a,,,.; = 5a,, where a; = 10.

a, =10 5" n=012---



LINEAR DYNAMICAL SYSTEMS a,,.; = ra,,, FOR 7 CONSTANT

Example SAVINGS CERTIFICATE

1) Determine the value of the certificate after one year. an+1 = 1.01a,
2) In how many months will the certificate's value double? ay, = 1000
N
0
a, = 1000 - (1.0 N\ a, = 2000
% a, = 1000 - (1.01)12 1000 - (1.01)™ = 2000
N = 112683 (1.01)" =
nln1.01 =1n2
n = 69.6607

~n=70 Wonths



LINEAR DYNAMICAL SYSTEMS a,,.; = ra,,, FOR  CONSTANT

Example Sewage Treatment (Aall i pall ol 4381

A sewage treatment plant (4t 4ass) processes raw sewage to produce
usable fertilizer and clean water by removing all other contaminants
(3l sl s U glall), The process is such that each hour 12% of remaining
contaminants in a processing tank are removed.

A. What percentage of the sewage would remain after 1 day?

Let  the wital  amount of  sewage a4 = (0.88)** ay = 0.0465 a,

contaminants be ay and let a,, denote the

amount after n Nours. The avmwwr of sewane after
the end if the 157 day is about

a,.1 = a, —0.12a, a, = (0.88)"q, 4.65%0 of Its initial amount

= 0.88a,



LINEAR DYNAMICAL SYSTEMS a,,.; = ra,,, FOR  CONSTANT

Example

Sewage Treatment (Aall i pall ol 4381

A sewage treatment plant (4t 4ass) processes raw sewage to produce
usable fertilizer and clean water by removing all other contaminants
(3l sl s U glall), The process is such that each hour 12% of remaining
contaminants in a processing tank are removed.

B. How long would it take to lower the amount of sewage by half?

1
an —_ _ao — (0.88)"610

2
(0.88)" = 0.5
In(0.5)

~ 5.42 hours

"~ 1n(0.88)



LINEAR DYNAMICAL SYSTEMS a,,.; = ra,,, FOR  CONSTANT

Example

Sewage Treatment (Aall i pall ol 4381

A sewage treatment plant (4t 4ass) processes raw sewage to produce
usable fertilizer and clean water by removing all other contaminants
(3l sl s U glall), The process is such that each hour 12% of remaining
contaminants in a processing tank are removed.

C. How long until the level of sewage is down to 10% of the original
level?

a, = 0.10a, = (0.88)"a,
(0.88)" = 0.1

_ In(0.1)
~ 1n(0.88)

n ~ 18.01 hours



LONG-TERM BEHAVIOR OF a,,, ; = ra,,, FOR 7 CONSTANT

Definition Values for which a dynamical system remains constant at those
values, once reached, are called equilibrium values of the system.

Case[1] r=20 Constant solution and equilibrinm value at D

All the values of the sequence (except possibly ay) are zero.

Case[2] r=1 All vitial values are constant solutions and
equilibrium value at a,

Then a,,1 = a,,. No matter where the sequence starts, it

stays there forever. .
o @ @ o e e o o o o o
For example: An4+1 = Ap )

3 1

Ao

0 1 2 3 4 S 6 7 8 9 10




LONG-TERM BEHAVIOR OF a,,, ; = ra,,, FOR 7 CONSTANT

Case[3]

Case[4]

r=—1 No eguilibrinm value

The values oscillate between —ay and a,.

For example: Any1 = —0yn
ao —_ 2

r>1 ao>0

The sequence grows large without bound.

For example:  Qn41 = 24y,
ao —_ 1

120

100

80

60

40

20




LONG-TERM BEHAVIOR OF a,,, ; = ra,,, FOR 7 CONSTANT

20

Case[5] r>1 ap <0

1 o. 9 @ 6
The sequence grows negative without bound. 20
For example: Ani+1 = 24y, 0
Ao = —
Case[6] r< —1 No equilibrinm value 10

The sequence oscillates and grows. :

For example: ) S —

an_l_l — _1-5an -
Aoy = 1 ~10

=15




LONG-TERM BEHAVIOR OF a,,, ; = ra,,, FOR 7 CONSTANT

Case[7] —1<r<o0 The equilibrinm value is 0.

The sequence oscillates and decays to 0.

0457
For example: '
0.1 ’," Y
\
an_l_l — _O.San " \
0.05 ! \
aO — _0.25 ” ‘\ ,\\
I ‘I ., \\ /’-—"'-. .—-_ N
of [ 1 '\\2 ;3 ‘.- 5 - 7 4 ¢ 10"
/
=0.05 " ! ;l
I b/




LONG-TERM BEHAVIOR OF a,,, ; = ra,,, FOR 7 CONSTANT

Case[8] 0<r<i1 The equilibriam value is D.

The sequence decays to 0.

ap >0 Forexample: an;; = 0.5a, ap <0 Forexample: a,+; = 0.5a,
Ay = 1 Ag = —1
®
0 1 2 3 ‘ e ] ,_)
0.8 ]
-0.2
@
0.6
® -0.4
0.4 ®
=0.6
e
0.2
® -0.8
® o e o
0 1 2 3 4 5 6 7
_1’



DYNAMICAL SYSTEMS a,,,1 = ra,, + b, FOR r, b CONSTANTS

Theorem Given a dynamical system a,,,; = ra, + b where a, is an initial value. If
r # 1, then

a, =rag+b
a,=ra;+b=r(@ay+b)+b=r%a,+ (r+1)b

a; =ra,+b=r(@%ay+(r+1)b)+b=13ay+ @*+r+1)b

ap=1"ag+ (" 4+ "2+ rZ 4 r + 1)b

1—7r"
1—r

Ay = ‘r‘nao + - b



DYNAMICAL SYSTEMS a,,,1 = ra,, + b, FOR r, b CONSTANTS

Example Find the solution to the difference equations a,,,.1 = —a,, + 2 where
CLO — — 1.

1—7r"

a, =r"ay+ T - b
1—-(—1)"
= (D" (D =gy @)

=D ED+1-CEDE

=2- (-1 +1



DYNAMICAL SYSTEMS a,,,{ = ra,, + b, FOR r, b CONSTANTS

Example GRANDPARENTS ANNUITY
Will the annuity run out of money? When? r\ /‘”

1-(@on™ (~1000) a,+1 = 1.01a, —1000
1-1.01 ap = 60000

= 60000 - (1.01)™ + (100000) - (1 — (1.01)")

a, = 60000 - (1.01)™ +

= 100000 — 40000 - (1.01)"

(101)" = 100000 ,
' 40000
we find v such that a, =0 In 2.5
n = ~ 92.0865
100000 — 40000 - (1.01)™ = In1.01

~n =93 Wonths



FINDING AND CLASSIFYING EQUILIBRIUM VALUES

Definition

Theorem

Stability

A point p is a stable equilibrium of a dynamical system if, when the
system starts close to p, it stays close to p for all future time.

The equilibrium value for the dynamical system a,,.1 = r a,, + b where
r+1,is
b
P17
If r =1 and b = 0, every number is an equilibrium value. If r = 1 and
b # 0, no equilibrium value exists.

For the dynamical system a,,,; = ra,, + b where b + O:

o Tf|r| < 1:Stable equilibrinm
o Tf|r]> 1: Unstable equilibrium
o Tfr=1:Graphis a live with vo equilibrium



FINDING AND CLASSIFYING EQUILIBRIUM VALUES

Example For the following problems, find an equilibrium value if one exists.
Classify the equilibrium value as stable or unstable.

1 n a a a
[1] an+1=5an+1 —_— n n n
0 3 1 2

b 1 2.5 1.5 2

Equilibriom valne = - ) 7 ot 17¢ y
1 3 2.125 1.875 2

=1_05 ° 4 2.0625 19375 2

Since r = 0.5 and |r| <1, thew the 5 203125 1.96875 2
equililbriom is stable 6 2.01563 198438 2
7 2.00781 1.99219 2



FINDING AND CLASSIFYING EQUILIBRIUM VALUES

Example For the following problems, find an equilibrium value if one exists.
Classify the equilibrium value as stable or unstable.

n a, a, a,
[2] ansy =20 43 0 05 15 1
1 2 0 1
s b
Equilibriom valne = ] 2 —1 3 1
—r
3 3 5 -3 1
= =1 —_

s 4 7 9 1
| 5 17  -15 1
qu r=-2 and |r| > 1, then the 6 _3q 33 1

equilibrium 1s unstable
7 65 —63 1
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