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MATHEMATICAL MODELS

Mathematical Model A function or an equation describes a particular 
phenomenon mathematically to understand real-world 
problems.
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PROPORTIONALITY

Definition Two variables 𝑦 and 𝑥 are proportional to each other if 
one is always a constant multiple of the other, and we 
write 𝑦 ∝ 𝑥.

𝑦 = 𝑘𝑥 for some nonzero constant 𝑘

If a proportionality is reasonable, a plot 
of one variable against the other should 
approximate a straight line through the 
origin.



PROPORTIONALITY

Example Consider a spring-mass system shown in the Figure. 
We conduct an experiment to measure the stretch of 
the spring (Elongation 𝒆) as a function of the mass 
(𝒎) placed on the spring.



PROPORTIONALITY

Example

The scatterplot reveals a straight line passing 

approximately through the origin.

𝑒 ∝ 𝑚

𝑒 = 𝑘𝑚

𝑘 slope =
7.250 − 5.675

450 − 350
= 0.01575

𝑒 = 0.01575𝑚



MODELING CHANGE

Idea Often, we wish to predict the future based on what we know in the 
present.

future value = present value + change

We begin by studying the change itself.

Change = future value - present value

* Collecting data over period 

of time.

* Plotting the data.

* Observing any pattern.

Discrete Time Period Continuous Time Period

Difference

Equation

Differential

Equation



Chapter: [1]
MODELING CHANGE

Section: [1.1]
Modeling Change with Difference Equations

Course: Mathematical Modeling



SEQUENCES

Definition A sequence 𝑎𝑛  is a function whose domain is the set of all 
nonnegative integers and whose range is a subset of the real 
numbers.

Example Write out the first five terms of the sequence 𝑎𝑛 = 4𝑛.

𝑎0 = 40 = 1

𝑎1 = 41 = 4

𝑎2 = 42 = 16

𝑎3 = 43 = 64

𝑎4 = 44 = 256

We can write 𝑎𝑛  using the recursion 

formula:

𝑎𝑛+1 = 4𝑎𝑛 ;  n = 0,1,2, ⋯
𝑎0 = 1

General Term



SEQUENCES

Example Write out the first five terms of the sequence

Example Find a formula for the nth term of the sequence 1, 3, 7, 15, 31, ⋯

𝑎0 = 2

𝑎1 = 𝑎0
2 − 1 = 22 − 1 = 3

𝑎2 = 𝑎1
2 − 1 = 32 − 1 = 8

𝑎3 = 𝑎2
2 − 1 = 82 − 1 = 63

𝑎4 = 𝑎3
2 − 1 = 632 − 1 = 3968

𝑎𝑛+1 = 𝑎𝑛
2 − 1

𝑎0 = 2

𝑎𝑛 = 2𝑛 − 1 ;  𝑛 = 1,2,3, ⋯

2 4 8 16 32

21 22 23 24 25

21-1 22-1 23-1 24-1 25-1



MODELING OBSERVED CHANGES

Definition For a sequence of numbers 𝐴 = 𝑎0, 𝑎1, 𝑎2, 𝑎3, ⋯  the first differences 
are

Δ𝑎0 = 𝑎1 − 𝑎0

Δ𝑎1 = 𝑎2 − 𝑎1

⋮
Δ𝑎𝑛 = 𝑎𝑛+1 − 𝑎𝑛

Example By examining the sequence 1,2,5,12,27, ⋯ , write a difference equation 
to represent the change during the 𝑛th interval as a function of the 
previous term in the sequence.

Δ𝑎0 = 𝑎1 − 𝑎0 = 2 − 1 = 1

Δ𝑎1 = 𝑎2 − 𝑎1 = 5 − 2 = 3

Δ𝑎2 = 𝑎3 − 𝑎2 = 12 − 5 = 7

Δ𝑎3 = 𝑎4 − 𝑎3 = 27 − 12 = 15

Δ𝑎𝑛 = 𝑎𝑛+1 − 𝑎𝑛 = 𝑎𝑛 + 𝑛

𝑎𝑛+1 = 2𝑎𝑛 + 𝑛
𝑎0 = 1



MODELING OBSERVED CHANGES

Example Write out the first five terms of the sequence satisfying the difference 
equations

Δ𝑝𝑛 = 0.001 500 − 𝑝𝑛

𝑝0 = 10

Δ𝑝𝑛 = 𝑝𝑛+1 − 𝑝𝑛

0.001 500 − 𝑝𝑛 = 𝑝𝑛+1 − 𝑝𝑛

𝑝𝑛+1 = 0.001 500 − 𝑝𝑛 + 𝑝𝑛

𝑝𝑛+1 = 0.999𝑝𝑛 + 0.5
𝑝0 = 10

𝑝0 = 10

𝑝1 = 0.999 10 + 0.5 = 10.49

𝑝2 = 0.999 10.49 + 0.5 = 10.97951

𝑝3 = 0.999 10.97951 + 0.5 = 11.46853

𝑝4 = 0.999 11.46853 + 0.5 = 11.95706Dynamical

System



MODELING OBSERVED CHANGES

Definition A dynamical system is a relationship among terms in a sequence.

Example SAVINGS CERTIFICATE ( الادخارشهادات )

A savings certificate is initially valued at $1000 and earns compound 
interest ( مركبةفائدة ) at a monthly rate of 1%. Formulate a dynamical 
system that exactly models the value of the certificate over time.

Δ𝑎𝑛 = 0.01𝑎𝑛 = 𝑎𝑛+1 − 𝑎𝑛

𝑎𝑛+1 = 𝑎𝑛 + 0.01𝑎𝑛

𝑎𝑛+1 = 1.01𝑎𝑛

𝑎0 = 1000

The value of the certificate for the 

first few months:
1000

1010

1020.1

1030.301

1040.60401



MODELING OBSERVED CHANGES

Example

Your grandparents (الجدّين) have an annuity ( تقاعدراتب ). The value of the 
annuity increases each month by an automatic deposit (إيداع) of 1% 
interest on the previous month’s balance (الرصيد). Your grandparents 
withdraw (يسحب) $1000 at the beginning of each month for living 
expenses ( المعيشةنفقات ). Currently, they have $60,000 in the annuity. 
Model the annuity with a dynamical system.

𝑎𝑛+1 = 𝑎𝑛 + 0.01𝑎𝑛 − 1000

𝑎𝑛+1 = 1.01𝑎𝑛 − 1000
𝑎0 = 60000

GRANDPARENTS ANNUITY
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LINEAR DYNAMICAL SYSTEMS 𝒂𝒏+𝟏 = 𝒓𝒂𝒏, FOR 𝒓 CONSTANT

Note Given a dynamical system 𝑎𝑛+1 = 𝑟𝑎𝑛 where 𝑎0 is an initial value, then

Theorem The solution of the linear dynamical system 𝑎𝑛+1 = 𝑟𝑎𝑛 for any nonzero 
constant 𝑟 is

𝑎𝑛 = 𝑟𝑛𝑎0

where 𝑎0 is a given initial value.

𝑎𝑛+1 = 𝑟 𝑟𝑎𝑛−1 = 𝑟2𝑎𝑛−1

= ⋯ = 𝑟𝑛+1𝑎0= 𝑟2 𝑟𝑎𝑛−2 = 𝑟3𝑎𝑛−2

Example Find the solution to the difference equations 𝑎𝑛+1 = 5𝑎𝑛 where 𝑎0 = 10.

𝑎𝑛 = 10 ⋅ 5𝑛 𝑛 = 0, 1, 2, ⋯



LINEAR DYNAMICAL SYSTEMS 𝒂𝒏+𝟏 = 𝒓𝒂𝒏, FOR 𝒓 CONSTANT

Example SAVINGS CERTIFICATE

1) Determine the value of the certificate after one year.
2) In how many months will the certificate's value double?

𝑎𝑛+1 = 1.01𝑎𝑛

𝑎0 = 1000

𝑎𝑛 = 1000 ⋅ 1.01 𝑛

𝑎12 = 1000 ⋅ 1.01 12

= 1126.83

𝑎𝑛 = 2000

1000 ⋅ 1.01 𝑛 = 2000

1.01 𝑛 = 2

𝑛 ln 1.01 = ln 2

𝑛 ≈ 69.6607

∴ 𝑛 = 70 Months



LINEAR DYNAMICAL SYSTEMS 𝒂𝒏+𝟏 = 𝒓𝒂𝒏, FOR 𝒓 CONSTANT

Example Sewage Treatment ( الصحّيالصرفمياهتنقية )

A sewage treatment plant ( تنقيةمحطة ) processes raw sewage to produce 
usable fertilizer and clean water by removing all other contaminants 
( والشوائبالملوثات ). The process is such that each hour 12% of remaining 
contaminants in a processing tank are removed. 

Let the initial amount of sewage 

contaminants be 𝑎0 and let 𝑎𝑛 denote the 

amount after 𝑛 hours.

𝑎𝑛+1 = 𝑎𝑛 − 0.12𝑎𝑛

= 0.88𝑎𝑛

𝑎𝑛 = 0.88 𝑛𝑎0

𝑎24 = 0.88 24 𝑎0 = 0.0465 𝑎0

The amount of sewage after 

the end if the 1st day is about 

4.65% of its initial amount

A. What percentage of the sewage would remain after 𝟏 day?



LINEAR DYNAMICAL SYSTEMS 𝒂𝒏+𝟏 = 𝒓𝒂𝒏, FOR 𝒓 CONSTANT

Example Sewage Treatment ( الصحّيالصرفمياهتنقية )

A sewage treatment plant ( تنقيةمحطة ) processes raw sewage to produce 
usable fertilizer and clean water by removing all other contaminants 
( والشوائبالملوثات ). The process is such that each hour 12% of remaining 
contaminants in a processing tank are removed. 

B. How long would it take to lower the amount of sewage by half?

𝑎𝑛 =
1

2
𝑎0 = 0.88 𝑛𝑎0

0.88 𝑛 = 0.5

𝑛 =
ln 0.5

ln 0.88
≈ 5.42 hours



LINEAR DYNAMICAL SYSTEMS 𝒂𝒏+𝟏 = 𝒓𝒂𝒏, FOR 𝒓 CONSTANT

Example Sewage Treatment ( الصحّيالصرفمياهتنقية )

A sewage treatment plant ( تنقيةمحطة ) processes raw sewage to produce 
usable fertilizer and clean water by removing all other contaminants 
( والشوائبالملوثات ). The process is such that each hour 12% of remaining 
contaminants in a processing tank are removed. 

C. How long until the level of sewage is down to 𝟏𝟎% of the original 
level?

𝑎𝑛 = 0.10𝑎0 = 0.88 𝑛𝑎0

0.88 𝑛 = 0.1

𝑛 =
ln 0.1

ln 0.88
≈ 18.01 hours



LONG-TERM BEHAVIOR OF 𝒂𝒏+𝟏 = 𝒓𝒂𝒏, FOR 𝒓 CONSTANT

Definition Values for which a dynamical system remains constant at those 
values, once reached, are called equilibrium values of the system.

Case [ 1 ] 𝑟 = 0

All the values of the sequence (except possibly 𝑎0) are zero.

Case [ 2 ] 𝑟 = 1

Then 𝑎𝑛+1 = 𝑎𝑛. No matter where the sequence starts, it 
stays there forever.

For example: 𝑎𝑛+1 = 𝑎𝑛

𝑎0 = 3

Constant solution and equilibrium value at 0

All initial values are constant solutions and 

equilibrium value at a0



LONG-TERM BEHAVIOR OF 𝒂𝒏+𝟏 = 𝒓𝒂𝒏, FOR 𝒓 CONSTANT

Case [ 3 ]

Case [ 4 ] 𝑟 > 1

The sequence grows large without bound.

For example: 𝑎𝑛+1 = −𝑎𝑛

𝑎0 = 2

𝑟 = −1

The values oscillate between −𝑎0 and 𝑎0.

No equilibrium value

a0 > 0

For example: 𝑎𝑛+1 = 2𝑎𝑛

𝑎0 = 1



LONG-TERM BEHAVIOR OF 𝒂𝒏+𝟏 = 𝒓𝒂𝒏, FOR 𝒓 CONSTANT

Case [ 5 ]

Case [ 6 ] 𝑟 < −1

The sequence oscillates and grows.

For example:

𝑟 > 1

The sequence grows negative without bound.

No equilibrium value

For example:

𝑎𝑛+1 = −1.5𝑎𝑛

𝑎0 = 1

a0 < 0

𝑎𝑛+1 = 2𝑎𝑛

𝑎0 = −1



LONG-TERM BEHAVIOR OF 𝒂𝒏+𝟏 = 𝒓𝒂𝒏, FOR 𝒓 CONSTANT

Case [ 7 ] −1 < 𝑟 < 0

The sequence oscillates and decays to 0.

For example:

𝑎𝑛+1 = −0.5𝑎𝑛

𝑎0 = −0.25

The equilibrium value is 0.



LONG-TERM BEHAVIOR OF 𝒂𝒏+𝟏 = 𝒓𝒂𝒏, FOR 𝒓 CONSTANT

Case [ 8 ] 0 < 𝑟 < 1

The sequence decays to 0.

a0 > 0 For example: 𝑎𝑛+1 = 0.5𝑎𝑛

𝑎0 = 1

The equilibrium value is 0.

a0 < 0 For example: 𝑎𝑛+1 = 0.5𝑎𝑛

𝑎0 = −1



Theorem

DYNAMICAL SYSTEMS 𝒂𝒏+𝟏 = 𝒓𝒂𝒏 + 𝒃, FOR 𝒓, 𝒃 CONSTANTS

Given a dynamical system 𝑎𝑛+1 = 𝑟𝑎𝑛 + 𝑏 where 𝑎0 is an initial value. If 
𝑟 ≠ 1, then

𝑎1 = 𝑟𝑎0 + 𝑏

𝑎2 = 𝑟𝑎1 + 𝑏 = 𝑟 𝑟𝑎0 + 𝑏 + 𝑏 = 𝑟2𝑎0 + 𝑟 + 1 𝑏

𝑎3 = 𝑟𝑎2 + 𝑏 = 𝑟 𝑟2𝑎0 + 𝑟 + 1 𝑏 + 𝑏 = 𝑟3𝑎0 + 𝑟2 + 𝑟 + 1 𝑏

⋮

𝑎𝑛 = 𝑟𝑛𝑎0 + 𝑟𝑛−1 + 𝑟𝑛−2 + ⋯ + 𝑟2 + 𝑟 + 1 𝑏

∴ 𝑎𝑛 = 𝑟𝑛𝑎0 +
1 − 𝑟𝑛

1 − 𝑟
⋅ 𝑏



DYNAMICAL SYSTEMS 𝒂𝒏+𝟏 = 𝒓𝒂𝒏 + 𝒃, FOR 𝒓, 𝒃 CONSTANTS

𝑎𝑛 = 𝑟𝑛𝑎0 +
1 − 𝑟𝑛

1 − 𝑟
⋅ 𝑏

Example Find the solution to the difference equations 𝑎𝑛+1 = −𝑎𝑛 + 2 where 
𝑎0 = −1.

= −1 𝑛 ⋅ −1 +
1 − −1 𝑛

1 − −1
⋅ 2

= −1 𝑛 ⋅ −1 + 1 − −1 𝑛

= 2 ⋅ −1 𝑛+1 + 1



Example GRANDPARENTS ANNUITY

Will the annuity run out of money? When?

𝑎𝑛 = 60000 ⋅ 1.01 𝑛 +
1 − 1.01 𝑛

1 − 1.01
⋅ −1000

𝑎𝑛+1 = 1.01𝑎𝑛 − 1000
𝑎0 = 60000

r b

𝑎𝑛 = 0

100000 − 40000 ⋅ 1.01 𝑛 = 0

1.01 𝑛 =
100000

40000
= 2.5

𝑛 =
ln 2.5

ln 1.01
≈ 92.0865

∴ 𝑛 = 93 Months

DYNAMICAL SYSTEMS 𝒂𝒏+𝟏 = 𝒓𝒂𝒏 + 𝒃, FOR 𝒓, 𝒃 CONSTANTS

We find n such that

= 60000 ⋅ 1.01 𝑛 + 100000 ⋅ 1 − 1.01 𝑛

= 100000 − 40000 ⋅ 1.01 𝑛



Definition A point 𝑝 is a stable equilibrium of a dynamical system if, when the 
system starts close to 𝑝, it stays close to 𝑝 for all future time.

FINDING AND CLASSIFYING EQUILIBRIUM VALUES

Theorem The equilibrium value for the dynamical system 𝑎𝑛+1 = 𝑟 𝑎𝑛 + 𝑏 where 
𝑟 ≠ 1, is

𝑝 =
𝑏

1 − 𝑟
If 𝑟 = 1 and 𝑏 = 0, every number is an equilibrium value. If 𝑟 = 1 and 
𝑏 ≠ 0, no equilibrium value exists.

Stability For the dynamical system 𝒂𝒏+𝟏 = 𝒓𝒂𝒏 + 𝒃 where 𝒃 ≠ 𝟎:

• If 𝑟 < 1: Stable equilibrium

• If 𝑟 > 1: Unstable equilibrium

• If 𝑟 = 1: Graph is a line with no equilibrium



Example For the following problems, find an equilibrium value if one exists. 
Classify the equilibrium value as stable or unstable.

FINDING AND CLASSIFYING EQUILIBRIUM VALUES

[ 1 ] 𝑎𝑛+1 =
1

2
𝑎𝑛 + 1

Equilibrium value =
𝑏

1 − 𝑟

=
1

1 − 0.5
= 2

Since r = 0.5 and |r| < 1, then the 

equilibrium is stable

𝑛 𝑎𝑛

0

1

2

3

4

5

6

7

3

2.5

2.25

2.125

2.0625

2.03125

2.01563

2.00781

𝑎𝑛

1

1.5

1.75

1.875

1.9375

1.96875

1.98438

1.99219

𝑎𝑛

2

2

2

2

2

2

2

2



Example For the following problems, find an equilibrium value if one exists. 
Classify the equilibrium value as stable or unstable.

FINDING AND CLASSIFYING EQUILIBRIUM VALUES

[ 2 ] 𝑎𝑛+1 = −2𝑎𝑛 + 3

Equilibrium value =
𝑏

1 − 𝑟

=
3

1 − −2
= 1

Since r = -2 and |r| > 1, then the 

equilibrium is unstable

𝑛 𝑎𝑛

0

1

2

3

4

5

6

7

0.5

2

−1

5

−7

17

−31

65

𝑎𝑛

1.5

0

3

−3

9

−15

33

−63

𝑎𝑛

1

1

1

1

1

1

1

1
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