Course: Mathematical Modeling

Chapter: [2]
Model Fitting

Section: [*]
ITRODUCTION

DATA APPROXIMATION

Example

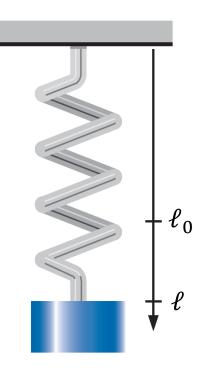
Hooke's law states that when a force is applied to a spring constructed of uniform material, the length of the spring is a linear function of that force.

$$F(l) = k(\ell - \ell_0)$$

k is the spring constant

 ℓ_0 is the length of the spring

 ℓ is the length stretched by the force F



We want to determine the spring constant for a spring that has initial length 5.3 in.

Force (lb.)	Length (in.)
2	7.0
4	9.4
6	12.3

DATA APPROXIMATION

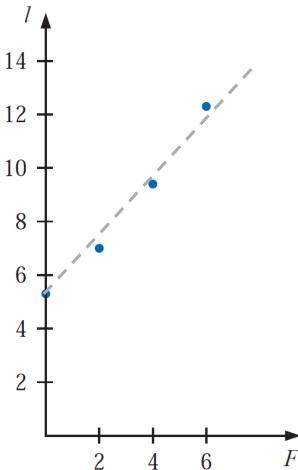
Example

Hooke's law states that when a force is applied to a spring constructed of uniform material, the length of the spring is a linear function of that force.

$$F(l) = k(\ell - \ell_0)$$

Force (lb.)	Length (in.)
2	7.0
4	9.4
6	12.3

It is more reasonable to find the line that **best** approximates all the data points to determine the constant **k**.



APPROXIMATION THEORY

Two Types

[1] INTERPOLATION

One problem arises when a function is given explicitly, but we wish to find a simpler type of function, such as a polynomial, to approximate values of the given function.

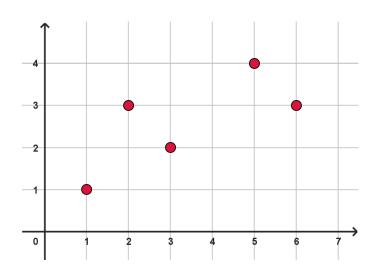
الملاءمة FITTING CURVES

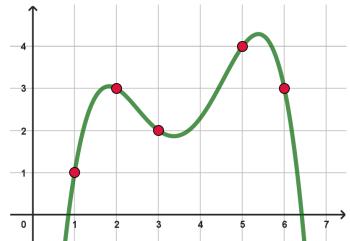
The other problem is concerned with fitting functions to given data and finding the **best** function in a certain class to represent the data.

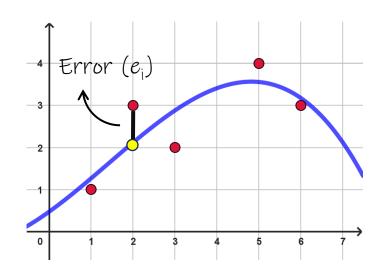
MODEL FITTING VS INTERPOLATION

Idea

Interpolation and **curve fitting** both generate new data points from known ones, but differ in *purpose*, *method*, and *application*.







 (x^{D}, A^{D})

(x₁,y₁)

:

 (x_N, y_N)

INTERPOLATION

- 1. Passing all points
- 2. Polynomial of degree at most n
- 3. Poor in approximating extrapolating data

CURVE FITTING

- 1. Not necessarily passing through the points (ERROR)
- 2. Any type of functions
- 3. Good in approximating other data

SOURCES OF ERROR IN THE MODELING PROCESS

[1] FORMULATION ERROR

Formulation errors arise from assuming some variables are unimportant or oversimplifying relationships between variables in different sub-models.

[2] MEASUREMENT ERROR

Measurement errors are obtained by a measuring instrument or process.

[3] ROUND-OFF ERROR

Round-off errors are caused by using a finite digit machine for computation.

 $\pi \approx 3.1415$

[4] TRUNCATION ERROR

Truncation error arises when we cut off (truncate) an infinite process.

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots$$

Course: Mathematical Modeling

Chapter: [2]

Model Fitting

<u>Section: [2.1]</u>

THE LEAST SQUARES METHOD

REVIEW OF 1ST ORDER PARTIAL DERIVATIVES

Definition

Let z = f(x, y) be a function of two variables. Then:

The Partial Derivative with respect to x:

$$\frac{\partial z}{\partial x} = f_x = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

The Partial Derivative with respect to *y*:

$$\frac{\partial z}{\partial y} = f_y = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

REVIEW OF 1ST ORDER PARTIAL DERIVATIVES

Evaluation

If z = f(x, y) is a function of two variables. Then:

To find f_x Differentiate f with respect to x while treating y as a constant.

To find f_y Differentiate f with respect to y while treating x as a constant.

Example

Find
$$f_x$$
 and f_y for $f(x,y) = 4x^3 + 2x^2y + y^2$

$$f_x(x,y) = \frac{\partial}{\partial x} (4x^3 + 2x^2y + y^2) = 12x^2 + 4xy$$

$$f_y(x,y) = \frac{\partial}{\partial y} (4x^3 + 2x^2y + y^2) = 2x^2 + 2y$$

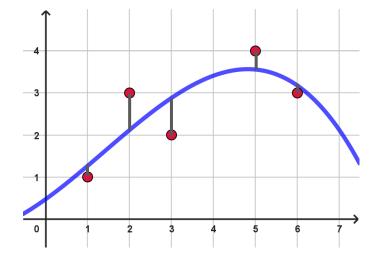
DISCRETE LEAST SQUARES METHOD

The Idea

In **curve fitting** we are given n points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ and we want to determine a function f(x) such that

$$y_1 \approx f(x_1) \longrightarrow e_1 = |y_1 - f(x_1)|$$

 $y_2 \approx f(x_2) \longrightarrow e_2 = |y_2 - f(x_2)|$
 \vdots
 $y_n \approx f(x_n) \longrightarrow e_n = |y_n - f(x_n)|$



The function f(x) should be fitted through the given points so that <u>the sum</u> <u>of the squares</u> of the <u>distances</u> of those points from f(x) is <u>minimum</u>.

$$\min \sum_{i=1}^{n} (e_i)^2 = \min \sum_{i=1}^{n} (y_i - f(x_i))^2$$

THE PROCESS OF DISCRETE LEAST SQUARES METHOD

Linear **Function**

Suppose we want to fit the n points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ by a linear function f(x) = a + bx.

$$q = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - f(x_i))^2 = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$
Find "a" and "b" such

that "a" is minimum

Since q depends on a and b, then a necessary condition for q to be **minimum** is

$$\frac{\partial q}{\partial a} = 0 \qquad \longrightarrow \quad -2\sum_{i=1}^{n} (y_i - a - bx_i) = 0$$

$$\frac{\partial q}{\partial b} = 0 \qquad \longrightarrow \qquad -2\sum_{i=1}^{n} (y_i - a - bx_i)(x_i) = 0$$

THE PROCESS OF DISCRETE LEAST SQUARES METHOD

Linear Function
$$-2\sum_{i=1}^{n}(y_i - a - bx_i) = 0 \implies \sum_{i=1}^{n}y_i - \sum_{i=1}^{n}a - b\sum_{i=1}^{n}x_i = 0$$

$$\longrightarrow an + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i \qquad \cdots (1)$$

$$-2\sum_{i=1}^{n}(y_i - a - bx_i)(x_i) = 0 \longrightarrow \sum_{i=1}^{n}x_iy_i - a\sum_{i=1}^{n}x_i - b\sum_{i=1}^{n}x_i^2 = 0$$

THE PROCESS OF DISCRETE LEAST SQUARES METHOD

Linear Function

$$an + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$$

$$a\sum_{i=1}^{n} x_i + b\sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_i y_i$$

Example

Find the linear function f(x) = a + bx that best fits the following

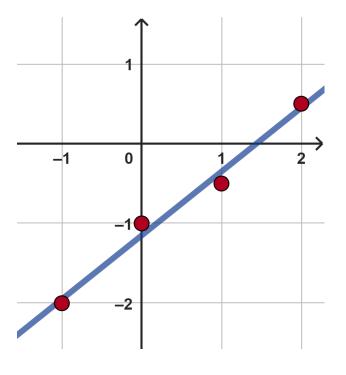
4 points:
$$(-1, -2)$$
, $(0, -1)$, $\left(1, -\frac{1}{2}\right)$, $\left(2, \frac{1}{2}\right)$

x_i	y_i	x_i^2	x_iy_i
-1	- 2	1	2
0	- 1	0	0
1	-0.5	1	-0.5
2	0.5	4	1
2	- 3	6	2.5

$$4a + 2b = -3$$

 $2a + 6b = 2.5$

$$f(x) = -1.15 + 0.8x$$



Process

Given n points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$. Our method of curve fitting can be generalized to a polynomial of degree $m \le n - 1$:

$$P_m(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m$$

Then
$$q = \sum_{i=1}^{n} (y_i - P_m(x_i))^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i - \dots - b_m x_i^m)^2$$

Since q depends on the parameters b_0 , b_1 , \cdots , b_m , then q is **minimum** if:

$$\frac{\partial q}{\partial b_0} = 0 \qquad \frac{\partial q}{\partial b_1} = 0 \qquad \cdots \qquad \frac{\partial q}{\partial b_m} = 0$$

Example

Find the linear function $f(x) = a + bx + cx^2$ that best fits the following 5 points: (-2, -1), (-1, 2), (0, 3), (1, 2), (2, -1).

$$q = \sum_{i=1}^{n} (y_i - a - bx_i - cx_i^2)^2$$

$$\frac{\partial q}{\partial a} = 0 \longrightarrow -2\sum_{i=1}^{n} (y_i - a - bx_i - cx_i^2) = 0$$

$$\frac{\partial q}{\partial b} = 0 \longrightarrow -2\sum_{i=1}^{n} (y_i - a - bx_i - cx_i^2)(x_i) = 0$$

$$\frac{\partial q}{\partial c} = 0 \longrightarrow -2\sum_{i=1}^{N} (y_i - a - bx_i - cx_i^2)(x_i^2) = 0$$

Example

Find the linear function $f(x) = a + bx + cx^2$ that best fits the following 5 points: (-2, -1), (-1, 2), (0, 3), (1, 2), (2, -1).

$$\sum_{i=1}^{n} \left(y_i - a - bx_i - cx_i^2 \right) = 0 \longrightarrow$$

$$an + b \sum x_i + c \sum x_i^2 = \sum y_i$$

$$\sum_{i=1}^{n} (y_i - a - bx_i - cx_i^2)(x_i) = 0 \longrightarrow$$

$$a\sum x_i + b\sum x_i^2 + c\sum x_i^3 = \sum x_i y_i$$

$$\sum_{i=1}^{n} (y_i - a - bx_i - cx_i^2)(x_i^2) = 0 \longrightarrow$$

$$a \sum x_i^2 + b \sum x_i^3 + c \sum x_i^4 = \sum x_i^2 y_i$$

Example

Find the linear function $f(x) = a + bx + cx^2$ that best fits the following 5 points: (-2, -1), (-1, 2), (0, 3), (1, 2), (2, -1).

10

$$an + b \sum x_i + c \sum x_i^2 = \sum y_i$$

$$a\sum x_i + b\sum x_i^2 + c\sum x_i^3 = \sum x_i y_i$$

$$a \sum x_i^2 + b \sum x_i^3 + c \sum x_i^4 = \sum x_i^2 y_i$$

Example

Find the linear function $f(x) = a + bx + cx^2$ that best fits the following 5 points: (-2, -1), (-1, 2), (0, 3), (1, 2), (2, -1).

$$5a + 10c = 5$$

$$b = 0$$

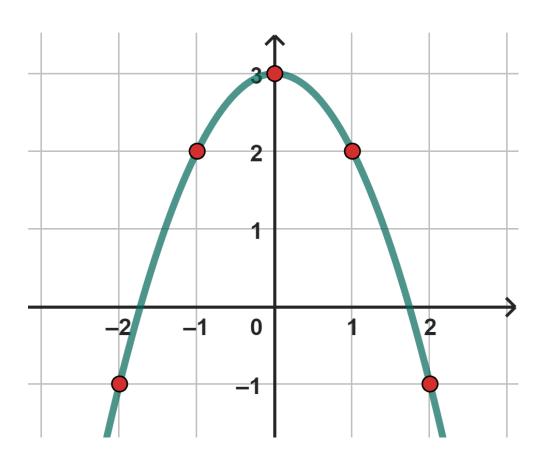
$$10a + 34c = -4$$

$$a = 3$$

$$b = 0$$

$$c = -1$$

$$f(x) = 3 - x^2$$



Example

$$q = \sum_{i=1}^{n} (y_i - f(x_i))^2 = \sum_{i=1}^{n} (y_i - a\sin(\pi x_i) - b\cos(\pi x_i))^2$$

$$\frac{\partial q}{\partial a} = 0 \longrightarrow -2\sum_{i=1}^{5} (y_i - a\sin(\pi x_i) - b\cos(\pi x_i))(\sin(\pi x_i)) = 0$$

$$\frac{\partial q}{\partial b} = 0 \longrightarrow -2\sum_{i=1}^{5} (y_i - a\sin(\pi x_i) - b\cos(\pi x_i))(\cos(\pi x_i)) = 0$$

Example

$$\sum_{i=1}^{5} (y_i \sin(\pi x_i) - a \sin^2(\pi x_i) - b \sin(\pi x_i) \cos(\pi x_i)) = 0$$

$$a \sum_{i=1}^{5} \sin^2(\pi x_i) + b \sum_{i=1}^{5} \sin(\pi x_i) \cos(\pi x_i) = \sum_{i=1}^{5} y_i \sin(\pi x_i)$$

$$\sum_{i=1}^{5} (y_i \cos(\pi x_i) - a \sin(\pi x_i) \cos(\pi x_i) - b \cos^2(\pi x_i)) = 0$$

$$a \sum_{i=1}^{5} \sin(\pi x) \cos(\pi x_i) + b \sum_{i=1}^{5} \cos^2(\pi x_i) = \sum_{i=1}^{5} y_i \cos(\pi x_i)$$

Example

x	y	$\sin(\pi x)$	$\cos(\pi x)$	$\sin^2(\pi x)$	$\cos^2(\pi x)$	$\sin(\pi x)\cos(\pi x)$	$y \sin(\pi x)$	$y\cos(\pi x)$
-1	-1	0	-1	0	1	0	0	1
$\frac{-1}{2}$	0	-1	0	1	0	0	0	0
0	1	0	1	0	1	0	0	1
$\frac{1}{2}$	2	1	0	1	0	0	2	0
1	1	0	-1	0	1	0	0	-1
		1		2	3	0	2	1

Example

$$\frac{\sin^2(\pi x) \cos^2(\pi x) \sin(\pi x) \cos(\pi x) y \sin(\pi x) y \cos(\pi x)}{2}$$

$$a\sum_{i=1}^{5} \sin^{2}(\pi x) + b\sum_{i=1}^{5} \sin(\pi x)\cos(\pi x) = \sum_{i=1}^{5} y_{i}\sin(\pi x_{i}) \longrightarrow a = 1$$

$$a\sum_{i=1}^{5} \sin(\pi x)\cos(\pi x) + b\sum_{i=1}^{5} \cos^{2}(\pi x) = \sum_{i=1}^{5} y_{i}\cos(\pi x_{i}) \implies b = \frac{1}{3}$$