Course: Mathematical Modeling

Chapter: [3]
MODELING WITH DIFFERENTIAL EQUATIONS

Section: [3.1]
Terminology




ORDINARY DIFFERENTIAL EQUATIONS

ODE A differential equation is an equation involving one or more derivatives
of an unknown function.

dy

— 3 Order 1
dx Y
d’y  dy
6248V =0 Order 2
dx? dx oy
y'"—ty' + (t* -1y =¢t Order 3

The order of a differential equation is the order of the highest
derivative that it contains.



ORDINARY DIFFERENTIAL EQUATIONS

Solutions
of ODEs

Example

Note

A function y = y(x) is a solution of a differential equation on an open
interval if the equation is satisfied identically on the interval when y
and its derivatives are substituted into the equation.

Verify that y = e?* is a solution to the following differential equation

on the interval (—oo, ).

s =W g g _ g —ys

The function y = e?¥ + Ce* ; x € (—o0, ™) is the general solution to
the ODE in the previous example where C is an arbitrary constant.



INITIAL VALUE PROBLEMS

IVPs * If the general solution of an ODE has n —arbitrary constants, then
we need nn —conditions to specify their values at an initial value x,.

*  An ODE with n —initial conditions is called an Initial Value Problem.

d

% =f(x,y) ; y(xo) =y 15" Order INF
2

d”y 2 Order TP

e fG,y,y") 5 y(xe) =yo and y'(xp) = ¥4



INITIAL VALUE PROBLEMS

, , dy _ T 1
Example Find the solution of the IVP: — =sint+1;y (—) = —
dt 3 2
Y int+1 But y == if t=—
dt—sm u y—2 | =3
dy = (sint + 1)dt E=§—COS§+C
fdy=j(sint+1)dt c=1_"
3
T
y=t—cost+C .-.y=t—cost+1—§



SEPARATION OF VARIABLES

1% Order A differential equation of the form % = h(x,y) is called separable if

Separ?ble it can be written in the form g(y)dy = f(x)dx, and the process is

Equations . .
called separating variables.

E | dy _* — d d

Xam — =— =
ample iy ydy = xdx

dy _ 2y . igdy 2y All Eduations
dx y are separable

1 1
d_yzy_X —_ —dy=(1——>dx
dx X



SEPARATION OF VARIABLES

Solving _ _
separable 90 =/ (xdx —> f g()dy f f(x)dx
Equations 60 = HG) 4 C

Example Solve the differential equation ﬂ = —4xy?

dx
Z_Z = —4xy? —> y ?dy = —4xdx (Separable)
— Jy‘zdy=j—4xdx — 1=2x2+C
1 y
Sy

=2x2+C



SEPARATION OF VARIABLES

Example Solve the initial value problem (4y — cos y)% —3x2=0; y(0) =0

(4y — cos y) — —3x2=0 —> (4y —cosy)dy = 3x%dx (Separable)
— f(4y —cosy)dy = f 3x%dx

—> 2y% —siny=x3+C

But y(0) =0 —> 2(0)2—sin0=03+C —> C=0

~ 2y% —siny = x3 x=32y% —siny



Course: Mathematical Modeling

Chapter: [3]
MODELING WITH DIFFERENTIAL EQUATIONS

Section: [3.2]
Models with 15t Order Differential Equations




EXPONENTIAL GROWTH AND DECAY MODELS

Exponential Exponential models arise in situations where a quantity increases or
Models decreases at a rate that is proportional to the amount of the
quantity present.

_— Exponential Growth (s<i!l) Model

y>0 f J q
both ay xy —> ay _ ky ; y(0) =y, (K> 0 growth constant)
£ASES dt dt

\
\\-> Exponential Decay (Jail') Model

d d
d_)t} xy —> d_)t} =—ky; y(0) =y, (K>0 decay constant)



EXPONENTIAL GROWTH AND DECAY MODELS

Notes * A single differential equation can serve as a mathematical model for
many different phenomena.
* The growth and decay ODEs are separable.

Growth dy r jld =jkdt B
Viodel e = kv —> Jdy=kdt —> [ Zdy —> Iny =kt +C

Buty(0) =y, — Iny,=k-0+C —> C =Iny,

lny — kt _|_lny0 —_ y = ekt+lny0 — ekt . elnyo — yoekt

Decay dy

Model g = kv ¥ =y; —> y=yoe™"

t



EXPONENTIAL GROWTH AND DECAY MODELS

Example Suppose that an initial population of 10000 bacteria grows
exponentially at a rate of 2% per hour and that y = y(t) is the number
of bacteria present t hours later.

a) Find an initial-value problem whose solution is y(t).

d
d—{ = 0.02y ; y(0) = 10000

b) Find a formula for y(t).
y(t) = 10000 - 992t
c) Find the population of bacteria after 5 hours.

y(5) = 10000 - ¢(0-02)(5) ~ 11051.71



EXPONENTIAL GROWTH AND DECAY MODELS

Example Suppose that an initial population of 10000 bacteria grows

exponentially at a rate of 2% per hour and that y = y(t) is the number
of bacteria present t hours later.

d) How long does it take for the population of bacteria to reach
45000?

y(t) = 10000 - 992t _In45

— ~ . 'S
t 007 75.2  Hou

45000 = 10000 - %04t
0002t — 4t

0.02t =1n4.5



EXPONENTIAL GROWTH AND DECAY MODELS

DOUBLING * If a quantity y has an exponential growth model, then the time
TIME required for the original size to double is called the doubling time.
* Doubling time depends only on the growth rate k and not on the

amount present initially y,.

Let T devote the amount of time reduired for y to double in
size. Thew

y =yt —> 2y, =y,eT

—> e =2




EXPONENTIAL GROWTH AND DECAY MODELS

HALF-LIFE * If a quantity y has an exponential decay model, then the time

A

ciualll jas required for the original size to reduce by half is called the half-

life.
* Half-life depends only on the growth rate k and not on the

amount present initially y,.

Let T denote the amount of time required for \ to reduce by

half. Thew
1
y =ype t —> = Yo = yoe KT
1
—_— —kT _ _
¢ 2

—> —kT=—-—In2 —/™ [T =—




EXPONENTIAL GROWTH AND DECAY MODELS

Example

RADIOACTIVE DECAY (=¥l JSlaasl)

a) If the half-life of radioactive carbon—14 is about 5730 years.
Find the decay constant for this element.

In 2 k_an_ In 2
k T 5730

~ 0.000121

b) If 100 grams of radioactive carbon—14 are stored in a cave for
1000 years, how many grams will be left at that time?

y(t) = yoe

y(1000) = 100 - ¢~(0:000121)(1000) ~ 88,6  grams



EXPONENTIAL GROWTH AND DECAY MODELS

Exercise

A cell of the bacterium E. coli divides into two cells every 20 minutes
when placed in a nutrient culture. Let y = y(t) be the number of cells
that are present t minutes after a single cell is placed in the culture.
Assume that the growth of the bacteria is approximated by an
exponential growth model.

a) Find an initial-value problem whose solution is y(t).

b) Find a formula for y(t).

c) How many cells are present after 2 hours?



EXPONENTIAL GROWTH AND DECAY MODELS

Exercise A scientist wants to determine the half-life of a certain radioactive
substance. She determines that in exactly 5 days a 10.0 —milligram

sample of the substance decays to 3.5 milligrams. Based on these data,
what is the half-life?

Exercise  Suppose that 30% of a certain radioactive substance decays in 5 years.
What is the half-life of the substance in years?



NEWTON'S LAW OF COOLING AND WARMING

The Law

* The rate at which the temperature of a body changes is proportional
to the difference between the temperature of the body and the

temperature of the surrounding medium (ambient temperature
ddaaal) ¢15aY) 3 _a).
* If T(t) represents the temperature of a body at time t, T,, the

: : dT ]
temperature of the surrounding medium, and o the rate at which

the temperature of the body changes, then

dT dT k < D nelther

X T =Ty i k(T —Ty) cooling or warming




NEWTON'S LAW OF COOLING AND WARMING

Example

-

Separable

Let y represent the temperature (in F°) of an object in a room whose
temperature is kept at a constant 60°. The object cools from 100° to
90° in 10 minutes. How much longer will it take for the temperature of

the object to decrease to 80°.

dT
E:k(T_w) T(0) = 100 (k <D)
j 1 dT—jkdt

—> In(T — 60) =kt +C (T > @0)

But T(0) =100 —> In(100—-60)=k-0+C —> C =In40



NEWTON'S LAW OF COOLING AND WARMING

Example Let y represent the temperature (in F°) of an object in a room whose
temperature is kept at a constant 60°. The object cools from 100° to
90° in 10 minutes. How much longer will it take for the temperature of

the object to decrease to 80°.

In(T —60) =kt +In40 —> T — 60 = ekt+in40
—> T(t) = 60 + 40e™*

But T(10) =90 —> 90 = 60 + 40e'%%

—_— §= elOk
4

1 3
é — — — z —_— .
k 1Oln4 0.02877



NEWTON'S LAW OF COOLING AND WARMING

Example

Let y represent the temperature (in F°) of an object in a room whose
temperature is kept at a constant 60°. The object cools from 100° to
90° in 10 minutes. How much longer will it take for the temperature of
the object to decrease to 80°.

T(t) = 60 + 40e~0-02877¢

If T(t) =80 —> 60+ 40e992877t = g0

-0.02877t — () & Therefore, we vneed +o
' extra 14.04 wminntes
+6 reach &0°

—> ¢

—> —0.02877t =1n0.5

—0.69315

— ~ 24. minutes
‘ —0.02877 24.09




NEWTON'S LAW OF COOLING AND WARMING

General dT
Solution g — k(T — Trn) T(0) = to
dT j 1 f
— —_ dT = | kdt
T—T. k dt T—T,

In|T —T,,| =kt +C

But T(0) =100 Inlty =Tl =k-04+C —> C =In|ty — T

In|T —T,,| = kt + In|ty — T}, |

—_ Tm — iekt . eln|t0—Tm|

L

T
T =Ty £ |ty — Tple®
T

=T, + (ty — T,,,)et (k<0)



NEWTON'S LAW OF COOLING AND WARMING

Example A glass of lemonade with a temperature of 40°F is placed in a room with
a constant temperature of 70°F. How many minutes will it take for the
lemonade to reach a temperature of 65°F if it heats to 52°F in 1 hour?

to = 40 T, =70 T(60) =52
T(t) =T, + (tg — T,)e"* 30e%%% = 18
_ _ kt 1 1
70 + (40 — 70)e L= n 8 ~ —0.0085
— 70 — 30€kt 60 30

But T(60) =52 _/ T(t) = 70 — 30e~0-0085¢
52 = 70 — 30e00%



NEWTON'S LAW OF COOLING AND WARMING

Example A glass of lemonade with a temperature of 40°F is placed in a room with
a constant temperature of 70°F. How many minutes will it take for the
lemonade to reach a temperature of 65°F if it heats to 52°F in 1 hour?

T(t) = 70 — 30e~00085¢

T(t) =65 —> 65= 70— 30e 00085t

5 1
—> 00t =~ —> —0.0085t =In

30

—> t=210.765 Winutes



LOGISTIC MODELS

Notes * The uninhibited population growth (&8l & Al 34ill) model was
predicated on the assumption that the population y = y(t) was not
constrained by the environment.

* |n general, populations grow within ecological systems (Axsl) dalai¥))
that can only support a certain number of individuals L.
* The number L is called the carrying capacity (4xtafiad) 3 38Y) of the

system.



LOGISTIC MODELS
Carrymg Capactty L

Notes /7

Expovential Growth
y(t) = yoe't

W




LOGISTIC MODELS

The
Model

Solution

dy y
=7 = —Z) 0) = d k>0
dt ky (1 L) y(0) =y an

Separable
dy L—y L
L —k dy = kdt
dt y( L ) > ya-»n"

_9'fy@€yfwzjkm:

\> By Partial Fractions

L A B _A(L—y)+By

yL-y) y L-y  y(L-y)




LOGISTIC MODELS

L
Solution j d =fkdt L=AL-vy)+B
y(L —y) Y Y Y
y=L —> B=1

1 1
J(—+—>dy=fkdt y=0 —> 4d=1
y L-y

Iny—In(L—-y)=kt+C —> ln(Lzy>=kt+C
> Lzy:ekt e
> L_yze—kt e—C
y
L
—> ——l=e¢ M.t — y = L



LOGISTIC MODELS

Soluti L :
oruHon Y Tl fe k.o > YT Iip.en
\>Covns+avn+
But y(0) = —> __t
Y Yo Yo = 1+ b
L L —
s p=_1 = Yo
Yo Yo
L Vol




LOGISTIC MODELS

Example Suppose that the growth of a population y = y(t) is given by the
logistic equation
60 VoL

T 5+ 7et Y T Vet (L—yg) - e Kt

y

a) What is the population attime t = 0?

60

= =5
5+7-¢e° > Yo

y(0) =

b) What is the carrying capacity L?

yoL =60 —> 5L =60 —> L =12



LOGISTIC MODELS

Example Suppose that the growth of a population y = y(t) is given by the

logistic equation
60 Yol

T 5+ 7e ¢ Y T et (L=yy) e K

y

c) What is the constant k?
k=1

d) When does the population reach half of the carrying capacity?

L 60
y(t) =5 5+ 7e-t
30
—> ol = — —> t =~ (0.3365

~ 42



LOGISTIC MODELS

Example Suppose a population grows according to a logistic model with initial
population 1000 and carrying capacity 10000. If the population grows
to 2500 after one year, what will the population be after another three

years?
y = Yol
() = (1000)(10000) Yo + (L—yo) - e~
Y22~ 1000 + (10000 — 1000) - e ¥t Yo = 1000 L = 10000
10000
14 9.e7kt
10000
= > — — ek =
But y(1) = 2500 ok = 2500 1+9-¢ 4
1
_— e_kz— —> k=1In3



LOGISTIC MODELS

Example

Suppose a population grows according to a logistic model with initial
population 1000 and carrying capacity 10000. If the population grows
to 2500 after one year, what will the population be after another three
years?

y = Yol
” 10000 10000 Yo + (L—y,) - ekt
y(t) = ~ = u
1+9-e-ndt 14327 Yo = 1000 L = 10000
ool
10000 (4, 9000)
After another 3-years: 4) =
y y( ) 1 + 3_2 6000
= 9000




SPREAD OF DISEASE

The * Suppose that a disease begins to spread in a population of L
Model individuals.
* The spread of a disease is determined by the contact between
infected individuals and those who are not infected.

Iwnfected \

= Jo=_Jo=_Jo=_)o
= o=_Jo=l)e=_)
=)o =il)e — Jo=i)e

=il)e=_Jo=_Jo=_)

-

Not
Infected



SPREAD OF DISEASE

e L 4444
Mode N Wi After TN
R F N Y R
caan L
(N N | LN
Since # wiinfected people s Since # infected people is larger
larger than who are infected, than who are uvinfected, then
thew the spread increases the spread decreases

(Rate of) o (Number of) _ (Number of)
Spread Infected Uninfected



SPREAD OF DISEASE

The Let y(t) is the number of individuals who have the disease at time t, then
Model

@ _ ky(L—y) y(0) =y,

iit/ \>
Separable k > 0 depends on the \> .ﬂ;l].@ .V;{Mmmr of aﬁ%cf@ 4
nature of +the disease Individuals at some point

M tlme

Solution

d
Y kyl-y) —s dy = kdt

dt y(L —y)

1
—> dy = J kdt
f y(L - ) (
By Partial Fractions

1 A B _AlL-y)+By

yL—-y) vy L-y  y(L-y)




SPREAD OF DISEASE

1
Solution jy(L =) dy = jkdt

1[ LR —fkm
LI\ L=y 7

1=A(L—1y)+ By
y=L — B=1/L
y=0 —> A=1/L

Iny —In(L —y) =Lkt +C —> ln(Lzy>=th+C
Lzy:euct,ec
L —
Y _ oLkt . ,—C
y
L
— __1:e—th e—Cé y= L



SPREAD OF DISEASE

° L L
Solution y = T o Ikt 5 C —> YT 1 1p. oLkt
\>Covns+avn+
But (0) = —> __ L
y Yo Yo = 1+ b
L L —
—> p=—-1 ==2°
Yo Yo
L Yol




SPREAD OF DISEASE

Example Suppose a student carrying a flu virus returns L
, Yo
to an isolated college campus of 1000 y(t) = T (L—yo) - e Ikt
students. Determine the number of infected Yo Yo

students after 6 days if it is further observed L =1000 Yo =1
that after 4 days there were 50 infected
students.
1000
y(t) = 1 4+ 999 . g—1000kt
1000
v 1 4 999 . ¢—4000k
—> 14+ 999. 6_4000k — 20
19
—> k=-— 1 ~ 0.00099

2000 999



SPREAD OF DISEASE

Example Suppose a student carrying a flu virus returns Vol
to an isolated college campus of 1000 y(t) = T =TT
students. Determine the number of infected Yot (L=Yo) - e
students after 6 days if it is further observed L '=1000 Yo=1
that after 4 days there were 50 infected

students.
1000
V() = 137999 . o009
1000
Y(6) =17 599 0 @059®
1000

~ 275.53 Students

T 1+999. 5%



DRAINING A TANK AND TORRICELLI’'S LAW

Torricelli’s The law states that the speed v of efflux of water
Law though a sharp-edged at the bottom of a tank filled to
a depth h is the same as the speed that a body (water)
would acquire in falling freely from a height h. 1 ~

— N
KINETIC ENERGY = POTENTIAL ENERGY Law of Conservation

(As_adl 4 (sl 43lh) of Energy
1
> muv* = mgh
./ \, g =32 ft/s?
Body mass Acceleration due to gravity

v =,/2gh




DRAINING A TANK AND TORRICELLI’S LAW

The Let h(t) the depth of water remaining in the tank
Model at time t (in seconds)

V(t) the volume of water in the tank at time t
(in seconds)

A;  the area of the hole (in ft?)

FIXED
A,  thearea of the upper surface (in ft?)

Then Flow  Hole Velocity
= X
Rate Area of Flow
dV dVv

— = Ay \/2gh - n Vh




DRAINING A TANK AND TORRICELLI’S LAW

The av
Model dc —84; Vh
av dh
But V(t) =A4,h(t) —> — = _
(t) (t) - Ay, -

dh
—> Ay = —84,Vh

dh
> |— = —8—\/
dt




DRAINING A TANK AND TORRICELLI’S LAW -~ Constant b

dh Ay dh A
S I t. - — —8_ h — = - —h
olution — i Y, — — g VA

dh
—> —=bdt Separable

—> j—dh fbdt

—> 2Wh=bt+C

A
— 2x/ﬁz—8A—h t+C

w

2

A

—)h(t)=<—4—ht+C) C>0
Ay



DRAINING A TANK AND TORRICELLI’S LAW

Example Suppose that the cylindrical tank in the figure is filled
to a depth of 4 feet at time t = 0 and the radius of the
circular hole is 0.045 feet.

y 2 4 ft
a) Find h(t) h(t) = (—4 A—h t + C)

w

An, =r#m = (0.045)%r = 0.002025 7
A, =rir =(1)*m =n
But h(0)=4 — 4=(0+C)> — C =2

0.002025 7
T

2
s+ h(t) = (_4 t+ 2) = (2 — 0.0081 t)?

=, .




DRAINING A TANK AND TORRICELLI’S LAW

Example Suppose that the cylindrical tank in the figure is filled

to a depth of 4 feet at time t = 0 and the radius of the
circular hole is 0.045 foot.

b) How many minutes will it take for the tank to
drain completely?

h(t) = (2—0.00811)% =0
2 —0.0081t=0

t — 2469  seconds

~ 0.0081

=412 minntes

ft




DRAINING A TANK AND TORRICELLI’S LAW

Exercise

The cylindrical water tank shown in the figure
has a height of 18 feet. When the tank is full, a
circular valve (ala<) is opened at the bottom of
the tank. After 30 minutes, the depth of the
water is 12 feet.

a) how long will it take for the tank to drain
completely?

b) What is the depth of the water in the tank
after 1 hour?

|

18 ft | =

/
S



DRAINING A TANK AND TORRICELLI’S LAW

Example Suppose that the tank in the figure is filled to
a depth of 4 feet at time t = 0 and the radius
of the circular hole is 0.045 feet. Find h(t)

A As y = (1) changes, the
/’ value of x also chavges
> x?* =4 — (h—2)?
x =4 — (h—2)2

Center (0,2)
radins r =2 X = ‘/4h — h?

x>+ (y—2)4=4

2x =+/4h — h?



DRAINING A TANK AND TORRICELLI’S LAW

Example Suppose that the tank in the figure is filled to
a depth of 4 feet at time t = 0 and the radius
of the circular hole is 0.045 feet. Find h(t)

dh
dt

Ap
—8—Vh
AW\/_

A, = r#m = (0.045)%mr = 0.002025 7
Ay, = (heigh) - (width) = 12 \/4h — K2

dh _0.0020257 h

dt 12 V4h — h? 0.00424 Ah — h2

\

1 fT—
= ~0.00424 ——— 4h — h*




DRAINING A TANK AND TORRICELLI’S LAW

Example Suppose that the tank in the figure is filled to
a depth of 4 feet at time t = 0 and the radius
of the circular hole is 0.045 feet. Find h(t)

dh
— = —0.00424

Separable
dt 4—h

V4 —hdh =-0.00424dt —> j\/4 —hdh = —j 0.00424 dt

2
—> §(4 — h)3/2 = —0.00424t + C

2
But h(0)=4 —> §(4—4)3/2=—0.00424-o+c —> C=0



DRAINING A TANK AND TORRICELLI’S LAW

Example Suppose that the tank in the figure is filled to < ft
a depth of 4 feet at time t = 0 and the radius
of the circular hole is 0.045 feet. Find h(t) 4 ft
\Y\

2
3 (4 — h)3/%2 = —0.00424 ¢
(4 — h)3/2 = —0.00636 t

(4 — h)3 = 0.00000405 t>

4—h=0.0343t%3 —> p(t) = 4 — 0.0343 3/¢?




Course: Mathematical Modeling

Chapter: [3]
MODELING WITH DIFFERENTIAL EQUATIONS

Section: [3.3]
Models with 2" Order Differential Equations




HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

FORM  gn()y™ + gno1 (Y™ + 4+ g1 ()Y + go(¥)y = f(x)
\) Higher Order TDifferevtial
Eduation

\, Higher Order Differential
Edquation with  Cowstant

Coefficients
any™ + an_ 1y 4+ agy’ +agy =0

\) Homoageveous Higher Order
Differential Equation with

Constant Coefficients




HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

Auxiliary * Considering the special case of the homogeneous linear 2" order
Equation differential equation
ay" +by ' +cy=0 ------ (1)

where a, b, and c are constants.

*If we try to find a solution of the form y = e™*, then after

substituting y' = me™* and y'' = m%e™¥, equation (1) becomes

am?e™ + bme™* + ce™* =
e™ (am? +bm+c¢c)=0
am?+bm+c=0

Aunxiliary (/

Eduation




HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

Auxiliary am?+bm+c=0

Equation 5
The tworootsare: 5, — —b +Vb? — dac

2a
—b —Vb? — 4ac

S 2a

Three cases of the general solution:

e Distinct real roots (m; # m,) if b* — 4ac > 0
 Equal real roots (m; = m,) if b* — 4ac = 0

* Conjugate complex roots (a + Bi) if b* — 4ac < 0



HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

Distinct
Real Roots

Repeated
Real Roots

Complex
Roots

mq,m, € R

mq,my, €ER

mq,m, € C

and my #m,

and mq{ =m,

and my=a+if
m, =a—Iif§
a,f >0

then

then

then

y = cie™* 4 c,eM2X

y = cie™* 4+ c,xe™*

y

e (c, cos fx + ¢, sin Sx)




HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS
Example Solve the following differential equations.
A) 2y" —5y" =3y =0

Auxiliary Equation:. 2m? —-5m—3 =0

_ (=5 £/(=52-4()(=3) 5+V49
"o 2(2) T 4




HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS
Example Solve the following differential equations.
B) y'"—10y"+25y =0

Auxiliary Equation:. m? —10m+25=0

_ —(=10) +/(=10)2 — 4(1)(25) 10 ++0
e 2(1) T2

5x

y = cie>* + c,xe




HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS
Example Solve the following differential equations.
C) v'"+4y"+7y =0

Auxiliary Equation: m? 4+4m+7=0

_ Y247 —4+V-12

m =

2(1) 2
my; = —2 + V3 a=—2
m, = —2—iV3 B =+3

y = e %*(¢; cos V3x + ¢, sinV3x)




HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

Example Solve the initial value problem

Ay" +4y" + 17y =0 y(0) =0 y'(0) =1

Auxiliary Equation:  4m? +4m+17 =0

_ —4+,/42-4(4)(17) —4++-256

m =

2(4) 8
1 _ 1
m1:—§+21 a:_f
1
m, > — 21 B

y = e */2(c; cos 2x + ¢, sin 2x)




HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

Example Solve the initial value problem

Ay" +4y" + 17y =0 y(0) =0 y'(0) =1

y = e */2(c; cos 2x + ¢, sin 2x)

y(0)=0 —> 0=¢e% ccos0+c,sin0) —> 0=c

1
Ly(x) = e %sin2x —> y'(x) = Ecze_x/2(4 cos 2x — sin 2x)

1 1
y'(0)=1 —> 1=Eczeo(4cosO—sin0) —_ 5= 6

L y(x) = Ee‘x/z sin 2x



SPRING/MASS SYSTEMS: FREE UNDAMPED MOTION e
r1g1
Hooke’s * Suppose a spring/mass system consists of a support
Law flexible spring suspended vertically from a ' — .
rigid support (4la 4aled) with a mass m is
attached to its free end.

* The amount of stretch s, or elongation, of
the spring will depend on the mass; masses =L JESN— -
with different weights stretch the spring by ~ unstretched
differing amounts. m

equilibrium
* Hooke’s Law states that the spring applies a position

restoring force (A2 fiwa 34 3 48) F opposite to
the direction of elongatpn and proportional F=—ks (k>0)
to the amount of elongation s.



SPRING/MASS SYSTEMS: FREE UNDAMPED MOTION

Newton’s * When a mass m is attached to the lower end of a spring it

Second Law stretches the spring by an amount s and attains an
equilibrium (rest) position at which its weight W s
balanced by the restoring force ks of the spring.

/> g is 1he acceleration due to gravity
_ 2
W =mg g =32 ft/s

9 =98 m/s?
mis measured v </
kilogyrams or grams

* The condition of equilibrium is mg = ks

mg — ks =0

N
|

I<_c4

m

equilibrium
position

F = —ks
(k> 0)



SPRING/MASS SYSTEMS: FREE UNDAMPED MOTION

Newton’s

Second Law

* Now suppose the mass on the spring is set in
motion by giving it an initial displacement (an
elongation or a compression) and an initial

velocity.

* Let us assume that the motion takes
place in a vertical line, that the

——- displacements x(t) of the mass are
§ measured along this line such that x = 0
I corresponds to the equilibrium position,
| and that displacements measured below

T the equilibrium position are positive.

[

m

equilibrium

position

]
S

!

- >

F = —ks motion

mg = ks




SPRING/MASS SYSTEMS: FREE UNDAMPED MOTION

Newton’s * Newton’s second law of motion: the net force on a moving
2

Secondlaw 1,4y of mass m is given by Y F = ma where a = ZT;C is its

acceleration (g i),

* If we assume that the mass vibrates free of all other
external forces, then

d?x
mw=—k(x+s) + mg
= —kx —ks+mg = —kx
2




SPRING/MASS SYSTEMS: FREE UNDAMPED MOTION

2
Solution dx + Ex -0 x(0) = x, x'(0) = x;
dt? m
Tnitial </ \\> Tnitial
Displacewment Velocity
* If xo > 0, then mass starts from a * If x; > 0, then mass starts with an
point below the equilibrium imparted downward velocity
position
* If x; < 0, then mass starts with an
* If x, < 0, then mass starts from a imparted upward velocity
point above the equilibrium

position

*If x;, =0, then the mass is
released from rest



SPRING/MASS SYSTEMS: FREE UNDAMPED MOTION

d?x k

Solution e+ — =0 x(0) = x, x'(0) = x;

dt2  m

k
Llet w?=—

d?x

—— twix=0 —> p‘te’=0 —> p’=-o

dt?

—_—> p=0+twi —> a=20

= x(t) = eY(cq cos wt + ¢, sin wt)

= ¢y coswt + ¢, sinwt = ¢4 cos

k .
—t +C2 Sin
m

N

\



SPRING/MASS SYSTEMS: FREE UNDAMPED MOTION

Example A mass weighing 9.8 N stretches a spring 0.2 m. At t = 0 the mass is
released from a point 0.25 m below the equilibrium position with an
upward velocity of 0.4 m/s. Determine the equation of motion.

k k x(0) = 0.25
x(t) =cycos| [—t |+c,sin| |—t x'(0) = —0.4

\ T \

W=mg — 98=98m — m=1
F=ks —>» 98=02k — k=49 Hooke's Law

x(t) = ¢y cos(7t) + ¢, sin(7t)



SPRING/MASS SYSTEMS: FREE UNDAMPED MOTION

Example A mass weighing 9.8 N stretches a spring 0.2 m. At t = 0 the mass is
released from a point 0.25 m below the equilibrium position with an
upward velocity of 0.4 m/s. Determine the equation of motion.

x(t) = ¢y cos(7t) + ¢, sin(7t) x(0) = 0.25 x'(0) =—-0.4

x'(t) = —7c;sin(7t) + 7c, cos(7t)

1 1 2
x(0) =025 —> — _ —— G
(0) €1 =7 x(t) 4cos(7t) T sin(7t)

2
KO ==04—> c;=——



SPRING/MASS SYSTEMS: FREE UNDAMPED MOTION

Example A mass weighing 7.35 newtons, attached to the end of a spring, with
stiffness (434a) of 72 N/m. Initially, the mass is released from rest
from a point 0.25 m above the equilibrium position. Find the equation

of motion.

P P x(0) = —0.25
x(t) = c; cos Vat + ¢, sin Vat ¥'(0) = 0
k=72

3
W=mg — 735=98m — m =-—

x(t) = ¢y cos(\/% t) + ¢, sin(\/% t)



SPRING/MASS SYSTEMS: FREE UNDAMPED MOTION

Example A mass weighing 7.35 newtons, attached to the end of a spring, with
stiffness (434a) of 72 N/m. Initially, the mass is released from rest
from a point 0.25 m above the equilibrium position. Find the equation

of motion.

x(t) = ¢ cos(4\/5 t) + ¢ sin(4\/€ t) x(0) = —0.25
x'(0)=0

x'(t) = —4V6 ¢4 sin(4\/g t) + 46 c, cos(4\/€ t)

x(0) = —-0.25 —> ¢; = —%

x'(0)=0 —> ¢, =0 ~ox(t) = —%005(4\/8 t)




SPRING/MASS SYSTEMS: FREE UNDAMPED MOTION

Exercise A mass weighing 7.35 newtons, attached to the end of a spring, with
stiffness (43a) of 72 N/m. Initially, the mass is released from the
equilibrium position with a downward velocity of 2 m/s. Find the
equation of motion.
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