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ORDINARY DIFFERENTIAL EQUATIONS

ODE A differential equation is an equation involving one or more derivatives 
of an unknown function.

𝑑𝑦

𝑑𝑥
= 3𝑦

𝑑2𝑦

𝑑𝑥2
− 6

𝑑𝑦

𝑑𝑥
+ 8𝑦 = 0

𝑦′′′ − 𝑡𝑦′ + 𝑡2 − 1 𝑦 = 𝑒𝑡

The order of a differential equation is the order of the highest 
derivative that it contains.

Order 1

Order 2

Order 3



ORDINARY DIFFERENTIAL EQUATIONS

Solutions 
of ODEs

A function 𝑦 = 𝑦 𝑥  is a solution of a differential equation on an open 
interval if the equation is satisfied identically on the interval when 𝑦 
and its derivatives are substituted into the equation.

Example Verify that 𝑦 = 𝑒2𝑥  is a solution to the following differential equation 
on the interval −∞, ∞ .

𝑑𝑦

𝑑𝑥
− 𝑦 = 𝑒2𝑥

LHS =
𝑑𝑦

𝑑𝑥
− 𝑦 =

𝑑

𝑑𝑥
𝑒2𝑥 − 𝑒2𝑥 = 2𝑒2𝑥 − 𝑒2𝑥 = 𝑒2𝑥 = RHS

Note The function 𝑦 = 𝑒2𝑥 + 𝐶𝑒𝑥 ; 𝑥 ∈ −∞,  ∞  is the general solution to 
the ODE in the previous example where 𝐶 is an arbitrary constant.



INITIAL VALUE PROBLEMS

IVPs * If the general solution of an ODE has 𝑛 −arbitrary constants, then 
we need 𝑛 −conditions to specify their values at an initial value 𝑥0.

* An ODE with 𝑛 −initial conditions is called an Initial Value Problem.

𝑑𝑦

𝑑𝑥
= 𝑓 𝑥, 𝑦  ;  𝑦 𝑥0 = 𝑦0

𝑑2𝑦

𝑑𝑥2
= 𝑓 𝑥, 𝑦, 𝑦′  ;  𝑦 𝑥0 = 𝑦0 and 𝑦′ 𝑥0 = 𝑦1

1st Order IVP

2nd Order IVP



INITIAL VALUE PROBLEMS

Example Find the solution of the IVP:
𝑑𝑦

𝑑𝑡
= sin 𝑡 + 1 ;  𝑦

𝜋

3
=

1

2

𝑑𝑦

𝑑𝑡
= sin 𝑡 + 1

𝑑𝑦 = sin 𝑡 + 1 𝑑𝑡

න 𝑑𝑦 = න sin 𝑡 + 1 𝑑𝑡

𝑦 = 𝑡 − cos 𝑡 + 𝐶

But 𝑦 =
1

2
 if 𝑡 =

𝜋

3

1

2
=

𝜋

3
− cos

𝜋

3
+ 𝐶

𝐶 = 1 −
𝜋

3

∴ 𝑦 = 𝑡 − cos 𝑡 + 1 −
𝜋

3



SEPARATION OF VARIABLES

1st Order
Separable 
Equations

A differential equation of the form
𝑑𝑦

𝑑𝑥
= ℎ 𝑥, 𝑦  is called separable if 

it can be written in the form 𝑔 𝑦 𝑑𝑦 = 𝑓 𝑥 𝑑𝑥, and the process is 
called separating variables.

Example
𝑑𝑦

𝑑𝑥
=

𝑥

𝑦

𝑑𝑦

𝑑𝑥
= 𝑥2𝑦3

𝑑𝑦

𝑑𝑥
= 𝑦 −

𝑦

𝑥

𝑦𝑑𝑦 = 𝑥𝑑𝑥

1

𝑦3
𝑑𝑦 = 𝑥2𝑑𝑥

1

𝑦
𝑑𝑦 = 1 −

1

𝑥
𝑑𝑥

All Equations 

are separable



SEPARATION OF VARIABLES

Solving
Separable 
Equations

Example
𝑑𝑦

𝑑𝑥
= −4𝑥𝑦2

𝑔 𝑦 𝑑𝑦 = 𝑓 𝑥 𝑑𝑥 න 𝑔 𝑦 𝑑𝑦 = න 𝑓 𝑥 𝑑𝑥

𝐺 𝑦 = 𝐻 𝑥 + 𝐶

Solve the differential equation

𝑑𝑦

𝑑𝑥
= −4𝑥𝑦2 𝑦−2𝑑𝑦 = −4𝑥𝑑𝑥

න 𝑦−2𝑑𝑦 = න −4𝑥𝑑𝑥
1

𝑦
= 2𝑥2 + 𝐶

∴ 𝑦 =
1

2𝑥2 + 𝐶

(Separable)



SEPARATION OF VARIABLES

Example 4𝑦 − cos 𝑦
𝑑𝑦

𝑑𝑥
− 3𝑥2 = 0 ;  𝑦 0 = 0Solve the initial value problem

∴ 2𝑦2 − sin 𝑦 = 𝑥3

(Separable)4𝑦 − cos 𝑦
𝑑𝑦

𝑑𝑥
− 3𝑥2 = 0 4𝑦 − cos 𝑦 𝑑𝑦 = 3𝑥2𝑑𝑥

න 4𝑦 − cos 𝑦 𝑑𝑦 = න 3𝑥2𝑑𝑥

2𝑦2 − sin 𝑦 = 𝑥3 + 𝐶

But 𝑦 0 = 0 2 0 2 − sin 0 = 03 + 𝐶 𝐶 = 0

𝑥 =
3

2𝑦2 − sin 𝑦
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EXPONENTIAL GROWTH AND DECAY MODELS

Exponential
Models

Exponential models arise in situations where a quantity increases or 
decreases at a rate that is proportional to the amount of the 
quantity present.

Exponential Growth (النمو) Model

Exponential Decay (ّالتحلل) Model

𝑑𝑦

𝑑𝑡
∝ 𝑦

𝑑𝑦

𝑑𝑡
= 𝑘𝑦 ;  𝑦 0 = 𝑦0

(K > 0 growth constant)

𝑑𝑦

𝑑𝑡
∝ 𝑦

𝑑𝑦

𝑑𝑡
= −𝑘𝑦 ;  𝑦 0 = 𝑦0

(K > 0 decay constant)

y > 0 in 

both 

cases



EXPONENTIAL GROWTH AND DECAY MODELS

Notes * A single differential equation can serve as a mathematical model for 
many different phenomena.

* The growth and decay ODEs are separable.

Growth
Model

𝑑𝑦

𝑑𝑡
= 𝑘𝑦

1

𝑦
𝑑𝑦 = 𝑘𝑑𝑡 න

1

𝑦
𝑑𝑦 = න 𝑘𝑑𝑡 ln 𝑦 = 𝑘𝑡 + 𝐶

But 𝑦 0 = 𝑦0 ln 𝑦0 = 𝑘 ⋅ 0 + 𝐶 𝐶 = ln 𝑦0

∴ ln 𝑦 = 𝑘𝑡 + ln 𝑦0 𝑦 = 𝑒𝑘𝑡+ln 𝑦0 = 𝑒𝑘𝑡 ⋅ 𝑒ln 𝑦0 = 𝑦0𝑒𝑘𝑡

Decay
Model

𝑑𝑦

𝑑𝑡
= −𝑘𝑦 ;  𝑦 0 = 𝑦0 𝑦 = 𝑦0𝑒−𝑘𝑡



EXPONENTIAL GROWTH AND DECAY MODELS

Example Suppose that an initial population of 10000  bacteria grows 
exponentially at a rate of 2% per hour and that 𝑦 = 𝑦 𝑡  is the number 
of bacteria present 𝑡 hours later.

a) Find an initial-value problem whose solution is 𝒚(𝒕).

𝑑𝑦

𝑑𝑡
= 0.02𝑦 ;  𝑦 0 = 10000

b) Find a formula for 𝒚(𝒕).

𝑦 𝑡 = 10000 ⋅ 𝑒0.02𝑡

c) Find the population of bacteria after 5 hours.

𝑦 5 = 10000 ⋅ 𝑒 0.02 5 ≈ 11051.71



EXPONENTIAL GROWTH AND DECAY MODELS

Example Suppose that an initial population of 10000  bacteria grows 
exponentially at a rate of 2% per hour and that 𝑦 = 𝑦 𝑡  is the number 
of bacteria present 𝑡 hours later.

d) How long does it take for the population of bacteria to reach 
𝟒𝟓𝟎𝟎𝟎?

𝑦 𝑡 = 10000 ⋅ 𝑒0.02𝑡

45000 = 10000 ⋅ 𝑒0.02𝑡

𝑒0.02𝑡 = 4.5

0.02𝑡 = ln 4.5

𝑡 =
ln 4.5

0.02
≈ 75.2 Hours



EXPONENTIAL GROWTH AND DECAY MODELS

DOUBLING
TIME

* If a quantity 𝑦 has an exponential growth model, then the time 
required for the original size to double is called the doubling time.

* Doubling time depends only on the growth rate 𝑘 and not on the 
amount present initially 𝑦0.

𝑦 = 𝑦0𝑒𝑘𝑡

Let 𝑇 denote the amount of time required for y to double in 

size. Then

2𝑦0 = 𝑦0𝑒𝑘𝑇

𝑒𝑘𝑇 = 2

𝑘𝑇 = ln 2 𝑇 =
ln 2

𝑘



EXPONENTIAL GROWTH AND DECAY MODELS

HALF-LIFE
النصّفعُمر

* If a quantity 𝑦 has an exponential decay model, then the time 
required for the original size to reduce by half is called the half-
life.

* Half-life depends only on the growth rate 𝑘 and not on the 
amount present initially 𝑦0.

𝑦 = 𝑦0𝑒−𝑘𝑡

Let 𝑇 denote the amount of time required for y to reduce by 

half. Then

1

2
𝑦0 = 𝑦0𝑒−𝑘𝑇

𝑒−𝑘𝑇 =
1

2

−𝑘𝑇 = − ln 2 𝑇 =
ln 2

𝑘



EXPONENTIAL GROWTH AND DECAY MODELS

Example RADIOACTIVE DECAY ( الإشعاعيالاضمحلال )

a) If the half-life of radioactive carbon−𝟏𝟒 is about 𝟓𝟕𝟑𝟎 years. 
Find the decay constant for this element.

𝑇 =
ln 2

𝑘
𝑘 =

ln 2

𝑇
=

ln 2

5730
≈ 0.000121

b) If 𝟏𝟎𝟎 grams of radioactive carbon−𝟏𝟒 are stored in a cave for 
𝟏𝟎𝟎𝟎 years, how many grams will be left at that time?

𝑦 𝑡 = 𝑦0𝑒−𝑘𝑡

𝑦 1000 = 100 ⋅ 𝑒− 0.000121 1000 ≈ 88.6 grams



EXPONENTIAL GROWTH AND DECAY MODELS

Exercise A cell of the bacterium E. coli divides into two cells every 20 minutes 
when placed in a nutrient culture. Let 𝑦 = 𝑦(𝑡) be the number of cells 
that are present 𝑡 minutes after a single cell is placed in the culture. 
Assume that the growth of the bacteria is approximated by an 
exponential growth model.

a) Find an initial-value problem whose solution is 𝒚(𝒕).

b) Find a formula for 𝒚(𝒕).

c) How many cells are present after 2 hours?



EXPONENTIAL GROWTH AND DECAY MODELS

Exercise A scientist wants to determine the half-life of a certain radioactive 
substance. She determines that in exactly 5 days a 10.0 −milligram 
sample of the substance decays to 3.5 milligrams. Based on these data, 
what is the half-life?

Exercise Suppose that 30% of a certain radioactive substance decays in 5 years. 
What is the half-life of the substance in years?



NEWTON'S LAW OF COOLING AND WARMING

The Law * The rate at which the temperature of a body changes is proportional 

to the difference between the temperature of the body and the 

temperature of the surrounding medium (ambient temperature 

المحيطةالأجواءحرارة ).

* If 𝑇(𝑡) represents the temperature of a body at time 𝑡, 𝑇𝑚 the 

temperature of the surrounding medium, and
𝑑𝑇

𝑑𝑡
 the rate at which 

the temperature of the body changes, then

𝑑𝑇

𝑑𝑡
∝ 𝑇 − 𝑇𝑚

𝑑𝑇

𝑑𝑡
= 𝑘 𝑇 − 𝑇𝑚

k < 0 in either 

cooling or warming



NEWTON'S LAW OF COOLING AND WARMING

Example Let 𝑦 represent the temperature (in F∘) of an object in a room whose 
temperature is kept at a constant 60∘. The object cools from 100∘ to 
90∘ in 10 minutes. How much longer will it take for the temperature of 
the object to decrease to 80∘.

𝑇 0 = 100
𝑑𝑇

𝑑𝑡
= 𝑘 𝑇 − 60 (k < 0)

1

𝑇 − 60
𝑑𝑇 = 𝑘𝑑𝑡

Separable

න
1

𝑇 − 60
𝑑𝑇 = න 𝑘𝑑𝑡

ln 𝑇 − 60 = 𝑘𝑡 + 𝐶 (T > 60)

But 𝑇 0 = 100 ln 100 − 60 = 𝑘 ⋅ 0 + 𝐶 𝐶 = ln 40



NEWTON'S LAW OF COOLING AND WARMING

Example Let 𝑦 represent the temperature (in F∘) of an object in a room whose 
temperature is kept at a constant 60∘. The object cools from 100∘ to 
90∘ in 10 minutes. How much longer will it take for the temperature of 
the object to decrease to 80∘.

ln 𝑇 − 60 = 𝑘𝑡 + ln 40 𝑇 − 60 = 𝑒𝑘𝑡+ln 40

𝑇 𝑡 = 60 + 40𝑒𝑘𝑡

But 𝑇 10 = 90 90 = 60 + 40𝑒10𝑘

3

4
= 𝑒10𝑘

𝑘 =
1

10
ln

3

4
≈ −0.02877



NEWTON'S LAW OF COOLING AND WARMING

Example Let 𝑦 represent the temperature (in F∘) of an object in a room whose 
temperature is kept at a constant 60∘. The object cools from 100∘ to 
90∘ in 10 minutes. How much longer will it take for the temperature of 
the object to decrease to 80∘.

𝑇 𝑡 = 60 + 40𝑒−0.02877𝑡

If 𝑇 𝑡 = 80 60 + 40𝑒−0.02877𝑡 = 80

𝑒−0.02877𝑡 = 0.5

−0.02877𝑡 = ln 0.5

𝑡 =
−0.69315

−0.02877
≈ 24.09 minutes

Therefore, we need to 

extra 14.09 minutes 

to reach 80°



NEWTON'S LAW OF COOLING AND WARMING

General
Solution

𝑑𝑇

𝑑𝑡
= 𝑘 𝑇 − 𝑇𝑚 𝑇 0 = 𝑡0

𝑑𝑇

𝑇 − 𝑇𝑚
= 𝑘 𝑑𝑡 න

1

𝑇 − 𝑇𝑚
𝑑𝑇 = න 𝑘𝑑𝑡

ln 𝑇 − 𝑇𝑚 = 𝑘𝑡 + 𝐶

But 𝑇 0 = 100 ln 𝑡0 − 𝑇𝑚 = 𝑘 ⋅ 0 + 𝐶 𝐶 = ln 𝑡0 − 𝑇𝑚

ln 𝑇 − 𝑇𝑚 = 𝑘𝑡 + ln 𝑡0 − 𝑇𝑚

𝑇 − 𝑇𝑚 = ±𝑒𝑘𝑡 ⋅ 𝑒ln 𝑡0−𝑇𝑚

𝑇 = 𝑇𝑚 ± 𝑡0 − 𝑇𝑚 𝑒𝑘𝑡

𝑇 = 𝑇𝑚 + 𝑡0 − 𝑇𝑚 𝑒𝑘𝑡 (k < 0)



NEWTON'S LAW OF COOLING AND WARMING

Example A glass of lemonade with a temperature of 40∘F is placed in a room with 
a constant temperature of 70∘F. How many minutes will it take for the 
lemonade to reach a temperature of 65∘F if it heats to 52∘F in 1 hour?

𝑡0 = 40 𝑇𝑚 = 70 𝑇 60 = 52

𝑇 𝑡 = 𝑇𝑚 + 𝑡0 − 𝑇𝑚 𝑒𝑘𝑡

= 70 + 40 − 70 𝑒𝑘𝑡

= 70 − 30𝑒𝑘𝑡

But 𝑇 60 = 52

52 = 70 − 30𝑒60𝑘

30𝑒60𝑘 = 18

𝑘 =
1

60
ln

18

30
≈ −0.0085

𝑇 𝑡 = 70 − 30𝑒−0.0085𝑡



NEWTON'S LAW OF COOLING AND WARMING

Example A glass of lemonade with a temperature of 40∘F is placed in a room with 
a constant temperature of 70∘F. How many minutes will it take for the 
lemonade to reach a temperature of 65∘F if it heats to 52∘F in 1 hour?

𝑇 𝑡 = 70 − 30𝑒−0.0085𝑡

𝑇 𝑡 = 65 65 = 70 − 30𝑒−0.0085𝑡

𝑒−0.0085𝑡 =
5

30
−0.0085𝑡 = ln

1

6

𝑡 = 210.765 Minutes



LOGISTIC MODELS

Notes * The uninhibited population growth ( المقيدّغيرالسكانيالنموّّ ) model was 

predicated on the assumption that the population 𝑦 = 𝑦(𝑡) was not 

constrained by the environment.

* In general, populations grow within ecological systems ( البيئيةالأنظمة ) 

that can only support a certain number of individuals 𝐿.

* The number 𝐿 is called the carrying capacity ( الاستيعابيةالقدرة ) of the 

system.



LOGISTIC MODELS

Notes

Exponential Growth

𝑦 𝑡 = 𝑦0𝑒𝑘𝑡

Logistic Growth

Carrying Capacity L

𝑑𝑦

𝑑𝑡
= ?

𝑦

𝐿
> 1

𝑑𝑦

𝑑𝑡
< 0

𝑦

𝐿
< 1

𝑑𝑦

𝑑𝑡
> 0

𝑦

𝐿
= 1

𝑑𝑦

𝑑𝑡
= 0



LOGISTIC MODELS

The 
Model

𝑑𝑦

𝑑𝑡
= 𝑘𝑦 1 −

𝑦

𝐿
𝑦 0 = 𝑦0; and 𝑘 > 0

Solution

Separable

𝑑𝑦

𝑑𝑡
= 𝑘𝑦

𝐿 − 𝑦

𝐿

𝐿

𝑦 𝐿 − 𝑦
𝑑𝑦 = 𝑘𝑑𝑡

න
𝐿

𝑦 𝐿 − 𝑦
𝑑𝑦 = න 𝑘𝑑𝑡

By Partial Fractions

𝐿

𝑦 𝐿 − 𝑦
=

𝐴

𝑦
+

𝐵

𝐿 − 𝑦
=

𝐴 𝐿 − 𝑦 + 𝐵𝑦

𝑦 𝐿 − 𝑦



LOGISTIC MODELS

Solution න
𝐿

𝑦 𝐿 − 𝑦
𝑑𝑦 = න 𝑘𝑑𝑡 𝐿 = 𝐴 𝐿 − 𝑦 + 𝐵𝑦

𝑦 = 𝐿 𝐵 = 1

𝑦 = 0 𝐴 = 1න
1

𝑦
+

1

𝐿 − 𝑦
𝑑𝑦 = න 𝑘𝑑𝑡

ln 𝑦 − ln 𝐿 − 𝑦 = 𝑘𝑡 + 𝐶 ln
𝑦

𝐿 − 𝑦
= 𝑘𝑡 + 𝐶

𝑦

𝐿 − 𝑦
= 𝑒𝑘𝑡 ⋅ 𝑒𝐶

𝐿 − 𝑦

𝑦
= 𝑒−𝑘𝑡 ⋅ 𝑒−𝐶

𝐿

𝑦
− 1 = 𝑒−𝑘𝑡 ⋅ 𝑒−𝐶 𝑦 =

𝐿

1 + 𝑒−𝑘𝑡 ⋅ 𝑒−𝐶



LOGISTIC MODELS

Solution 𝑦 =
𝐿

1 + 𝑒−𝑘𝑡 ⋅ 𝑒−𝐶

Constant

𝑦 =
𝐿

1 + 𝑏 ⋅ 𝑒−𝑘𝑡

But 𝑦 0 = 𝑦0 𝑦0 =
𝐿

1 + 𝑏

𝑏 =
𝐿

𝑦0
− 1 =

𝐿 − 𝑦0

𝑦0

𝑦 =
𝐿

1 +
𝐿 − 𝑦0

𝑦0
⋅ 𝑒−𝑘𝑡

=
𝑦0𝐿

𝑦0 + (𝐿−𝑦0) ⋅ 𝑒−𝑘𝑡



LOGISTIC MODELS

Example Suppose that the growth of a population 𝑦 = 𝑦(𝑡) is given by the 
logistic equation

𝑦 =
60

5 + 7𝑒−𝑡
𝑦 =

𝑦0𝐿

𝑦0 + (𝐿−𝑦0) ⋅ 𝑒−𝑘𝑡

a) What is the population at time 𝒕 = 𝟎?

𝑦 0 =
60

5 + 7 ⋅ 𝑒0
= 5

b) What is the carrying capacity 𝑳?

𝑦0𝐿 = 60

𝑦0 = 5

5𝐿 = 60 𝐿 = 12



LOGISTIC MODELS

Example Suppose that the growth of a population 𝑦 = 𝑦(𝑡) is given by the 
logistic equation

𝑦 =
60

5 + 7𝑒−𝑡
𝑦 =

𝑦0𝐿

𝑦0 + (𝐿−𝑦0) ⋅ 𝑒−𝑘𝑡

c) What is the constant 𝒌?

𝑘 = 1

d) When does the population reach half of the carrying capacity?

𝑦 𝑡 =
𝐿

2
= 6

𝑦0 = 5 𝐿 = 12

60

5 + 7𝑒−𝑡
= 6 30 + 42𝑒−𝑡 = 60

𝑒−𝑡 =
30

42
𝑡 ≈ 0.3365



LOGISTIC MODELS

Example Suppose a population grows according to a logistic model with initial 
population 1000 and carrying capacity 10000. If the population grows 
to 2500 after one year, what will the population be after another three 
years?

𝑦 =
𝑦0𝐿

𝑦0 + (𝐿−𝑦0) ⋅ 𝑒−𝑘𝑡

𝑦0 = 1000 𝐿 = 10000
𝑦 𝑡 =

1000 10000

1000 + 10000 − 1000 ⋅ 𝑒−𝑘𝑡

=
10000

1 + 9 ⋅ 𝑒−𝑘𝑡

But 𝑦 1 = 2500
10000

1 + 9 ⋅ 𝑒−𝑘 1
= 2500 1 + 9 ⋅ 𝑒−𝑘 = 4

𝑒−𝑘 =
1

3
𝑘 = ln 3



LOGISTIC MODELS

Example Suppose a population grows according to a logistic model with initial 
population 1000 and carrying capacity 10000. If the population grows 
to 2500 after one year, what will the population be after another three 
years?

𝑦 =
𝑦0𝐿

𝑦0 + (𝐿−𝑦0) ⋅ 𝑒−𝑘𝑡

𝑦0 = 1000 𝐿 = 10000
𝑦 𝑡 =

10000

1 + 9 ⋅ 𝑒− ln 3 𝑡
=

10000

1 + 32−𝑡

After another 3-years: 𝑦 4 =
10000

1 + 3−2

= 9000



SPREAD OF DISEASE

The
Model

* Suppose that a disease begins to spread in a population of 𝐿 
individuals.

* The spread of a disease is determined by the contact between 
infected individuals and those who are not infected.

Infected

Not

Infected



SPREAD OF DISEASE

The
Model

Since # uninfected people is 

larger than who are infected, 

then the spread increases

Since # infected people is larger 

than who are uninfected, then 

the spread decreases

After

Spread

Rate of
Spread

∝
Number of

Infected
⋅

Number of
Uninfected



SPREAD OF DISEASE

The
Model

Let 𝑦 𝑡  is the number of individuals who have the disease at time 𝑡, then

𝑑𝑦

𝑑𝑡
= 𝑘𝑦 𝐿 − 𝑦 𝑦 0 = 𝑦0

k > 0 depends on the

nature of the disease

The number of affected 

individuals at some point 

in time

Solution

Separable

𝑑𝑦

𝑑𝑡
= 𝑘𝑦 𝐿 − 𝑦

1

𝑦 𝐿 − 𝑦
𝑑𝑦 = 𝑘𝑑𝑡

න
1

𝑦 𝐿 − 𝑦
𝑑𝑦 = න 𝑘𝑑𝑡

By Partial Fractions

1

𝑦 𝐿 − 𝑦
=

𝐴

𝑦
+

𝐵

𝐿 − 𝑦
=

𝐴 𝐿 − 𝑦 + 𝐵𝑦

𝑦 𝐿 − 𝑦



SPREAD OF DISEASE

Solution න
1

𝑦 𝐿 − 𝑦
𝑑𝑦 = න 𝑘𝑑𝑡 1 = 𝐴 𝐿 − 𝑦 + 𝐵𝑦

𝑦 = 𝐿 𝐵 = Τ1 𝐿

𝑦 = 0 𝐴 = Τ1 𝐿1

𝐿
න

1

𝑦
+

1

𝐿 − 𝑦
𝑑𝑦 = න 𝑘𝑑𝑡

ln 𝑦 − ln 𝐿 − 𝑦 = 𝐿𝑘𝑡 + 𝐶 ln
𝑦

𝐿 − 𝑦
= 𝐿𝑘𝑡 + 𝐶

𝑦

𝐿 − 𝑦
= 𝑒𝐿𝑘𝑡 ⋅ 𝑒𝐶

𝐿 − 𝑦

𝑦
= 𝑒−𝐿𝑘𝑡 ⋅ 𝑒−𝐶

𝐿

𝑦
− 1 = 𝑒−𝐿𝑘𝑡 ⋅ 𝑒−𝐶 𝑦 =

𝐿

1 + 𝑒−𝐿𝑘𝑡 ⋅ 𝑒−𝐶



SPREAD OF DISEASE

Solution 𝑦 =
𝐿

1 + 𝑒−𝐿𝑘𝑡 ⋅ 𝑒−𝐶

Constant

𝑦 =
𝐿

1 + 𝑏 ⋅ 𝑒−𝐿𝑘𝑡

But 𝑦 0 = 𝑦0 𝑦0 =
𝐿

1 + 𝑏

𝑏 =
𝐿

𝑦0
− 1 =

𝐿 − 𝑦0

𝑦0

𝑦 =
𝐿

1 +
𝐿 − 𝑦0

𝑦0
⋅ 𝑒−𝐿𝑘𝑡

=
𝑦0𝐿

𝑦0 + (𝐿−𝑦0) ⋅ 𝑒−𝐿𝑘𝑡



SPREAD OF DISEASE

Example Suppose a student carrying a flu virus returns 
to an isolated college campus of 1000 
students. Determine the number of infected 
students after 6 days if it is further observed 
that after 4 days there were 50 infected 
students.

𝑦 𝑡 =
𝑦0𝐿

𝑦0 + (𝐿−𝑦0) ⋅ 𝑒−𝐿𝑘𝑡

𝐿 = 1000 𝑦0 = 1

𝑦 𝑡 =
1000

1 + 999 ⋅ 𝑒−1000𝑘𝑡

But 𝑦 4 = 50 50 =
1000

1 + 999 ⋅ 𝑒−4000𝑘

1 + 999 ⋅ 𝑒−4000𝑘 = 20

𝑘 = −
1

4000
ln

19

999
≈ 0.00099



SPREAD OF DISEASE

Example Suppose a student carrying a flu virus returns 
to an isolated college campus of 1000 
students. Determine the number of infected 
students after 6 days if it is further observed 
that after 4 days there were 50 infected 
students.

𝑦 𝑡 =
𝑦0𝐿

𝑦0 + (𝐿−𝑦0) ⋅ 𝑒−𝐿𝑘𝑡

𝐿 = 1000 𝑦0 = 1

𝑦 𝑡 =
1000

1 + 999 ⋅ 𝑒−0.99𝑡

𝑦 6 =
1000

1 + 999 ⋅ 𝑒− 0.99 6

=
1000

1 + 999 ⋅ 𝑒−5.94
≈ 275.53 Students



DRAINING A TANK AND TORRICELLI’S LAW

Torricelli’s
Law

The law states that the speed 𝑣 of efflux of water 
though a sharp-edged  at the bottom of a tank filled to 
a depth ℎ is the same as the speed that a body (water) 
would acquire in falling freely from a height ℎ.

KINETIC ENERGY = POTENTIAL ENERGY Law of Conservation 

of Energy)طاقةّالحركة((طاقةّالوضع)

1

2
𝑚𝑣2 = 𝑚𝑔ℎ

Acceleration due to gravityBody mass

𝑔 = 32 Τft s2

𝑣 = 2𝑔ℎ



DRAINING A TANK AND TORRICELLI’S LAW

The
Model

𝑣 = 2𝑔ℎ

Let ℎ 𝑡

𝑉 𝑡

the depth of water remaining in the tank 
at time 𝑡 (in seconds)

the volume of water in the tank at time 𝑡 
(in seconds)

𝐴ℎ the area of the hole (in ft2)

𝐴𝑤 the area of the upper surface (in ft2)

Then Flow
Rate

Hole
Area

Velocity
of Flow

= ×

−
𝑑𝑉

𝑑𝑡
= 𝐴ℎ 2𝑔ℎ

𝑑𝑉

𝑑𝑡
= −8𝐴ℎ ℎ

FIXED

𝑔 = 32 Τft s2



DRAINING A TANK AND TORRICELLI’S LAW

The
Model

𝑣 = 2𝑔ℎ

But

𝑑𝑉

𝑑𝑡
= −8𝐴ℎ ℎ

𝑉 𝑡 = 𝐴𝑤ℎ 𝑡
𝑑𝑉

𝑑𝑡
= 𝐴𝑤

𝑑ℎ

𝑑𝑡

𝐴𝑤

𝑑ℎ

𝑑𝑡
= −8𝐴ℎ ℎ

𝑑ℎ

𝑑𝑡
= −8

𝐴ℎ

𝐴𝑤
ℎ



DRAINING A TANK AND TORRICELLI’S LAW

Solution
𝑑ℎ

𝑑𝑡
= −8

𝐴ℎ

𝐴𝑤
ℎ

𝑑ℎ

𝑑𝑡
= −8

𝐴ℎ

𝐴𝑤
ℎ

Separable

Constant 𝑏

𝑑ℎ

ℎ
= 𝑏 𝑑𝑡

න
1

ℎ
𝑑ℎ = න 𝑏 𝑑𝑡

2 ℎ = 𝑏𝑡 + 𝐶

2 ℎ = −8
𝐴ℎ

𝐴𝑤
 𝑡 + 𝐶

ℎ 𝑡 = −4
𝐴ℎ

𝐴𝑤
 𝑡 + 𝐶

2

𝐶 > 0



DRAINING A TANK AND TORRICELLI’S LAW

Example Suppose that the cylindrical tank in the figure is filled 
to a depth of 4 feet at time 𝑡 = 0 and the radius of the 
circular hole is 0.045 feet.

a) Find 𝒉 𝒕 ℎ 𝑡 = −4
𝐴ℎ

𝐴𝑤
 𝑡 + 𝐶

2

𝐴ℎ = 𝑟ℎ
2𝜋 = 0.045 2𝜋 = 0.002025 𝜋

𝐴𝑤 = 𝑟ℎ
2𝜋 = 1 2𝜋 = 𝜋

But ℎ 0 = 4 4 = 0 + 𝐶 2 𝐶 = 2

∴ ℎ 𝑡 = −4
0.002025 𝜋

𝜋
 𝑡 + 2

2

= 2 − 0.0081 𝑡 2



DRAINING A TANK AND TORRICELLI’S LAW

Example Suppose that the cylindrical tank in the figure is filled 
to a depth of 4 feet at time 𝑡 = 0 and the radius of the 
circular hole is 0.045 foot.

b) How many minutes will it take for the tank to 
drain completely?

ℎ 𝑡 = 2 − 0.0081 𝑡 2 = 0

2 − 0.0081 𝑡 = 0

𝑡 =
2

0.0081
= 246.9 seconds

= 4.12 minutes



DRAINING A TANK AND TORRICELLI’S LAW

Exercise The cylindrical water tank shown in the figure 
has a height of 18 feet. When the tank is full, a 
circular valve (صمّام) is opened at the bottom of 
the tank. After 30 minutes, the depth of the 
water is 12 feet.

a) how long will it take for the tank to drain 
completely?

b) What is the depth of the water in the tank 
after 𝟏 hour?



DRAINING A TANK AND TORRICELLI’S LAW

Example Suppose that the tank in the figure is filled to 
a depth of 4 feet at time 𝑡 = 0 and the radius 
of the circular hole is 0.045 feet. Find ℎ 𝑡

Center 0,2

x2 + y−2 2 = 4

radius r = 2

As y = h t  changes, the 

value of x also changes

𝑥

𝑥2 = 4 − ℎ − 2 2

𝑥 = 4 − ℎ − 2 2

𝑥 = 4ℎ − ℎ2

6

2𝑥 = 4ℎ − ℎ2



DRAINING A TANK AND TORRICELLI’S LAW

Example Suppose that the tank in the figure is filled to 
a depth of 4 feet at time 𝑡 = 0 and the radius 
of the circular hole is 0.045 feet. Find ℎ 𝑡

6

4ℎ − ℎ2

𝑑ℎ

𝑑𝑡
= −8

𝐴ℎ

𝐴𝑤
ℎ

𝐴ℎ = 𝑟ℎ
2𝜋 = 0.045 2𝜋 = 0.002025 𝜋

𝐴𝑤 = heigh ⋅ width = 12 4ℎ − ℎ2

𝑑ℎ

𝑑𝑡
= −8

0.002025 𝜋

12 4ℎ − ℎ2
ℎ= −0.00424

ℎ

4ℎ − ℎ2

= −0.00424
1

4 − ℎ



DRAINING A TANK AND TORRICELLI’S LAW

Example Suppose that the tank in the figure is filled to 
a depth of 4 feet at time 𝑡 = 0 and the radius 
of the circular hole is 0.045 feet. Find ℎ 𝑡

𝑑ℎ

𝑑𝑡
= −0.00424

1

4 − ℎ
Separable

4 − ℎ 𝑑ℎ = −0.00424 𝑑𝑡 න 4 − ℎ 𝑑ℎ = − න 0.00424 𝑑𝑡

2

3
4 − ℎ Τ3 2 = −0.00424 𝑡 + 𝐶

But ℎ 0 = 4
2

3
4 − 4 Τ3 2 = −0.00424 ⋅ 0 + 𝐶 𝐶 = 0



DRAINING A TANK AND TORRICELLI’S LAW

Example Suppose that the tank in the figure is filled to 
a depth of 4 feet at time 𝑡 = 0 and the radius 
of the circular hole is 0.045 feet. Find ℎ 𝑡

2

3
4 − ℎ Τ3 2 = −0.00424 𝑡

4 − ℎ Τ3 2 = −0.00636 𝑡

4 − ℎ 3 = 0.00000405 𝑡2

4 − ℎ = 0.0343 𝑡 Τ2 3 ℎ 𝑡 = 4 − 0.0343
3

𝑡2
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HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

FORM 𝑔𝑛 𝑥 𝑦 𝑛 + 𝑔𝑛−1 𝑥 𝑦 𝑛−1 + ⋯ + 𝑔1 𝑥 𝑦′ + 𝑔0 𝑥 𝑦 = 𝑓 𝑥

𝑎𝑛𝑦 𝑛 + 𝑎𝑛−1𝑦 𝑛−1 + ⋯ + 𝑎1𝑦′ + 𝑎0𝑦 = 𝑓 𝑥

𝑎𝑛𝑦 𝑛 + 𝑎𝑛−1𝑦 𝑛−1 + ⋯ + 𝑎1𝑦′ + 𝑎0𝑦 = 0

Higher Order Differential 

Equation

Higher Order Differential 

Equation with Constant 

Coefficients

Homogeneous Higher Order 

Differential Equation with 

Constant Coefficients



HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

Auxiliary
Equation

* If we try to find a solution of the form 𝑦 = 𝑒𝑚𝑥, then after 
substituting 𝑦′ = 𝑚𝑒𝑚𝑥  and 𝑦′′ = 𝑚2𝑒𝑚𝑥, equation (1) becomes

* Considering the special case of the homogeneous linear 2nd order 
differential equation

𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 0

where 𝑎, 𝑏, and 𝑐 are constants.

𝟏

𝑎𝑚2𝑒𝑚𝑥 + 𝑏𝑚𝑒𝑚𝑥 + 𝑐𝑒𝑚𝑥 = 0

𝑒𝑚𝑥 𝑎𝑚2 + 𝑏𝑚 + 𝑐 = 0

𝑎𝑚2 + 𝑏𝑚 + 𝑐 = 0
Auxiliary

Equation



HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

Auxiliary
Equation

The two roots are: 𝑚1 =
−𝑏 + 𝑏2 − 4𝑎𝑐

2𝑎

𝑎𝑚2 + 𝑏𝑚 + 𝑐 = 0

𝑚2 =
−𝑏 − 𝑏2 − 4𝑎𝑐

2𝑎

Three cases of the general solution:

• Distinct real roots 𝑚1 ≠ 𝑚2  if 𝑏2 − 4𝑎𝑐 > 0

• Equal real roots 𝑚1 = 𝑚2  if 𝑏2 − 4𝑎𝑐 = 0

• Conjugate complex roots 𝛼 ± 𝛽𝑖  if 𝑏2 − 4𝑎𝑐 < 0



HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

Distinct 
Real Roots

Repeated 
Real Roots

Complex
Roots

𝑚1, 𝑚2 ∈ ℝ 𝑚1 ≠ 𝑚2 thenand 𝑦 = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥

𝑚1, 𝑚2 ∈ ℝ 𝑚1 = 𝑚2 thenand 𝑦 = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑥𝑒𝑚1𝑥

𝑚1, 𝑚2 ∈ ℂ 𝑚1 = 𝛼 + 𝑖𝛽 thenand 𝑦 = 𝑒𝛼𝑥 𝑐1 cos 𝛽𝑥 + 𝑐2 sin 𝛽𝑥

𝑚2 = 𝛼 − 𝑖𝛽

𝛼, 𝛽 > 0



HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

Example Solve the following differential equations.

A) 2𝑦′′ − 5𝑦′ − 3𝑦 = 0

2𝑚2 − 5𝑚 − 3 = 0Auxiliary Equation:

𝑚 =
− −5 ± −5 2 − 4 2 −3

2 2
=

5 ± 49

4

𝑚1 = 3 𝑚2 = −
1

2

𝑦 = 𝑐1𝑒3𝑥 + 𝑐2𝑒 Τ−𝑥 2



HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

Example Solve the following differential equations.

B) 𝑦′′ − 10𝑦′ + 25𝑦 = 0

𝑚2 − 10𝑚 + 25 = 0Auxiliary Equation:

𝑚 =
− −10 ± −10 2 − 4 1 25

2 1
=

10 ± 0

2

𝑚1 = 5 𝑚2 = 5

𝑦 = 𝑐1𝑒5𝑥 + 𝑐2𝑥𝑒5𝑥



HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

Example Solve the following differential equations.

C) 𝑦′′ + 4𝑦′ + 7𝑦 = 0

𝑚2 + 4𝑚 + 7 = 0Auxiliary Equation:

𝑚 =
−4 ± 42 − 4 1 7

2 1
=

−4 ± −12

2

𝑚1 = −2 + 𝑖 3

𝑦 = 𝑒−2𝑥 𝑐1 cos 3𝑥 + 𝑐2 sin 3𝑥

𝑚2 = −2 − 𝑖 3

𝛼 = −2

𝛽 = 3



HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

Example Solve the initial value problem

4𝑚2 + 4𝑚 + 17 = 0Auxiliary Equation:

𝑚 =
−4 ± 42 − 4 4 17

2 4
=

−4 ± −256

8

𝑚1 = −
1

2
+ 2𝑖

𝑦 = 𝑒 Τ−𝑥 2 𝑐1 cos 2𝑥 + 𝑐2 sin 2𝑥

𝛼 = −
1

2

𝛽 = 2

4𝑦′′ + 4𝑦′ + 17𝑦 = 0 𝑦 0 = 0 𝑦′ 0 = 1

𝑚2 = −
1

2
− 2𝑖



HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

Example Solve the initial value problem

𝑦 = 𝑒 Τ−𝑥 2 𝑐1 cos 2𝑥 + 𝑐2 sin 2𝑥

𝑦 0 = 0 0 = 𝑒0 𝑐1 cos 0 + 𝑐2 sin 0 0 = 𝑐1

∴ 𝑦 𝑥 = 𝑐2𝑒 Τ−𝑥 2 sin 2𝑥 𝑦′ 𝑥 =
1

2
𝑐2𝑒 Τ−𝑥 2 4 cos 2𝑥 − sin 2𝑥

𝑦′ 0 = 1 1 =
1

2
𝑐2𝑒0 4 cos 0 − sin 0

1

2
= 𝑐2

∴ 𝑦 𝑥 =
1

2
𝑒 Τ−𝑥 2 sin 2𝑥

4𝑦′′ + 4𝑦′ + 17𝑦 = 0 𝑦 0 = 0 𝑦′ 0 = 1



SPRING/MASS SYSTEMS: FREE UNDAMPED MOTION

Hooke’s
Law

* Suppose a spring/mass system consists of a 
flexible spring suspended vertically from a 
rigid support ( صلبةدعامة ) with a mass 𝑚 is 
attached to its free end.

* The amount of stretch 𝑠, or elongation, of 
the spring will depend on the mass; masses 
with different weights stretch the spring by 
differing amounts.

* Hooke’s Law states that the spring applies a 
restoring force ( مسترجِعةشدقوة ) 𝐹 opposite to 
the direction of elongation and proportional 
to the amount of elongation s.

𝐹 = −𝑘𝑠 𝑘 > 0



SPRING/MASS SYSTEMS: FREE UNDAMPED MOTION

Newton’s 
Second Law

* When a mass 𝑚 is attached to the lower end of a spring it 
stretches the spring by an amount 𝑠  and attains an 
equilibrium (rest) position at which its weight 𝑊  is 
balanced by the restoring force 𝑘𝑠 of the spring.

* The condition of equilibrium is
𝐹 = −𝑘𝑠

𝑘 > 0

𝑊 = 𝑚𝑔

m is measured in 

kilograms or grams

g is the acceleration due to gravity

g = 32 ft/s2

g = 9.8 m/s2

𝑚𝑔 = 𝑘𝑠

𝑚𝑔 − 𝑘𝑠 = 0



SPRING/MASS SYSTEMS: FREE UNDAMPED MOTION

Newton’s 
Second Law

* Now suppose the mass on the spring is set in 
motion by giving it an initial displacement (an 
elongation or a compression) and an initial 
velocity.

* Let us assume that the motion takes 
place in a vertical line, that the 
displacements 𝑥 𝑡  of the mass are 
measured along this line such that 𝑥 = 0  
corresponds to the equilibrium position, 
and that displacements measured below 
the equilibrium position are positive.

𝐹 = −𝑘𝑠

𝑚𝑔 = 𝑘𝑠



SPRING/MASS SYSTEMS: FREE UNDAMPED MOTION

Newton’s 
Second Law

* Newton’s second law of motion: the net force on a moving 

body of mass 𝑚 is given by ∑𝐹 = 𝑚𝑎 where 𝑎 =
𝑑2𝑥

𝑑𝑡2  is its 

acceleration (التسارع).

𝐹 = −𝑘𝑠

𝑚𝑔 = 𝑘𝑠

* If we assume that the mass vibrates free of all other 
external forces, then

𝑚
𝑑2𝑥

𝑑𝑡2
= −𝑘 𝑥 + 𝑠 + 𝑚𝑔

= −𝑘𝑥 − 𝑘𝑠 + 𝑚𝑔 = −𝑘𝑥

∴
𝑑2𝑥

𝑑𝑡2
= −

𝑘

𝑚
𝑥 𝑘, 𝑚 > 0
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Solution ∴
𝑑2𝑥

𝑑𝑡2
+

𝑘

𝑚
𝑥 = 0 𝑥 0 = 𝑥0 𝑥′ 0 = 𝑥1

Initial

Displacement

Initial

Velocity

* If 𝑥0 > 0, then mass starts from a 
point below the equilibrium 
position

* If 𝑥0 < 0, then mass starts from a 
point above the equilibrium 
position

* If 𝑥1 > 0, then mass starts with an 
imparted downward velocity

* If 𝑥1 < 0, then mass starts with an 
imparted upward velocity

* If 𝑥1 = 0 , then the mass is 
released from rest
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Solution ∴
𝑑2𝑥

𝑑𝑡2
+

𝑘

𝑚
𝑥 = 0

Let 𝜔2 =
𝑘

𝑚

𝑑2𝑥

𝑑𝑡2
+ 𝜔2𝑥 = 0 𝑝2 + 𝜔2 = 0 𝑝2 = −𝜔2

𝑝 = 0 ± 𝜔𝑖

𝑥 0 = 𝑥0 𝑥′ 0 = 𝑥1

𝛼 = 0 𝛽 = 𝜔

∴ 𝑥 𝑡 = 𝑒0 𝑐1 cos 𝜔𝑡 + 𝑐2 sin 𝜔𝑡

= 𝑐1 cos 𝜔𝑡 + 𝑐2 sin 𝜔𝑡 = 𝑐1 cos
𝑘

𝑚
𝑡 + 𝑐2 sin

𝑘

𝑚
𝑡
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Example A mass weighing 9.8 N stretches a spring 0.2 m. At 𝑡 = 0 the mass is 
released from a point 0.25 m below the equilibrium position with an 
upward velocity of 0.4 m/s. Determine the equation of motion.

𝑥 𝑡 = 𝑐1 cos
𝑘

𝑚
𝑡 + 𝑐2 sin

𝑘

𝑚
𝑡

𝑥 0 = 0.25

𝑥′ 0 = −0.4

𝑊 = 𝑚𝑔 9.8 = 9.8𝑚 𝑚 = 1

𝐹 = 𝑘𝑠 9.8 = 0.2𝑘 𝑘 = 49 Hooke’s Law

𝑥 𝑡 = 𝑐1 cos 7𝑡 + 𝑐2 sin 7𝑡
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Example A mass weighing 9.8 N stretches a spring 0.2 m. At 𝑡 = 0 the mass is 
released from a point 0.25 m below the equilibrium position with an 
upward velocity of 0.4 m/s. Determine the equation of motion.

𝑥 0 = 0.25 𝑥′ 0 = −0.4𝑥 𝑡 = 𝑐1 cos 7𝑡 + 𝑐2 sin 7𝑡

𝑥′ 𝑡 = −7𝑐1 sin 7𝑡 + 7𝑐2 cos 7𝑡

𝑥 0 = 0.25 𝑐1 =
1

4

𝑥′ 0 = −0.4 𝑐2 = −
2

35

∴ 𝑥 𝑡 =
1

4
cos 7𝑡 −

2

35
sin 7𝑡
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Example A mass weighing 7.35 newtons, attached to the end of a spring, with 
stiffness (صلابة) of 72 N/m. Initially, the mass is released from rest 
from a point 0.25 m above the equilibrium position. Find the equation 
of motion.

𝑥 𝑡 = 𝑐1 cos
𝑘

𝑚
𝑡 + 𝑐2 sin

𝑘

𝑚
𝑡

𝑥 0 = −0.25

𝑥′ 0 = 0

𝑊 = 𝑚𝑔 7.35 = 9.8𝑚 𝑚 =
3

4

𝑘 = 72

𝑥 𝑡 = 𝑐1 cos 96 𝑡 + 𝑐2 sin 96 𝑡
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Example A mass weighing 7.35 newtons, attached to the end of a spring, with 
stiffness (صلابة) of 72 N/m. Initially, the mass is released from rest 
from a point 0.25 m above the equilibrium position. Find the equation 
of motion.

𝑥 0 = −0.25

𝑥′ 0 = 0

𝑥 𝑡 = 𝑐1 cos 4 6 𝑡 + 𝑐2 sin 4 6 𝑡

𝑥′ 𝑡 = −4 6 𝑐1 sin 4 6 𝑡 + 4 6 𝑐2 cos 4 6 𝑡

𝑥 0 = −0.25 𝑐1 = −
1

4

𝑥′ 0 = 0 𝑐2 = 0 ∴ 𝑥 𝑡 = −
1

4
cos 4 6 𝑡
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Exercise A mass weighing 7.35 newtons, attached to the end of a spring, with 
stiffness (صلابة) of 72 N/m. Initially, the mass is released from the 
equilibrium position with a downward velocity of 2 m/s. Find the 
equation of motion.
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