Course: Calculus (3)

Chapter: [12]
VECTOR-VALUED FUNCTIONS

Section: [12.1]
INTRODUCTION TO VECTOR-VALUED FUNCTIONS




IN THIS CHAPTER

v' We will consider functions whose values are vectors.

S— e
.l

Functions that associate
vectors with real numbers.

v" In this section we will discuss more general parametric curves, and we
will show how vector notation can be used to express parametric

equations in a more compact form.



VECTOR-VALUED FUNCTIONS

A function of the form

r(t) = f(Oi+ g(t)j + h(Ok
= (f(2), g(t), h(1))

is a vector-valued function, where
the component functions f, g and
h are real-valued functions of the
parameter t.
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PARAMETRIC CURVES IN 3 —SPACE

Example The parametric equations

x=1-—-t
y = 3t
Z =2t

represent a line in 3 —space that passes
through the point (1,0,0) and is parallel
to the vector (—1, 3, 2).

r(t) =1 —-t)i+3tj+ 2tk
= (1 —1t,3t,2t)




PARAMETRIC CURVES IN 3 —SPACE ’

Example Describe the parametric curve represented \ (t=7)
by the equations ( 37:)

x = 10cost ( n)

154 =y
: y = 10sint . Sy
" z=1 (t=0)

L gy . r(t) = 10costi+ 10sintj+tk  Circular HELIX
= (10cost,10sint ,t)




VECTOR-VALUED FUNCTIONS

The domain of a vector-valued function r(t) is the set of allowable
values for t.

NOTE Usual reasons to restrict a domain:
1. Avoid division by 0.
2. Avoid even roots of negative numbers.

3. Avoid logarithms of negative numbers or 0.



VECTOR-VALUED FUNCTIONS

Example Find the naturaldomainof r(t) =In|t —1]i+elj+Vtk

x(t) =Inlt—1] [ Domain=R — {1}

y(t) = et 7] Domain=R O

z(t) =+t 7] Domain = [0, ©)

~. The domain of r(t) is the intersection of these sets. 10,1) U (1, 0)
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CALCULUS OF VECTOR-VALUED FUNCTIONS




LIMITS AND CONTINUITY

If r is a vector-valued function such that r(t) = f(1)i + g(¢)j + h(r)k, then

lim r(7) = [1131 f(r)}i 4 [1131 g(t)} i+ [1211 h(r)}k

I—>a

provided f, g, and /& have limits as t — a.

Example Ifr(t) = t%i + tlzn_tlj + cos(mt) k, find }}_{g r(t).
. 1 3
}:1_r)r11r(t) = (3,5,—1 ) }rl_rgt—z = 3
~Int 1/t 1
Ssiedick o dmEsioingc g

}51_r>r11 cos(mt) = —1



LIMITS AND CONTINUITY

2_
Example Ifr(t) = 2 i +sin (%)] + te~t k, find lim r(t).

t2+t t—o00
L}im r(t) =(2,0,0)=2i
- 2t? -1 |
lim — =2 limte ! =000
tooo t« +t t—oo " 1

t— o0

_ (1 =lim—=]lim— =0
lim sin n = tooel tow et



LIMITS AND CONTINUITY

A vector-valued function r is continuous at the point given by r = a when the
limit of r(z) exists as t — a and

lim r(z) = r(a).

I—a

A vector-valued function r 1S continuous on an interval / when it 1S continuous
at every point in the interval.

1
t2—1

Example The vector-valued function r(t) = t?i +

discontinuous att = +1.

j+ tK, is

It is continuous forallt € R — {—1,1}



DERIVATIVES

 The derivative of a vector-valued function is defined by a limit like that

for the derivative of a real-valued function.

v (E) = }Liir(l) r(t + h})l —r(t)

* The derivative of r(t) can be expressed as

dr

d /
a [r(t)] ) E ) r (t) ) r

* Keep in mind that r(t) is a vector, not a number, and hence has a

magnitude and a direction for each value of t, except if r(t) = 0.



DERIVATIVES

Suppose that C is the graph of a
vector-valued function r(t) and that
r'(t) exists and is nonzero for a given
value of t.

If the vector r'(t) is positioned with its
initial point at the terminal point of
the radius vector r(t), then r'(t) is
tangent to C and points in the
direction of increasing parameter.

r( )

r'(f)

Y >



DERIVATIVES

Ifr(z) = f(1)i + g(1)j + h(z)k, where £, g, and h are differentiable functions
of 7, then

r'(r) = (i + g’(1)j + h'(Hk.

y [r(r) =i+ (* + 2)j}

\{

Example For the vector-valued function

r(t) = ti + (t% + 2)j, find r'(1). r(1)

r'(t) =i+ 2tj
r'(1) =i+ 2j

r(l)




DERIVATIVES

Example For the vector-valued function r(t) = costi+ sintj+ 2tk, find:

r'(t) r'(t) = —sinti+ costj+ 2k
r'’(t) r''(t) = —costi—sintj
r'(¢) -r'(t) r'(t) -r'"(t) =sintcost —costsint =0

O r®xr')

i j k
r'(t) Xr'(t) =|—sint cost 2|=2sinti—2costj+Kk
—cost —sint 0



DERIVATIVE RULES 1. Lrer(d)] = er'(0

dt
2. 4 [r()  u(d] = r'() = w)
3.4 D(Or()] = wlOr' () + w (Or ()
4. 2 [r() - u(] = r) - w'() + ) - uld)
5. < [r() < u()] = r(0) % () + /() * ulo)
6. % [rGw ()] = /(v () 0

7. If r(¢) - () = ¢, thenr(?) - r'(¢) = 0.



DERIVATIVE RULES

Example Foru(t) = %i —j+Intkandv(t) = t%i — 2tj + k then:

d
— [u(®) - v(0)]

u(t) -v () +u'(t) - v(t)

1
<?,—1, Int)- (2t,—2,0) +

-1 1
t_zl O; ?> ) (tz; _Zt; 1)

1
(2+2+0)+(—1+0+?)

1
3+
L



DERIVATIVE RULES
Example Foru(t) = %i —j+Intkandv(t) = t%i — 2tj + k then:

d
O S vOXvV©] = v(e)xv'(t) +v'() xv(¢)

i j k
_ t2 =2t 1/+0
2 0 0

2j + 4tk



TANGENT LINES TO GRAPHS OF VECTOR-VALUED FUNCTIONS

Example Find parametric equations of the tangent line to the circular helix
r(t) = costi+ sintj+ tkat the point where t = 7.

f =17 ~. The parametric equations
of the tangent line are

POINT
(cosm,sinm, ) = (—1,0, ) x =—1

= —t
TANGENT VECTOR

Z=T1m+t

r'(t) = —sinti+costj+Kk

r'(m) =—j+k



DEFINITE AND INDEFINITE INTEGRALS OF VECTOR-VALUED FUNCTIONS

In general, we have

b b b b
/r(t)dt:(/ x(t)dt)i (/ y(t)dt)j (/ Z(t)dt)k

Example Letr(t) = t%i+ e'j— 2 cos(mt) k. Then

| | | |
f r(t)dtz(f tzdt)i—l-(/ efdt)j—(f 2cosmdt>k
0 0 0 0

S T B L TR
— 1+e | ] sinwt | K= =i+ (e —1)j




DEFINITE AND INDEFINITE INTEGRALS OF VECTOR-VALUED FUNCTIONS

Example [(2ti—|— 3t%j) dr = (/ 2t dt)i—l— ([ 3 dl‘)j

=+ C)i+ (17 + Cr)j

= (t’i +22§) + (Cii+ Crj) = (t’i+1°j) + C



DEFINITE AND INDEFINITE INTEGRALS OF VECTOR-VALUED FUNCTIONS

Example Find r(t) giventhatr'(t) = (3,2t) andr(1) = (2, 5).

r(t) = fr’(t)dt = j(3,2t)dt = (3t,t?)+C

But r(1) =(2,5) So  r(t) =(3t,t%) +(—1,4)
(3,1) + C =(2,5) r(t) = (3t —1,t% + 4)
C=(—-1,4)



Course: Calculus (3)

Chapter: [12]
VECTOR-VALUED FUNCTIONS

Section: [12.3]
CHANGE OF PARAMETER; ARC LENGTH




SMOOTH PARAMETRIZATIONS

* We will say that a curve represented by r(t) is smoothly parametrized
by r(t), or that r(t) is a smooth function of t if:
v r'(t) is continuous, and
v 1r'(t) # 0 for any allowable value of t.

 Geometrically, this means that a smoothly parametrized curve can
have no abrupt (=) changes in direction as the parameter

increases.



SMOOTH PARAMETRIZATIONS

Example Determine whether the following vector-valued
functions are smooth.

r(t) =acosti+ asintj+ ctk a>0c>0

r'(t) = —asinti+acostj+ck

v' The components are continuous functions, and
v’ there is no value of t for which all three of them are zero.

v Sor(t) is a smooth function.



SMOOTH PARAMETRIZATIONS

Example Determine whether the following vector-valued
functions are smooth.

O r(t) = t%i+ t3

r'(t) = 2ti + 3t?%j

v The components are continuous
functions, and
v’ they are both equal to zero if t = 0.

v So, r(t) is NOT a smooth function.




ARC LENGTH FROM THE VECTOR VIEWPOINT

If C is the graph of a smooth vector-valued function r(t), then its arc
length £ fromt =atot=>bis

b
f‘f dr
) |ldt

b
dt—f dx2+ dy2+ dz\"
- dt dt dt
a 2\

Example Find the arc length of that portion of the circular helix
r(t) = (cost,sint,t)fromt =0tot = .




ARC LENGTH FROM THE VECTOR VIEWPOINT

b b 2 2 2
dr dx dy dz
£ = —|| dt =f — +[—] +|— ] dt
J \ dt dt dt

dt
a
Example Find the arc length of that portion of the circular helix
r(t) = (cost,sint,t)fromt =0tot =m.

r'(t) = (—sint,cost, 1) t = j”l"(t)lldt
0
Ir’ ()] = \/(— sint)? + cos?t+1 ’T
= | V2dt
5 Of

=V2m
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UNIT TANGENT VECTORS
Recall that if C is the graph of a smooth vector-valued function r(t),

then the vector r'(t) is:

v' nonzero, tangent to C, and

v’ points in the direction of increasing parameter.

Thus, by normalizing r’ (t) we obtain a unit vector

T(t) =

that is tangent to C and pointsin t

r'(t)

r' (O]l

We call T(t) the unit tangent vector to C at t.

AY
C

T(4)

r( /)

\ e

ne direction of increasing parameter.



UNIT TANGENT VECTORS

Example Find the unit tangent vector to the graph of r(t) = t%i + t3j at
the point where t = 2.

r'(t) = 2ti + 3t?j 10

r'(2) = 4i + 12]

r'(2)

T =1
412 1 3
— = —i+—j

\/1_60 \/1_0\/1_0 ||||||||f,




UNIT NORMAL VECTORS

Recall if [|r(t)|| = c¢, then r(t) and
r'(t) are orthogonal vectors.
T(t) has constant norm 1, so T(t) and
T'(t) are orthogonal vectors.
This implies that T'(t) is perpendicular
to the tangent line to C at t, so we say

that T'(t) is normal to C at t.




UNIT NORMAL VECTORS

It follows that if T'(t) # 0, and if we
normalize T'(t), then we obtain a
unit vector

T'(t)
IT" (Ol

that is normal to C and points in the

N(t) =

same direction as T'(¢t).

(t, t°)




UNIT NORMAL VECTORS

* We call N(t) the principal unit normal vector to C at t , or more simply,
the unit normal vector.

 Observe that the unit normal vector is defined only at points where
T'(t) # 0. Unless stated otherwise, we will assume that this condition
is satisfied.

* In particular, this excludes straight lines.



UNIT NORMAL VECTORS

Example Find T(t) and N(t) for the circular helix r(t) = (3 cost,3sint, 4t).

r'(t) =(—3sint,3cost,4)

I’ (O] = \/9 sin’t +9cos?t+16 =15

T(t) = = (—sint,=cost,—

(—3sint,3cost,4) —3 3 4
5 5 5 5



UNIT NORMAL VECTORS

Example Find T(t) and N(t) for the circular helix r(t) = (3 cost,3sint, 4t).

T(t)_(—Bsint,Bcost,4)_ -3 t 3 t 4
= - =\ sint,ccost,¢
T'(t) = 2 cost, sint, 0
= | cost,sint,
9 9 3
IT' (DIl = Vgcoszt+£sin2t+ 0 = z




UNIT NORMAL VECTORS

Example Find T(t) and N(t) for the circular helix r(t) = (3 cost,3sint, 4t).

T’(t)—_3 t_3't0
=\ cost,—sint,

9 9
IT (B = \Jﬁcosz t +£sin2 t4+0 = z

<_T3cost,%35int,0>
3
5

N(t) =

= (—cost,—sint,0)



UNIT NORMAL VECTORS

Example Find T(t) and N(¢t) for r(t) = <%t2,§t3> att = 1.

r'(t) =(t,t*) r'(1)=(11)

Y@@y 11
"W=ror=vz - <ﬁ'ﬁ>

r) _
Il Viez + ¢4

T'(t) = (t2 + t*)71/2(1,2t) — % (2t + 4t3)(t% + 1) 73/2(¢, t2)

T(t) = (t,t2) = (t% + t*)~1/2(¢t, t2)




UNIT NORMAL VECTORS

Example Find T(t) and N(¢t) for r(t) = <%t2,§t3> att = 1.

T/(t) = (t? + t*)71/2(1,2t) — % (2t 4 4t3)(t? + t*)73/2(t, t2)

Ly (12) 311 [-1 1
T ="="575 <zﬁ'zﬁ
IT' (D] = (‘—1)2+(L)2—1
“d\2v2) T \avz) T2
T [-1 1
N = e = ﬁ'ﬁ>
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DEFINITION OF CURVATURE

 We will consider the problem of obtaining a numerical measure of how
sharply a curve bends.
* For instance, in the figure, the curve bends more sharply at P than at Q

and you can say that the curvature is greater at P than at Q.

Vv

A
o

—

> X




DEFINITION OF CURVATURE

You can calculate curvature by calculating
the magnitude of the rate of change of the
unit tangent vector T with respect to the

C T+
arc length s. ¢

r.f
/ I
T‘f'a
T/ / T/ Tr

 |If Cisastraightline (no bend), then the direction of T remains constant.
 If C bends slightly, then T undergoes a gradual change of direction.
 If C bends sharply, then T undergoes a rapid change of direction.




DEFINITION OF CURVATURE

If r(t) is a smooth vector-valued function, then for each value of t at

which T'(t) and r''(t) exist, the curvature k can be expressed as

IT' (Ol Ir'(t) xr" ()]l

K(t) — / o /
i) e (1|
Example Show that the curvature of a circle of radius R is k = %.
T (¢t
1G]

I (Ol



DEFINITION OF CURVATURE

Example Show that the curvature of a circle of radius R is k = %.
T'(t
K(t)=” ,()” r(t) = Rcosti+ Rsintj t € [0,2m]
e ()]
r'(t) = —Rsinti+ Rcost]j
r'(t —Rsint,Rcost
T(t) = (&) = ( i = (—sint,cost)

Il /(=R sint)? + (R cos t)?

T'(t) = (—cost,—sint)

() = J(=cost)? + (—sint)? 1
R \/(—R sint)? + (R cost)? R




DEFINITION OF CURVATURE

. . . 1
Example Show that the curvature of a circle of radius R is k = e

P LGS O]

IO r(t) =Rcosti+ Rsintj+ 0k t €][0,2m]
r

r'(t) = —Rsinti+ Rcostj+ Ok
r'’'(t) = —Rcosti— Rsintj+ 0k
i j k
r'(t) xr'’(t) = |—Rsint Rcost 0|=R?%k
—Rcost —Rsint 0

Ir' (&) x " (B)|| = R? @)R21
R _1
I’ ()]l = R R® R
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