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IN THIS CHAPTER

✓ We will consider functions whose values are vectors.

Functions that associate 
vectors with real numbers.

✓ In this section we will discuss more general parametric curves, and we 

will show how vector notation can be used to express parametric 

equations in a more compact form.



VECTOR-VALUED FUNCTIONS

A function of the form

r 𝑡 = 𝑓 𝑡 i + 𝑔 𝑡 j + ℎ 𝑡 k

= 𝑓 𝑡 , 𝑔 𝑡 , ℎ 𝑡

is a vector-valued function, where 
the component functions 𝑓, 𝑔 and 
ℎ are real-valued functions of the 
parameter 𝑡.



PARAMETRIC CURVES IN 𝟑 −SPACE

Example The parametric equations

𝑥 = 1 − 𝑡
𝑦 = 3𝑡
𝑧 = 2𝑡

represent a line in 3 −space that passes 
through the point (1,0,0) and is parallel 
to the vector −1, 3, 2 .

r 𝑡 = 1 − 𝑡 i + 3𝑡 j + 2𝑡 k
= 1 − 𝑡, 3𝑡 , 2𝑡



PARAMETRIC CURVES IN 𝟑 −SPACE

Example Describe the parametric curve represented 
by the equations

𝑥 = 10 cos 𝑡
𝑦 = 10 sin 𝑡
𝑧 = 𝑡

Circular HELIXr 𝑡 = 10 cos 𝑡 i + 10 sin 𝑡 j + 𝑡k
= 10 cos 𝑡 , 10 sin 𝑡  , 𝑡



VECTOR-VALUED FUNCTIONS

The domain of a vector-valued function r(𝑡) is the set of allowable 
values for 𝑡.

NOTE Usual reasons to restrict a domain:

1. Avoid division by 0.

2. Avoid even roots of negative numbers.

3. Avoid logarithms of negative numbers or 0.



VECTOR-VALUED FUNCTIONS

Example Find the natural domain of r 𝑡 = ln 𝑡 − 1  i + 𝑒𝑡 j + 𝑡 k

𝑥 𝑡 = ln 𝑡 − 1

𝑦 𝑡 = 𝑒𝑡

𝑧 𝑡 = 𝑡

Domain = ℝ − 1

Domain = ℝ

Domain = ሾ )0, ∞

∴ The domain of r 𝑡  is the intersection of these sets.

−∞ ∞10

ሾ )0,1 ∪ 1, ∞
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LIMITS AND CONTINUITY

• Many techniques and definitions used in the calculus of real-

valued functions can be applied to vector-valued functions.

• For instance, you can add and subtract vector-valued 

functions, multiply a vector-valued function by a scalar, take 

the limit of a vector-valued function, differentiate a vector-

valued function, and so on.



LIMITS AND CONTINUITY



LIMITS AND CONTINUITY

Example If r 𝑡 =
3

𝑡2 i +
ln 𝑡

𝑡2−1
j + cos 𝜋𝑡 k, find lim

𝑡→1
 r 𝑡 .

lim
𝑡→1

r 𝑡 = 3, 1
2, −1 3
1

2
−1 lim

𝑡→1

3

𝑡2
= 3

lim
𝑡→1

ln 𝑡

𝑡2 − 1
=

1

2
lim
𝑡→1

Τ1 𝑡

2𝑡
=

lim
𝑡→1

cos 𝜋𝑡 = −1

= 3i +
1

2
j − k



Example If r 𝑡 =
2𝑡2−1

𝑡2+𝑡
i + sin

1

𝑡
j + 𝑡𝑒−𝑡 k, find lim

𝑡→∞
 r 𝑡 .

lim
𝑡→∞

r 𝑡 = 2,0,0 

LIMITS AND CONTINUITY

2 0 0

lim
𝑡→∞

2𝑡2 − 1

𝑡2 + 𝑡
= 2

lim
𝑡→∞

sin
1

𝑡
= 0

lim
𝑡→∞

𝑡𝑒−𝑡 =

= 0

0 ⋅ ∞

= lim
𝑡→∞

𝑡

𝑒𝑡 = lim
𝑡→∞

1

𝑒𝑡

= 2i



LIMITS AND CONTINUITY

Example The vector-valued function r 𝑡 = 𝑡2i +
1

𝑡2−1
j + 𝑡k, is 

discontinuous at 𝑡 = ±1.

It is continuous for all 𝑡 ∈ ℝ − −1,1



DERIVATIVES

• The derivative of a vector-valued function is defined by a limit like that 

for the derivative of a real-valued function.

r′ 𝑡 = lim
ℎ→0

r 𝑡 + ℎ − r 𝑡

ℎ

• The derivative of r(𝑡) can be expressed as

𝑑

𝑑𝑡
r 𝑡  ,

𝑑r

𝑑𝑡
 , r′ 𝑡  ,  r′

• Keep in mind that r(𝑡) is a vector, not a number, and hence has a 

magnitude and a direction for each value of 𝑡, except if r(𝑡) = 0.



DERIVATIVES

Suppose that 𝐶  is the graph of a 
vector-valued function r(𝑡) and that 
r′(𝑡) exists and is nonzero for a given 
value of 𝑡.

If the vector r′(𝑡) is positioned with its 
initial point at the terminal point of 
the radius vector r(𝑡), then r′(𝑡) is 
tangent to 𝐶  and points in the 
direction of increasing parameter.



DERIVATIVES

Example For the vector-valued function 
r 𝑡 = 𝑡i + 𝑡2 + 2 j, find r′ 1 .

r′ 𝑡 = i + 2𝑡j

r′ 1 = i + 2j



Example For the vector-valued function r 𝑡 = cos 𝑡 i + sin 𝑡 j + 2𝑡k, find:

DERIVATIVES

r′ 𝑡 r′ 𝑡 = − sin 𝑡 i + cos 𝑡 j + 2k

r′′ 𝑡 r′′ 𝑡 = − cos 𝑡 i − sin 𝑡 j

r′ 𝑡 ⋅ r′′ 𝑡 r′ 𝑡 ⋅ r′′ 𝑡 = sin 𝑡 cos 𝑡 − cos 𝑡 sin 𝑡 = 0

r′ 𝑡 × r′′ 𝑡

r′ 𝑡 × r′′ 𝑡 =
i j k

− sin 𝑡 cos 𝑡 2
− cos 𝑡 − sin 𝑡 0

= 2 sin 𝑡 i − 2 cos 𝑡 j + k



DERIVATIVE RULES



DERIVATIVE RULES

Example For u 𝑡 =
1

𝑡
i − j + ln 𝑡 k and v 𝑡 = 𝑡2i − 2𝑡j + k then:

𝑑

𝑑𝑡
u 𝑡 ⋅ v 𝑡 = u 𝑡 ⋅ v′ 𝑡 + u′ 𝑡 ⋅ v 𝑡

=
1

𝑡
, −1, ln 𝑡 ⋅ 2𝑡, −2,0 +

−1

𝑡2
, 0,

1

𝑡
⋅ 𝑡2, −2𝑡, 1

= 2 + 2 + 0 + −1 + 0 +
1

𝑡

= 3 +
1

𝑡



DERIVATIVE RULES

Example For u 𝑡 =
1

𝑡
i − j + ln 𝑡 k and v 𝑡 = 𝑡2i − 2𝑡j + k then:

𝑑

𝑑𝑡
v 𝑡 × v′ 𝑡 = v 𝑡 × v′′ 𝑡 + v′ 𝑡 × v′ 𝑡

=

i j k

𝑡2 −2𝑡 1
2 0 0

+ 0

= 2j + 4𝑡k



TANGENT LINES TO GRAPHS OF VECTOR-VALUED FUNCTIONS

Example Find parametric equations of the tangent line to the circular helix 
r 𝑡 = cos 𝑡 i + sin 𝑡 j + 𝑡k at the point where 𝑡 = 𝜋.

𝑡 = 𝜋

POINT

TANGENT VECTOR

cos 𝜋 , sin 𝜋 , 𝜋 = −1,0, 𝜋

r′ 𝑡 = − sin 𝑡 i + cos 𝑡 j + k

r′ 𝜋 = −j + k

∴ The parametric equations 
of the tangent line are

𝑥 = −1

𝑦 = −𝑡

𝑧 = 𝜋 + 𝑡



DEFINITE AND INDEFINITE INTEGRALS OF VECTOR-VALUED FUNCTIONS

In general, we have

Example Let r 𝑡 = 𝑡2i + 𝑒𝑡j − 2 cos 𝜋𝑡 k. Then



Example

DEFINITE AND INDEFINITE INTEGRALS OF VECTOR-VALUED FUNCTIONS



Example

DEFINITE AND INDEFINITE INTEGRALS OF VECTOR-VALUED FUNCTIONS

Find r(𝑡) given that r′(𝑡) = 3, 2𝑡  and r(1) = 2, 5 .

න r′ 𝑡 𝑑𝑡 ==r 𝑡 න 3,2𝑡 𝑑𝑡 = 3𝑡, 𝑡2 + C

But r(1) = 2, 5

3,1 + C = 2, 5

C = −1, 4

So r 𝑡 = 3𝑡, 𝑡2 + −1,4

r 𝑡 = 3𝑡 − 1, 𝑡2 + 4
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SMOOTH PARAMETRIZATIONS

• We will say that a curve represented by r(𝑡) is smoothly parametrized 

by r(𝑡), or that r(𝑡) is a smooth function of 𝑡 if:

✓ r′(𝑡) is continuous, and

✓ r′ 𝑡 ≠ 𝟎 for any allowable value of 𝑡.

• Geometrically, this means that a smoothly parametrized curve can 

have no abrupt (مفاجئ) changes in direction as the parameter 

increases.



SMOOTH PARAMETRIZATIONS

Example Determine whether the following vector-valued 
functions are smooth.

r 𝑡 = 𝑎 cos 𝑡 i + 𝑎 sin 𝑡 j + 𝑐𝑡k 𝑎 > 0, 𝑐 > 0

r′ 𝑡 = −𝑎 sin 𝑡 i + 𝑎 cos 𝑡 j + 𝑐k

✓ The components are continuous functions, and

✓ there is no value of 𝑡 for which all three of them are zero.

✓ So r(𝑡) is a smooth function.



SMOOTH PARAMETRIZATIONS

Example Determine whether the following vector-valued 
functions are smooth.

r 𝑡 = 𝑡2i + 𝑡3j

r′ 𝑡 = 2𝑡i + 3𝑡2j

✓ The components are continuous 

functions, and

✓ they are both equal to zero if 𝑡 = 0.

✓ So, r(𝑡) is NOT a smooth function.



ARC LENGTH FROM THE VECTOR VIEWPOINT

If 𝐶 is the graph of a smooth vector-valued function r(𝑡), then its arc 
length ℓ from 𝑡 = 𝑎 to 𝑡 = 𝑏 is

ℓ = න

𝑎

𝑏
𝑑r

𝑑𝑡
𝑑𝑡 = න

𝑎

𝑏
𝑑𝑥

𝑑𝑡

2

+
𝑑𝑦

𝑑𝑡

2

+
𝑑𝑧

𝑑𝑡

2

𝑑𝑡

Example Find the arc length of that portion of the circular helix 
r 𝑡 = cos 𝑡 , sin 𝑡 , 𝑡  from 𝑡 = 0 to 𝑡 = 𝜋.



ARC LENGTH FROM THE VECTOR VIEWPOINT

ℓ = න

𝑎

𝑏
𝑑r

𝑑𝑡
𝑑𝑡 = න

𝑎

𝑏
𝑑𝑥

𝑑𝑡

2

+
𝑑𝑦

𝑑𝑡

2

+
𝑑𝑧

𝑑𝑡

2

𝑑𝑡

Example Find the arc length of that portion of the circular helix 
r 𝑡 = cos 𝑡 , sin 𝑡 , 𝑡  from 𝑡 = 0 to 𝑡 = 𝜋.

r′ 𝑡 = − sin 𝑡 , cos 𝑡 , 1

r′ 𝑡 = − sin 𝑡 2 + cos2 𝑡 + 1

= 2

ℓ = න

0

𝜋

r′ 𝑡 𝑑𝑡

= න

0

𝜋

2 𝑑𝑡

= 2 𝜋
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UNIT TANGENT VECTORS

• Recall that if 𝐶 is the graph of a smooth vector-valued function r(𝑡), 

then the vector r′(𝑡) is:

✓ nonzero, tangent to 𝐶, and

✓ points in the direction of increasing parameter.

• Thus, by normalizing r′(𝑡) we obtain a unit vector

T 𝑡 =
r′ 𝑡

r′ 𝑡

that is tangent to 𝐶 and points in the direction of increasing parameter.

• We call T(𝑡) the unit tangent vector to 𝐶 at 𝑡.



Example

UNIT TANGENT VECTORS

Find the unit tangent vector to the graph of r 𝑡 = 𝑡2i + 𝑡3j at 
the point where 𝑡 = 2.

r′ 𝑡 = 2𝑡i + 3𝑡2j

r′ 2 = 4i + 12j

T 2 =
r′ 2

r′ 2

=
4i + 12j

160
=

1

10
i +

3

10
j



UNIT NORMAL VECTORS

• Recall if r 𝑡 = 𝑐 , then r 𝑡  and 

r′ 𝑡  are orthogonal vectors.

• T(𝑡) has constant norm 1, so T(𝑡) and 

T′(𝑡) are orthogonal vectors.

• This implies that T′(𝑡) is perpendicular 

to the tangent line to 𝐶 at 𝑡, so we say 

that T′(𝑡) is normal to 𝐶 at 𝑡.



UNIT NORMAL VECTORS

• It follows that if T′ 𝑡 ≠ 0, and if we 

normalize T′(𝑡), then we obtain a 

unit vector

N 𝑡 =
T′ 𝑡

T′ 𝑡

that is normal to 𝐶 and points in the 

same direction as T′(𝑡).



UNIT NORMAL VECTORS

• We call N(𝑡) the principal unit normal vector to 𝐶 at 𝑡 , or more simply, 

the unit normal vector.

• Observe that the unit normal vector is defined only at points where 

T′ 𝑡 ≠ 0. Unless stated otherwise, we will assume that this condition 

is satisfied.

• In particular, this excludes straight lines.



UNIT NORMAL VECTORS

Example Find T(𝑡) and N(𝑡) for the circular helix r 𝑡 = 3 cos 𝑡 , 3 sin 𝑡 , 4𝑡 .

r′ 𝑡 = −3 sin 𝑡 , 3 cos 𝑡 , 4

r′ 𝑡 = 9 sin2 𝑡 + 9 cos2 𝑡 + 16 = 5

T 𝑡 =
−3 sin 𝑡 , 3 cos 𝑡 , 4

5
=

−3

5
sin 𝑡 ,

3

5
cos 𝑡 ,

4

5



UNIT NORMAL VECTORS

Example Find T(𝑡) and N(𝑡) for the circular helix r 𝑡 = 3 cos 𝑡 , 3 sin 𝑡 , 4𝑡 .

T 𝑡 =
−3 sin 𝑡 , 3 cos 𝑡 , 4

5
=

−3

5
sin 𝑡 ,

3

5
cos 𝑡 ,

4

5

T′ 𝑡 =
−3

5
cos 𝑡 ,

−3

5
sin 𝑡 , 0

T′ 𝑡 =
9

25
cos2 𝑡 +

9

25
sin2 𝑡 + 0 =

3

5



UNIT NORMAL VECTORS

Example Find T(𝑡) and N(𝑡) for the circular helix r 𝑡 = 3 cos 𝑡 , 3 sin 𝑡 , 4𝑡 .

T′ 𝑡 =
−3

5
cos 𝑡 ,

−3

5
sin 𝑡 , 0

T′ 𝑡 =
9

25
cos2 𝑡 +

9

25
sin2 𝑡 + 0 =

3

5

N 𝑡 =

−3
5

cos 𝑡 ,
−3
5

sin 𝑡 , 0

3
5

= − cos 𝑡 , − sin 𝑡 , 0



UNIT NORMAL VECTORS

Example Find T 𝑡  and N 𝑡  for r 𝑡 =
1

2
𝑡2,

1

3
𝑡3  at 𝑡 = 1.

r′ 𝑡 = 𝑡, 𝑡2 r′ 1 = 1,1

T 1 =
r′ 1

r′ 1
=

1,1

2
=

1

2
,

1

2

T 𝑡 =
r′ 𝑡

r′ 𝑡
=

1

𝑡2 + 𝑡4
𝑡, 𝑡2 = 𝑡2 + 𝑡4 − Τ1 2 𝑡, 𝑡2

T′ 𝑡 = 𝑡2 + 𝑡4 − Τ1 2 1,2𝑡 −
1

2
2𝑡 + 4𝑡3 𝑡2 + 𝑡4 − Τ3 2 𝑡, 𝑡2



UNIT NORMAL VECTORS

Example Find T 𝑡  and N 𝑡  for r 𝑡 =
1

2
𝑡2,

1

3
𝑡3  at 𝑡 = 1.

T′ 𝑡 = 𝑡2 + 𝑡4 − Τ1 2 1,2𝑡 −
1

2
2𝑡 + 4𝑡3 𝑡2 + 𝑡4 − Τ3 2 𝑡, 𝑡2

T′ 1 =
1,2

2
−

3 1,1

2 2
=

−1

2 2
,

1

2 2

T′ 1 =
−1

2 2

2

+
1

2 2

2

=
1

2

N 1 =
T′ 1

T′ 1
=

−1

2
,

1

2
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DEFINITION OF CURVATURE

• We will consider the problem of obtaining a numerical measure of how 

sharply a curve bends.

• For instance, in the figure, the curve bends more sharply at P than at Q 

and you can say that the curvature is greater at P than at Q.



DEFINITION OF CURVATURE

• If 𝐶 is a straight line (no bend), then the direction of T remains constant.
• If 𝐶 bends slightly, then T undergoes a gradual change of direction.
• If 𝐶 bends sharply, then T undergoes a rapid change of direction.

You can calculate curvature by calculating 
the magnitude of the rate of change of the 
unit tangent vector T with respect to the 
arc length 𝑠.



If r(𝑡) is a smooth vector-valued function, then for each value of 𝑡 at 

which T′(𝑡) and r′′(𝑡) exist, the curvature 𝜅 can be expressed as

𝜅 𝑡 =
T′ 𝑡

r′ 𝑡
=

r′ 𝑡 × r′′ 𝑡

r′ 𝑡 3

DEFINITION OF CURVATURE

Example Show that the curvature of a circle of radius 𝑅 is 𝜅 =
1

𝑅
.

𝜅 𝑡 =
T′ 𝑡

r′ 𝑡



DEFINITION OF CURVATURE

Example Show that the curvature of a circle of radius 𝑅 is 𝜅 =
1

𝑅
.

𝜅 𝑡 =
T′ 𝑡

r′ 𝑡
r 𝑡 = 𝑅 cos 𝑡 i + 𝑅 sin 𝑡 j 𝑡 ∈ 0,2𝜋

r′ 𝑡 = −𝑅 sin 𝑡 i + 𝑅 cos 𝑡 j

T 𝑡 =
r′ 𝑡

r′ 𝑡
=

−𝑅 sin 𝑡 , 𝑅 cos 𝑡

−𝑅 sin 𝑡 2 + 𝑅 cos 𝑡 2
= − sin 𝑡 , cos 𝑡

T′ 𝑡 = − cos 𝑡 , − sin 𝑡

𝜅 𝑡 =
− cos 𝑡 2 + − sin 𝑡 2

−𝑅 sin 𝑡 2 + 𝑅 cos 𝑡 2
=

1

𝑅



DEFINITION OF CURVATURE

Example Show that the curvature of a circle of radius 𝑅 is 𝜅 =
1

𝑅
.

𝜅 𝑡 =
r′ 𝑡 × r′′ 𝑡

r′ 𝑡 3
r 𝑡 = 𝑅 cos 𝑡 i + 𝑅 sin 𝑡 j + 0k 𝑡 ∈ 0,2𝜋

r′ 𝑡 = −𝑅 sin 𝑡 i + 𝑅 cos 𝑡 j + 0k

r′′ 𝑡 = −𝑅 cos 𝑡 i − 𝑅 sin 𝑡 j + 0k

r′ 𝑡 × r′′ 𝑡 =
i j k

−𝑅 sin 𝑡 𝑅 cos 𝑡 0
−𝑅 cos 𝑡 −𝑅 sin 𝑡 0

= 𝑅2k

r′ 𝑡 × r′′ 𝑡 = 𝑅2

r′ 𝑡 = 𝑅
𝜅 𝑡 =

𝑅2

𝑅3
=

1

𝑅
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