Course: Calculus (3)

Chapter: [13]
PARTIAL DERIVATIVES

Section: [13.1]
FUNCTIONS OF TWO OR MORE VARIABLES




NOTATION AND TERMINOLOGY

The notation for a function of two or more variables is similar to that
for a function of a single variable.

Z = f(x, y) Function of two variables
v
2 Variables
w = f(x’ Y, Z) Function of three variables
W_/

3 Variables



NOTATION AND TERMINOLOGY

. . , JxZ+y2 -9
Example Find the domain of the function f(x,y) =
X
The function f is defined for all points (x, y) 4i

such that x # 0 and

x2+y2-9>0 = x?>+y%2>09

So, the domain is the set of all points lying |
on or outside the circle x% + y* = 9 except
those points on the y —axis.




NOTATION AND TERMINOLOGY

Example Find the domain of the function f(x,y) =y + 1+ In(x?* —y)

* Note that \/m is defined only
when y = —1.

* Also, In(x? — y) is defined only when
x? —y > 0and hencey < x2.

* Thus, the natural domain of f consists
of all points in the xy —plane for

which —1 < y < x?2.

\
\
\
\
\




LEVEL CURVES

The set of all points (x, y, f (x, y)) in space, for (x,y) in the domain of
f, is called the graph of f.

[Surt‘uce: z=f(x, .\‘)}

Z

The graph of f is also called the surface z = f(x,y).



LEVEL CURVES

The set of points in the plane where a
function f(x,y) has a constant value
f(x,y) =c is called a level curve of

¢ 0 The surface
z2=f(xy)
=100 — x* — y?
is the graph of f.

fox,y) =175

Jflx,y) =31
(a typical
level curve in
the function’s
domain)



LEVEL CURVES

The curve in space in which the plane
z = c cuts a surface z = f(x,y) is
made up of the points that represent
the function value f(x,y) =c. It is

called the contour curve f(x,y) = c.

The contour curve f(x, y) = 100 — x> — y?> =75
is the circle x> + y? = 25 in the plane z = 75.

z =100 — x? — y?

Z
Plane z = 75 IO(J‘\
e —d

The level curve f(x, y) = 100 — x> — y?> = 75
is the circle x> + y> = 25 in the xy-plane.



LEVEL CURVES

Example Sketch the contour plot of f(x,y) =y —x? using level
curves of height k = 1,2, 3,4,5.

fay) =k y-xt=k

y=x*+k
k=1 y=x°+1
k=2 y=x°+2
k=3 y=x%+3
k=4 y=x*+4
k=5 y=x%+5
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LIMITS AND CONTINUITY




LIMITS ALONG CURVES

* For a function of one variable there are two one-sided limits at a point

Xg, Namely,
lim_f (x) and hm f(x)

x—oxg
reflecting the fact that there are only two directions from which x can

approach x,, the right or the left.
AY

* For functions of several variables the
situation is more complicated because
there are infinitely many different curves (X0, o)
along which one point can approach
another. (x. )




LIMITS ALONG CURVES

If C is a smooth parametric curve in 2 —space
that is represented by the equations x = x(t)
and y = y(t), and if x, = x(ty) and yy = y(t,),
then
lim  fCe,y) = lim f(x(0),y(0))
—lo

(x,y)=(x0,¥0
(along o)

P (0. w0, fx(o, 1(0)

(x(0), (D))



RELATIONSHIPS BETWEEN GENERAL LIMITS AND LIMITS ALONG
SMOOTH CURVES

If f(x,¥) = Las (x,y) = (xo,¥0), then f(x,y) = L as (x,y) = (xo,¥0)
along any smooth curve.

If the limit of f(x,y) fails to exist as (x,y) — (xy,y,) along some
smooth curve, or if f(x,y) has different limits as (x,y) — (xq, yo) along

two different smooth curves, then the limit of f(x,y) does not exist as

(x,y) = (x0,¥0)



LIMITS ALONG CURVES 0
Example Evaluate lim —— > along:
(x,y)—(0,0) x<+Yy

@ thex —axis (y=0)

I x X0 L 0 0
(x,O)lggo,O) x?% + 02 xli%ﬁ

©® they—axis (x =0)

li )XY li ) 0
(0)>00) 0% +y2  y5b y2




LIMITS ALONG CURVES

ol O

X /
Example Evaluate lim —— 24 > along:
(xy)—(0,0) x“+Yy

the liney = x
X XX A2
lim — X

(xx)>(0,0) x%+x2 ~ ,lci_r}(l, 2 2

The parabola y = x*

li x X li = @
1m — — —
(x,x2)—>(0,0) x% + x* xl—r>r(1) x%(1 + x2)

Since we found two different smooth curves along which this limit had
different values then the limits does not exist



LIMITS ALONG CURVES

Example Show that the following limit does not exist.

poo X283yt 0
(x, y)—>(o 0) x2 + 22 0
x% —0
the x —axis : _
1 Xi (x,ol)IB%o,o) 70
The limit does
© the y —axis lim 0—-3y* 3 not exist

(o, y)—>(0 00+ 2y2 2



LIMITS ALONG CURVES

Example Show that the following limit does not exist.

lim x3y - 9
(x,y)~(0,0) x® + y2 0
_ 0
€ the x —axis (x,ol)IB%o,o) e
The limit does
not exist
© The curve lim () () — lim x_6 S
3 (x,x3)->(0,0) x® +x© x-02x6 2

y=x



LIMITS ALONG CURVES

Xy (—1)(2) 2

lim > 5> = —
(xy)-=(-12) x> +y (—1)? + 22 5

Example Evaluate

Example  Evaluate im  (5x3v2 +9) — 5(13)(42 _
i (x,y)—>(1,4)( Y ) 5(1°)(4°) + 9 = 89

1 1
Example Evaluate li = — = 400 does not exist
’ (x3)~00) X2 + y* 0+0




LIMITS ALONG CURVES

| x*—y* 0

Example Evaluate lim = —

(xy)—>00) x% +y% 0
o xt =yt | (x? —y*)(x* + y*)

lim = lim
(x,y)~(0,0) x? + y? (x,y)—~(0,0) x2 + y?
= lim (x?% —y?
e Ron™® ~Y)

=0



LIMITS ALONG CURVES

Example

Evaluate lim
(x,y)—(0,0

It is not evident whether this limit
exists because it is an
indeterminate form of type 0 - oo,
Although L'Hospital's rule cannot
be applied directly, we can find

this limit by converting to polar

coordinates.

)(xz + 9y In(x*+y%) =0 0

X =1cos6 y =1rsinf
r’=x*+y%? tanf =vy/x
Note

Since r > 0 then r = \/xz + y?,
so that r - 0" if and only if
(x,y) — (0,0)



LIMITS ALONG CURVES

Example Evaluate lim )(XZ +y9)In(x*+y*) =0

(x,y)—(0,0
/ X =1Ccos0 y =71sing

i -2 2
= TIE(I)LT In(r<) rée=x%*+y4 tanf =y/x
~ im 2Inr Note

r—0+t 1/r?2

, Since 7 = 0 then r = \/x2 + y2,

— lim /r3 so that r - 0" if and only if

r—0t —2/r (x, y) - (0,0)
= lim (—7%) =0

r—07t



LIMITS ALONG CURVES

Example Evaluate the following limit by converting to polar coordinates.

lim x°y* 0 X =rcos6
(xy)=00) [x2 +y2 0 y =rsinf
r2 = x2 4 y?
Remember that r — 07 if and only if (x,y) — (0,0).
| x2y? ~ (rcos0)?(rsin 8)?
im = lim
(xy)=(00) [x2 4 y2 = T-o0% r

lim 73 cos? @sin?8 =0
r—0t



CONTINUITY

A function f(x,y) is said to be continuous at (xg, vy) if f(xg, Vo) is

defined and if
lim f(x,y) = f(x0,y0)

(x,¥)—(x0,Y0)

In addition, if f is continuous at every point in an open set D, then
we say that f is continuous on D, and if f is continuous at every point

in the xy —plane, then we say that f is continuous everywhere.




CONTINUITY

312
Example f(x,y) = 7 1s continuous except where 1 — xy = 0
— xy X
y = "
fsin(x2+y2) . (x ) - (O O)
Example Let f(x,y) =<{ x2+y? : Y )
.1 . (x,y) = (0,0)

Show that f is continuous at (0,0).



CONTINUITY

fsin(x2+y2)
Example Let f(x,y) =< x2+y? : (x,¥) #(0,0)
\ 1 : (X, y) — (O;O)

Show that f is continuous at (0,0). V

© /(0,0) =1isdefined

sin(x? + y?)
9 lim xX,y) = lim
(x,yw(o,o)f (%) (x)~(0,0) (x% + y?)

’ sin(r?)
rl>r(r)l+ (r?)

1 = f(0,0)
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PARTIAL DERIVATIVES OF FUNCTIONS OF TWO VARIABLES

How will the value of a function be affected by a change in one of its
independent variables?

The procedure used to determine the rate of change of a function
f(x,y) with respect to one of its several independent variables is
called partial differentiation, and the result is referred to as the
partial derivative of f with respect to the chosen independent

variable.



PARTIAL DERIVATIVES OF FUNCTIONS OF TWO VARIABLES

Definition of Partial Derivatives of a Function of Two Variables

If z = f(x, v), then the first partial derivatives of f with respect to x and y
are the functions f, and f, detined by

v e S+ Axy) — flx )
filx,y) = lim, Ax

Partial derivative with respect to x

and

e Sy + Ay) )
filx,y) = Jim, Ay

-

Partial derivative with respect to y

provided the limits exist.



PARTIAL DERIVATIVES OF FUNCTIONS OF TWO VARIABLES

NOTE This previous definition indicates that if z = f(x, y) then:
v" To find f, you consider y constant and differentiate with respect

to x.
v Similarly, to find fy you consider x constant and differentiate

with respect to y.



THE PARTIAL DERIVATIVE FUNCTIONS

Example Find f,(x,y) and f, (x, y) for f(x,y) = 2x°y? + 2y + 4x and
use those partial derivatives to compute f,(1,3) and f,,(1,3).

Keeping y fixed (constant) and differentiating with respect to x yields

d
fel,y) = ——[2x7y* + 2y + 4x] = 6x°y* + 4

and keeping x fixed (constant) and differentiating with respect to y
yields

d 34,2 3
fy(x»)’)za[zx ye 4+ 2y + 4x] = 4x°y + 2

Thus, f,(1,3) = 6(1%)(3%) + 4 = 58 fy(1,3) = 4(13)(3)+2=14



PARTIAL DERIVATIVE NOTATION

For z = f(x, v), the partial derivatives f, and J, are denoted by

) o

,— (X, "y’) — .(.X, "y’) — J, = " Partial derivative with respect to x
0x il e & ox
and
0 dZ
d_\}f (X& }") — ﬁ:(xa }") =7, = d_'\? Partial derivative with respect to y

The first partials evaluated at the point (a, b) are denoted by
%= = f.(a, b) and =

-3 . = f;r(a& b)
0x (a. b) d} ? (a. b) )



PARTIAL DERIVATIVE NOTATION

L0z 07 4. 3
Example Find — and ™ if z=x"sin(xy?>).
dz O
L 4 3
Fyviale [x* sin(xy~)]
= x* 9 [sin(xy?3)] + sin(xy?) 9 [x*]
0x 0x

= x*y3 cos(xy3) + 4x3 sin(xy?)



PARTIAL DERIVATIVE NOTATION

Example Flnd — and —y if z = x*sin(xy?).

dz 0
3y - 3y — [x* sin(xy?)]
0
= x* 3y [sin(xy3)] = x* x 3xy? cos(xy?)

= 3x°y? cos(xy?)



PARTIAL DERIVATIVE NOTATION

Example Find f;,(1,In2) and f,,(1,In2) if f(x,y) = yeX' V.

0 2
e X"y
0

= ya [exzy] =y X nyexzy = nyzexzy

+ f, (1,In2) = 2(1)(In2)2e(1*) In2
= 4(In 2)*



PARTIAL DERIVATIVE NOTATION

Example Find f;,(1,In2) and f,,(1,In2) if f(x,y) = yeX' V.

0 2 a 2 2 a
= — XY\ = S xX-y A —
= yxzexZy +eXy = (yx? + 1)ex23’

+ f, (1,In2) = (12)In 2 + 1)e(1*) n2
=2In2 + 2



PARTIAL DERIVATIVES VIEWED AS SLOPES
Example Let f(x,y) = x%y + 5y3.

a) Find the slope of the surface f(x,y) in the x —direction at the point
(1,-2).

Thus, the slope in the x —directionis f,(1,—2) = —4

b) Find the slope of the surface f(x,y) in the y —direction at the point
(1, —2).

v fy(x,y) = x% + 15y°
Thus, the slope in the y —directionis f,,(1,—2) = 61



IMPLICIT PARTIAL DIFFERENTIATION

Example Find the slope of the sphere x? + y% + z? = 1 in the y —direction
at the point (3 z E).

3’3’3
d d 0 1/3
[x% + y?% + z%] = —[1] 9z =_L
dy dy dy (glg) 2/3
07 3’3’3
2y + 22— = 1
dy __E
0z y



PARTIAL DERIVATIVES OF FUNCTIONS WITH MORE THAN
TWO VARIABLES

For a function w = f(x,y, z) of three variables, there are three partial
derivatives:

ow ow ow

o = fx E—fy 5, =z
The partial derivative f, is calculated by holding y and z constant and

differentiating with respect to x.

* For f, the variables x and z are held constant,

* and for f, the variables x and y are held constant.



PARTIAL DERIVATIVES OF FUNCTIONS WITH MORE THAN
TWO VARIABLES

Example If f(x,y,z) = x3y2%z* 4+ 2xy + z, then
f(x,y,2) = 3x?y%z* + 2y
fy(x,y,z) = 2x3yz* + 2x

,(e,y,2) = 4x3y?z3 + 1

X+y+z

, then ﬂz_x+y+z

Example |ff(x,y,z,w) =~ P 2
w w



PARTIAL DERIVATIVES OF FUNCTIONS WITH MORE THAN
TWO VARIABLES

x2—z2

NERT then

Example Ifw =

ow _ (y*+7°)(=22) — (x* — z%)(22)
0z (y? + 22)?

_ —2z(x* +y?)
 (y? 4 z2)2




HIGHER-ORDER PARTIAL DERIVATIVES

v" Suppose that f is a function of two variables x

and y.

v’ Since the partial derivatives f, and f,, are also 52f 5 [of
functions of x and y, these functions may oxdy  ox (ay) = Iy
themselves have partial derivatives. T

v This gives rise to four possible second-order respect to y and then

with respect to x.

partial derivatives of f , which are defined by

P9 (AN 00 azfza(af):f
ox2  ax \ox/) 0 3y2 3y \ oy = dyodx  dy \dx N

Differentiate twice Differentiate twice Differentiate first with

with respect to x. with respect to y. refspect to x and then
with respect to y.




HIGHER-ORDER PARTIAL DERIVATIVES

* The last two cases are called the mixed second-order ~ 3*f 9 (af) _
= fix

. L . . axdy  0x \ 0
partial derivatives or the mixed second partials. roy ANy

Difterentiate first with

* Observe that the two notations for the mixed  respectioyandthen

with respect to x.

second partials have opposite conventions for the

order of differentiation.

-5 ()
* Let f be a function of two variables. If f,,, and f,,, ~ dydx  dy \dx xy

Differentiate first with
respect to x and then
with respect to y.

are continuous on some open disk, then f,,, = f,,

on that disk.



HIGHER-ORDER PARTIAL DERIVATIVES

Example
Find the second-order partial derivatives of f(x,y) = 2xy3 + 4x3y
flx,y) =x%y’ +x*y fy(x,y) = 3x%y* + x*
2f d (0f 0
Fox = 522 = 3y <6x> (ny + 4x3y) = 2y3 4+ 12x%y
2f d (0f 0
3 2 4\ — 6 2
fyy = ay? ay<ay> —— (Bx%y? + x*) X"y

zf af d
2 4 =6 4x3 =
fxy ayax dy (836) —( xy T 4x }’) xy + 4X fo



HIGHER-ORDER PARTIAL DERIVATIVES

Third-order, fourth-order, and higher-order partial derivatives can be
obtained by successive differentiation. Some possibilities are

AR i _ 0 (0 _,

ox3  ox \ox2/) M oyt oy \ay3 ) Sww
37__8(87 _ ()
8y28x - ay ayax A 8y28x2 T ay ayaxz — JXXVyy

Example Let f(x,y) = y*e* + y.Find f,y,.

3 f 3% [(of ° 5 J | |
x__,__,: = -_— = -_— X = — 2 X :2 X
Jan 920 x 5> ( ) 9y (y7e™) ay( ye') €

0Xx



PARTIAL DERIVATIVES AND CONTINUITY

In contrast to the case of

functions of a single variable, the existence of

partial derivatives for a multivariable function does not guarantee the

continuity of the function.

Example Let f(x,y) =+

We previously show that

( Xy

"1y (x,y) # (0,0)

\ 0 . (x,y) =(0,0)
XYy

(x’yl)iirgo, 0) X2 + y2 does not exist.

~ f(x,y) is discontinuous at (0,0).



PARTIAL DERIVATIVES AND CONTINUITY

( Xy

- x,y) # (0,0
Example Let f(x,y) =< x%+y* (x,y) # (0,0)

.0 . (xy) = (0,0)

= f(x,y) is discontinuous at (0,0).

We will have to use the definitions of the partial derivatives to determine

whether f has partial derivatives at (0,0), and if so, we find the values of
those derivatives.

A _ _
£.0,0) = lim fAx. 0 = fO.0 970
Ax — 0 Ax Ax—0 Ax
Av) — _
£0,0) = lim fO. A9 =700 _ L 9=0

Ay—0 Ay Ay—0 Ay



PARTIAL DERIVATIVES AND CONTINUITY
( Xy

Example Let f(xy) =1 X242 (x,y) # (0,0)
\ O : (x) y) — (OJO)
~ f(x,y) is discontinuous at (0,0).
Ax,0) — (0,0 0—0
£0.0) = tim LA ZJO0 o 020
Ax —0 Ax Ax—0 Ax
Av) — _
F0.0) = tim LOAN =700 L 0-0
' Ay—0 Ay Ay—0 Ay

This shows that f has partial derivatives at (0,0) and the values of
both partial derivatives are 0 at that point.
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CHAIN RULES FOR DERIVATIVES

If v is a differentiable function of x and x is
a differentiable function of t, then the
chain rule for functions of one variable
states that, under composition, y becomes
a differentiable function of t with

dy dy dx
dt dx dt




CHAIN RULES FOR DERIVATIVES

* Let w = f(x,y) where f is a differentiable
function of x and y.

 Ifx=g(t)and y = h(t) where g and h are
differentiable functions of t then w is a
differentiable function of t.

e And

dw 0w dx_l_aw dy
dt dx dt 0y dt

ow dw
/N
X y
dx ﬂ
dt dt




CHAIN RULES FOR DERIVATIVES
dw ow dx Jdw dy

— = +
Example Let w = x%y — y?, where x = sint dt Ox dt 0y dt
and y = et. Find C;—V;when t =0. o W s
a/\@
dw_awdx_l_awdy » ¥
dt 0x dt 0y dt dx dy
dt dt
= (2xy)(cost) + (x* — 2y)(e") ¢ ¢
= (2sint et)(cost) + (sin®t — 2e?)(et)
dw _
dt B

t=0 NOTE w = efsin?t — e?t



CHAIN RULES FOR DERIVATIVES

Example Let w = xy + yz, where y = sinx and
z = e*. Use an appropriate form of the ow ow

chain rule to find dw/dx. ox aa_;" 0z

dw_aw_l_awdy_l_awdz X y z
dx 0dx 0y dx 0z dx % %

=y + (x+ z)(cosx) + (y)(e¥) x X

NOTE
= (1+e*)sinx + (x + e*) cosx w=xsinx + e*sinx



CHAIN RULES FOR DERIVATIVES ; 5,
Z Z

dx dy
Example Given that z =e*Y, x = 2u + v, and /\

2 y

y = u/v. Find 0z/0u and dz/0dv. g_z 3_9; g_i /\g_i

0z dzdx 0z 0y u v u v
du_ oxou ' 9y ou

— (ye™)(2) + (xe*)(1/v) = e* (Zy 4 %) — utn)@/v) (1 4 47”)

0z 0z 0x N 0z 0y
dv  0dxdv Jdy dv
xu) 2U?

= (ye™)(1) + (xe™) (~u/v?) = e* (y -=

. e(2u+v)(u/v)
1%



CHAIN RULES FOR DERIVATIVES

Example ow

2 dx ow

Given thatw = x? + y? — z%, and tad

X = psing cos@

dy
X y a Z
: : 0x 9y
y = psin ¢ sin 8 % 30 /.
Z = pcosao p ) - 6 p ¢
¢ )

Use appropriate forms of the
chain rule to find dw/06.

ow 6W8x+aw dy
060 0x 06 09y 96

= (2x)(—psingsinf) + (2y)(psin ¢ cos )

— 0 This result is explained by the fact that w
does not vary with 6.
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DIRECTIONAL DERIVATIVES

* In this section we extend the concept of a partial derivative to

the more general notion of a directional derivative.

* You will see that f,(x,y) and f,,(x,y) can be used to find the

slope in any direction.
* To determine the slope at a point on a surface, you will define a

new type of derivative called a directional derivative.



DIRECTIONAL DERIVATIVES

* To do this is to use a unit vector
u=u1i+qu
that has its initial point at (x,,y,) and points in the desired

direction. AZ




DIRECTIONAL DERIVATIVES

If f(x,y) is a function of x and y, and if u = u4i + u,j is a unit vector,
then the directional derivative of f in the direction of u at (xg, yy) is

denoted by Dy f (xq, yo) and is defined by

Duf (xo,y0) = fix (X0, Yo)u1 + f5,(x0, Yo)u,



DIRECTIONAL DERIVATIVES

Example Find the directional derivative of f(x,y) =e*> at (—2,0) in
the direction of the unit vector that makes an angle of m/3
with the positive x —axis.

T T

fr(x,y) = ye*Y fy(x,y) = xe™ u = cos§i + singj
1 3

f(=2,0) =0 [(=20)=-2  u=-i+ g,-

Duf (=2,0) = f(=2,0)uy + £, (=2,0)u,
1 V3
= (0) (E) + (—2) (7) = —/3



DIRECTIONAL DERIVATIVES

Example Find the directional derivative of f(x,y,z) = x?y — yz3 + z at
(1, —2,0) in the direction of the vectora = 2i +j — 2k.

a 2i+j— 2k
fx(x,y,z)=2xy U=o-"7 = ]
o)1 -2 Rl
y » ) -

2 1 2
(x,y,z) = =3yz%? +1 _ s T2
fz(x,y y 31+ 3] 3k
f,(1,—-2,0) = -4
fy(i.,—Z,O) =
f,(1,-2,0) =



DIRECTIONAL DERIVATIVES

Example Find the directional derivative of f(x,y,z) = x?y — yz3 + z at
(1, —2,0) in the direction of the vectora = 2i +j — 2k.

£(1L,-20)=-4 £(1,-20=1 f£(1,-20) =1
a 2 1 2

=i+

- = —i— -k
“Tal 373173

Duf(1,-2,0) = £, (1,—-2,0)u; + f,(1,—2,0)u, + f,(1, —2,0)us

2 1 —2
= (—4) (g) + (1) (§> + (1) (?> = —3



THE GRADIENT

(a) If f 1s afunction of x and y, then the gradient of f is defined by

Vix,y) = filx, )i+ fy(x, y)]

(b) If f is a function of x, y, and z, then the gradient of f 1s defined by

Vi, y,2) = fxlx, y, 01+ fi(x, y, D] + f(x, y, 2)k

NOTE Dyuf (x0,¥0) = fi (X0, Yo)uq + f, (X0, Yo) U,

= (fx(xOJ yO)J fy(xOJ yO)) . (ul,u2>
=Vf-u



PROPERTIES OF THE GRADIENT

Let f be a function of either two variables or three variables and let P
denote the point P(xq,yo) or P(xq, Vo, Zo), respectively. Assume that f is
differentiable at P.

a) IfVf = 0at P, then all directional derivatives of f at P are zero.

b) If Vf # 0 at P, then among all possible directional derivatives of f at
P, the derivative in the direction of Vf at P has the largest value. The
value of this largest directional derivative is ||Vf]| at P.

c) If Vf # 0 at P, then among all possible directional derivatives of f at
P, the derivative in the opposite direction of Vf at P has the smallest

value. The value of this smallest directional derivative is —||Vf]|| at P.



PROPERTIES OF THE GRADIENT

Example Let f(x,y) = x%eY. Find the maximum value of a directional
derivative at (—2,0), and find the unit vector in the direction in
which the maximum value occurs.

Vi, y) = f00)i+ £, y)] = 2xe¥i+ x%e¥]
VF(=2,0) = —4i + 4

So, the maximum value of the directional derivative is

IVF(=2,00ll = \/(—4)2 + 42 =42




PROPERTIES OF THE GRADIENT

Example Let f(x,y) = x%eY. Find the maximum value of a directional
derivative at (—2,0), and find the unit vector in the direction in
which the maximum value occurs.

So, the maximum value of the directional derivative is
IVF(=2,00ll = \/(=4)2 + 42 =42

This maximum occurs in the direction of Vf(—2,0).

The unit vector in this direction is
VA(=2,0) _ I L.

— — A4 Af) = i —
RN ARV LY.
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EXTREMA

A function f of two variables is said to have
a relative maximum at a point (xg,Yo) if
there is a disk centered at (x,, yo) such that
f(x0,V0) = f(x,y) for all points (x,y) that
lie inside the disk.

And f is said to have an absolute maximum

at (xo,¥0) if f(x0,¥0) 2 f(x,y) for all
points (x,y) in the domain of f.

AZ

Relative
maximum

Absolute minimum

Absolute

maximum \AI
z=1(x, ) I

1

hi



EXTREMA

A function f of two variables is said to have
a relative minimum at a point (xg, Vo) if
there is a disk centered at (x,, yo) such that
f(x0,v0) < f(x,y) for all points (x,y) that
lie inside the disk.

And f is said to have an absolute minimum

at (xo,¥0) if f(x0,¥0) < f(x,y) for all
points (x,y) in the domain of f.

AZ

Relative
maximum

Absolute minimum

Absolute

maximum \AI
z=1(x, ) I

1

hi



BOUNDED SETS

A set of points in 2 —space is called And is called unbounded if there is

bounded if the entire set can be no rectangle that contains all the

contained within some rectangle. points of the set.
AV AY
X
. >
>
A bounded set Ant gnt;ounded
in 2-space set In 2-space

(the first quadrant)



THE EXTREME-VALUE THEOREM

If f(x,y) is continuous on a closed and bounded set R, then f has

both an absolute maximum and an absolute minimum on R.

NOTE If any of the conditions in the Extreme-Value Theorem fail to
hold, then there is no guarantee that an absolute maximum

or absolute minimum exists on the region R.



FINDING RELATIVE EXTREMA

Definition of Critical Point

Let f be defined on an open region R containing (x,, y,). The point (x,, v,) is
a critical point of fif one of the following 1s true.

1. f.(x5. vo) = 0 and f;(x,. v5) = 0
2. f(x0, ¥o) or f,(xo. o) does not exist.

NOTE |If f is differentiable and
Vf(x0,¥0) = fi(x0, Yo)i+ f,(x0,¥0)j = 01+ 0j = 0

then every directional derivative at (x,, y5) must be O.



FINDING RELATIVE EXTREMA

Relative Extrema Occur Only at Critical Points

If £ has a relative extremum at (x,, y,) on an open region R, then (x,, y,) is a
critical point of f. AZ

Relative _
maximum Jy=X




THE SECOND PARTIALS TEST

13.8.6 THEOREM (The Second Partials Test) Let [ be a function of two variables with
continuous second-order partial derivatives in some disk centered at a critical point

(00 Y0k AT (s o) i o 30) — £, 30)

(a) If D > 0and f,.(xo, o) > 0, then | has a relative minimum at (xg, o).
(b) If D > 0and f,.(xo,vo) <0, then f has a relative maximum at (xq, Vo).
(c) If D <O, then [ has a saddle point at (xo, Vo).

(d) If D =0, then no conclusion can be drawn.

_ frx (X0, ¥0)  fry (X0, ¥0)

NOTE D =
fxy(xo»YO) fyy(xo»)’o)



THE SECOND PARTIALS TEST

Example f(x,y) = 2x? +y? + 8x — 6y + 20.

The critical pointis (—=2,3). fu(x,¥) =4 fax(=2,3) =4 >0
fx(x,y) = 4x + 8 fry(,y) =2 fy(=23) =2
fy(x,y) =2y —6 fiy(,¥) =0 fry(=2,3) =0

D = fix(=2,3)f,,(=2,3) — £5,(=2,3) = (49)(2) — (0)* =8 >0

f has a relative minimum at (—2,3) by the second partial test,
and the value of this relative minimum is f(—2,3) = 3.



THE SECOND PARTIALS TEST z

Example f(X, y) — 3’2 — x?. (0, 0)

= g —

X

The critical point is (0,0).

f(t,y) = =2x  fx(0,0) = =2

fx,y) =2y f,y(0,0) = 2 X
fxy(0,0) =0

f has a saddle point at (0,0) by the second partial test.

5 4



THE SECOND PARTIALS TEST

Example Locate all relative extrema and saddle points of

fl,y) =4xy —x* —y*

f(x,y) =4y —4x3 = y = x3:| x = (x3)3 = x°
fyx,y)=4x—-4y> =0 x=y° x*—x=0 x(x®*-1)=0

x|y =x3
fex (6, y) = —1247 — 1

fyy(x»y) — _12y2 0 0
fxy(x»:)’) =4




THE SECOND PARTIALS TEST

Example Locate all relative extrema and saddle points of

fl,y) =4xy —x* —y*

X|y=x
frx (X, y) = —12x° 1| =1
fyy(x,¥) = —12y* 0| 0

fxy(x» y) =4

. . 2
Critical Point | [ fyy fey |D = fexlyy — [fxy] Type

(-1,-1) [|—-12 -—-12 4 128 Local Max
(0,0) 0 0 4 —16 Saddle
(1,1) —12 —12 4 128 Local Max
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EXTREMUM PROBLEMS WITH CONSTRAINTS

* In this section we will study a powerful new method for maximizing or
minimizing a function subject to constraints on the variables.

 This method will help us to solve certain optimization problems that are
difficult or impossible to solve using the methods studied in the last
section.

* We wish to:

Find extrema of the function z = f(x,y) subject to a constraint given

by g(x,y) = c.



EXTREMUM PROBLEMS WITH CONSTRAINTS

Lagrange’s Theorem

Let f and g have continuous first partial derivatives such that f has an
extremum at a point (x,, y,) on the smooth constraint curve g(x, y) = c. If
Vg(xy, yo) # 0, then there is a real number A such that

Vf(xO’ )’0) — AVg(xO, yo)-

NOTE The scalar A is called a Lagrange multiplier.



EXTREMUM PROBLEMS WITH CONSTRAINTS

Method of Lagrange Multipliers

Let fand g satisty the hypothesis of Lagrange’s Theorem, and let f have a
minimum or maximum subject to the constraint g(x, y) = c¢. To find the
minimum or maximum of f, use these steps.

1. Simultaneously solve the equations Vf(x, y) = AVg(x, y) and g(x, y) = ¢
by solving the following system of equations.

flx,y) = Aglx, y)
£, y) = Ag,(x, v)
glx,y) = ¢

2. Evaluate f at each solution point obtained in the first step. The greatest value
yields the maximum of f subject to the constraint g(x, y) = ¢, and the least
value yields the minimum of f subject to the constraint g(x, y) = c.



EXTREMUM PROBLEMS WITH CONSTRAINTS

— gx,y) =x+y—3

Example At what point(s) on the line x + y = 3 does

fl,y) =9 —x*—y?
have an absolute maximum, and what is that maximum?

fx(x»y) — /lgx(x:.V) —2x = A
fy) =24g,(x,y) 2y =A1—
glx,y) =0 x+y—3=0

—> —2x = =2y



EXTREMUM PROBLEMS WITH CONSTRAINTS

/,»gﬁw0=x+y—3

Example At what point(s) on the line x + y = 3 does

fl,y) =9 —x*—y?
have an absolute maximum, and what is that maximum?

f(,y) = Agx(x,y) —2x = A
—> X — y

fy(x,y) = Agy(x, y) —2y = A—
glx,y)=0 x+y—3=()<_|

2x —3 =0

3 3
T2 V75



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example At what point(s) on the line x + y = 3 does

fl,y) =9 —x*—y?
have an absolute maximum, and what is that maximum?

3 3
X = — _ —
7l
* Subject to the constraint x + 7y = 3, the function f has
absolute maximum at (g,g)

. . 3 3 9
* The value of the absolute maximum is f (E’E) = .



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Use Lagrange multipliers to find the maximum and minimum
values of

f(x'y)=x_3y_1
subject to the constraint x* + 3y% = 16. ~—~

f(x,y) = 1g,(x,y) 1 =2Ax g(x,y) = x*+3y*—16

fxy) =4g,(x,y) =3 =641y
g(x,y) =0 x?+3y2—-16=0



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Use Lagrange multipliers to find the maximum and minimum
values of

f(x'y)=x_3y_1
subject to the constraint x* + 3y? = 16.

1 =2Ax >x%>+ 3y —16=0 f(2,-2)=7 MAX
- 4%%2 — 16 = 0 f(=2,2) =-9 MIN
—3 = 64y
1 X



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find three positive numbers whose sum is 48 and such that their
product is as large as possible.

Let the three numbers x, y and z.
Constraint: x +y +z = 48

Function: f(x,y,z) = xyz

Find the maximum value of f(x,y,z) = xyz subject to the
constraint x +y + z = 48.



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find the maximum value of f(x,y,z) = xyz subject to the
constraint x + y + z = 48.

\g(x,y,z)=x+y+z—48

e, y,2) = Agx(x,y,2)  yz=2 > y
fy(x,y,2) =2g9,(x,y,2) xz=2
6y,2) =49,(x,y,2) xy =2
g(x,y,z) =0 xX+y+z—48=0



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find the maximum value of f(x,y,z) = xyz subject to the
constraint x + y + z = 48.

\g(x,y,z)=x+y+z—48

fx(x,y,z) — Agx(x,y,z) VzZ = A > o
y p—
v, z) =2g,(x,y,2) xz=2
f:(x,y,2) =2g,(x,y,2) xy=24
g(x,y,z) =0 xX+y+z—48=0



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find the maximum value of f(x,y,z) = xyz subject to the
constraint x + y + z = 48.

\g(x,y,z)=x+y+z—48

(6, y,2) = Agx(x,y,2)  yz=2
fy(x,y,2) = Agy(x,y,2) xz=2A >
6y,2) =49,(x,y,2) xy =2
g(x,y,z) =0 X+y+z—48 =



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find the maximum value of f(x,y,z) = xyz subject to the
constraint x + y + z = 48.

\g(x,y,z)=x+y+z—48

fx(X,y,Z) =/1gx(x,y,z) yZ:A —
y_

fy(X;)’;Z) = }lgy(x,y,Z) x7 = A > =7

fZ(x’y’Z) z/lgz(ny:Z) xy:A

9, y,2) =0 x+y+z—48=0



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find the maximum value of f(x,y,z) = xyz subject to the
constraint x + y + z = 48.

\g(x,y,z)=x+y+z—48

fy(x:y;z) — Agy(x,y,Z) x7 = A
fZ(x’y’Z)z/ng(ny;Z) Xy=/1
g(x,y,2) =0 X+y+z—48=0<

fx(nyIZ) — Agx(x,y,z) VzZ = A y
} vmy=2

3x—48=0 x=16 y=16 2z =16
f(16,16,16) = 16> = 4096
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