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NOTATION AND TERMINOLOGY

The notation for a function of two or more variables is similar to that 
for a function of a single variable.

𝑧 = 𝑓 𝑥, 𝑦

2 Variables

𝑤 = 𝑓 𝑥, 𝑦, 𝑧

3 Variables

Function of two variables

Function of three variables



NOTATION AND TERMINOLOGY

Example Find the domain of the function 𝑓 𝑥, 𝑦 =
𝑥2 + 𝑦2 − 9

𝑥

The function 𝑓 is defined for all points 𝑥, 𝑦  
such that 𝑥 ≠ 0 and

𝑥2 + 𝑦2 − 9 ≥ 0 ⇒ 𝑥2 + 𝑦2 ≥ 9

So, the domain is the set of all points lying 
on or outside the circle 𝑥2 + 𝑦2 = 9 except 
those points on the 𝑦 −axis.



NOTATION AND TERMINOLOGY

Example Find the domain of the function 𝑓 𝑥, 𝑦 = 𝑦 + 1 + ln 𝑥2 − 𝑦

• Note that 𝑦 + 1  is defined only 

when 𝑦 ≥ −1.

• Also, ln 𝑥2 − 𝑦  is defined only when 

𝑥2 − 𝑦 > 0 and hence 𝑦 < 𝑥2.

• Thus, the natural domain of 𝑓 consists 

of all points in the 𝑥𝑦 −plane for 

which −1 ≤ 𝑦 < 𝑥2.



LEVEL CURVES

The set of all points 𝑥, 𝑦, 𝑓 𝑥, 𝑦  in space, for 𝑥, 𝑦  in the domain of 

𝑓, is called the graph of 𝑓.

The graph of 𝑓 is also called the surface 𝑧 = 𝑓 𝑥, 𝑦 .



The set of points in the plane where a 
function 𝑓 𝑥, 𝑦  has a constant value 
𝑓 𝑥, 𝑦 = 𝑐 is called a level curve of 
𝑓.

LEVEL CURVES



LEVEL CURVES

The curve in space in which the plane 

𝑧 = 𝑐 cuts a surface 𝑧 = 𝑓 𝑥, 𝑦  is 

made up of the points that represent 

the function value 𝑓 𝑥, 𝑦 = 𝑐. It is 

called the contour curve 𝑓 𝑥, 𝑦 = 𝑐.



LEVEL CURVES

Example Sketch the contour plot of 𝑓 𝑥, 𝑦 = 𝑦 − 𝑥2  using level 
curves of height 𝑘 = 1, 2, 3, 4, 5.

𝑓 𝑥, 𝑦 = 𝑘 𝑦 − 𝑥2 = 𝑘

𝑦 = 𝑥2 + 𝑘

𝑘 = 1 𝑦 = 𝑥2 + 1

𝑘 = 2 𝑦 = 𝑥2 + 2

𝑘 = 3 𝑦 = 𝑥2 + 3

𝑘 = 4 𝑦 = 𝑥2 + 4

𝑘 = 5 𝑦 = 𝑥2 + 5
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LIMITS ALONG CURVES

• For a function of one variable there are two one-sided limits at a point 
𝑥0, namely,

lim
𝑥→𝑥0

+
𝑓 𝑥  and lim

𝑥→𝑥0
−

𝑓 𝑥

reflecting the fact that there are only two directions from which 𝑥 can 
approach 𝑥0, the right or the left.

• For functions of several variables the 
situation is more complicated because 
there are infinitely many different curves 
along which one point can approach 
another.



LIMITS ALONG CURVES

If 𝐶 is a smooth parametric curve in 2 −space 

that is represented by the equations 𝑥 = 𝑥 𝑡  

and 𝑦 = 𝑦 𝑡 , and if 𝑥0 = 𝑥 𝑡0  and 𝑦0 = 𝑦 𝑡0 , 

then

lim
𝑥,𝑦 → 𝑥0,𝑦0

along 𝑪

𝑓 𝑥, 𝑦 = lim
𝑡→𝑡0

𝑓 𝑥 𝑡 , 𝑦 𝑡



RELATIONSHIPS BETWEEN GENERAL LIMITS AND LIMITS ALONG 
SMOOTH CURVES

• If 𝑓 𝑥, 𝑦 → 𝐿 as 𝑥, 𝑦 → 𝑥0, 𝑦0 , then 𝑓 𝑥, 𝑦 → 𝐿 as 𝑥, 𝑦 → 𝑥0, 𝑦0  

along any smooth curve.

• If the limit of 𝑓(𝑥, 𝑦) fails to exist as 𝑥, 𝑦 → 𝑥0, 𝑦0  along some 

smooth curve, or if 𝑓(𝑥, 𝑦) has different limits as 𝑥, 𝑦 → 𝑥0, 𝑦0  along 

two different smooth curves, then the limit of 𝑓(𝑥, 𝑦) does not exist as

𝑥, 𝑦 → 𝑥0, 𝑦0 .



LIMITS ALONG CURVES

Example Evaluate lim
𝑥,𝑦 → 0,0

−
𝑥𝑦

𝑥2 + 𝑦2
 along:

the 𝑥 −axis 𝑦 = 0

lim
𝑥,0 → 0,0

−
𝑥 × 0

𝑥2 + 02

=
0

0

= lim
𝑥→0

0

𝑥2
= 0

the 𝑦 −axis 𝑥 = 0

lim
0,𝑦 → 0,0

−
0 × 𝑦

02 + 𝑦2 = lim
𝑦→0

0

𝑦2
= 0



LIMITS ALONG CURVES

Example Evaluate lim
𝑥,𝑦 → 0,0

−
𝑥𝑦

𝑥2 + 𝑦2
 along:

the line 𝑦 = 𝑥

lim
𝑥,𝑥 → 0,0

−
𝑥 × 𝑥

𝑥2 + 𝑥2

=
0

0

= lim
𝑥→0

−𝑥2

2𝑥2
=

−1

2

The parabola  𝑦 = 𝑥2

lim
𝑥,𝑥2 → 0,0

−
𝑥 × 𝑥2

𝑥2 + 𝑥4 = lim
𝑥→0

−𝑥3

𝑥2 1 + 𝑥2
= 0

Since we found two different smooth curves along which this limit had
different values then the limits does not exist



LIMITS ALONG CURVES

Example Show that the following limit does not exist.

lim
𝑥,𝑦 → 0,0

𝑥2 − 3𝑦2

𝑥2 + 2𝑦2 =
0

0

the 𝑥 −axis lim
𝑥,0 → 0,0

𝑥2 − 0

𝑥2 + 0
= 1

the 𝑦 −axis lim
0,𝑦 → 0,0

0 − 3𝑦2

0 + 2𝑦2
= −

3

2

The limit does
not exist



LIMITS ALONG CURVES

Example Show that the following limit does not exist.

lim
𝑥,𝑦 → 0,0

𝑥3𝑦

𝑥6 + 𝑦2 =
0

0

the 𝑥 −axis lim
𝑥,0 → 0,0

0

𝑥6 + 0
= 0

The curve 
𝑦 = 𝑥3

lim
𝑥,𝑥3 → 0,0

𝑥3 𝑥3

𝑥6 + 𝑥6
= lim

𝑥→0

𝑥6

2𝑥6
=

1

2

The limit does
not exist



LIMITS ALONG CURVES

Example Evaluate lim
𝑥,𝑦 → −1,2

𝑥𝑦

𝑥2 + 𝑦2 =
−1 2

−1 2 + 22
= −

2

5

Example Evaluate lim
𝑥,𝑦 → 1,4

5𝑥3𝑦2 + 9 = 5 13 42 + 9 = 89

Example Evaluate lim
𝑥,𝑦 → 0,0

1

𝑥2 + 𝑦2
=

1

0 + 0
= +∞ does not exist



Example Evaluate lim
𝑥,𝑦 → 0,0

𝑥4 − 𝑦4

𝑥2 + 𝑦2

LIMITS ALONG CURVES

=
0

0

lim
𝑥,𝑦 → 0,0

𝑥4 − 𝑦4

𝑥2 + 𝑦2 = lim
𝑥,𝑦 → 0,0

𝑥2 − 𝑦2 𝑥2 + 𝑦2

𝑥2 + 𝑦2

= lim
𝑥,𝑦 → 0,0

𝑥2 − 𝑦2

= 0



Example Evaluate lim
𝑥,𝑦 → 0,0

𝑥2 + 𝑦2 ln 𝑥2 + 𝑦2 = 0 ⋅ ∞

LIMITS ALONG CURVES

• It is not evident whether this limit 

exists because it is an 

indeterminate form of type 0 ⋅ ∞.

• Although L'Hospital's rule cannot 

be applied directly, we can find 

this limit by converting to polar

coordinates.

𝑥 = 𝑟 cos 𝜃 𝑦 = 𝑟 sin 𝜃

𝑟2 = 𝑥2 + 𝑦2 tan 𝜃 = Τ𝑦 𝑥

Note

Since 𝑟 ≥ 0 then 𝑟 = 𝑥2 + 𝑦2, 
so that 𝑟 → 0+  if and only if
𝑥, 𝑦 → 0,0



Example Evaluate lim
𝑥,𝑦 → 0,0

𝑥2 + 𝑦2 ln 𝑥2 + 𝑦2 = 0 ⋅ ∞

LIMITS ALONG CURVES

𝑥 = 𝑟 cos 𝜃 𝑦 = 𝑟 sin 𝜃

𝑟2 = 𝑥2 + 𝑦2 tan 𝜃 = Τ𝑦 𝑥

Note

Since 𝑟 ≥ 0 then 𝑟 = 𝑥2 + 𝑦2, 
so that 𝑟 → 0+  if and only if
𝑥, 𝑦 → 0,0

= lim
𝑟→0+

𝑟2 ln 𝑟2

= lim
𝑟→0+

2 ln 𝑟

Τ1 𝑟2

= lim
𝑟→0+

Τ2 𝑟

Τ−2 𝑟3

= lim
𝑟→0+

−𝑟2 = 0



LIMITS ALONG CURVES

Example Evaluate the following limit by converting to polar coordinates.

lim
𝑥,𝑦 → 0,0

𝑥2𝑦2

𝑥2 + 𝑦2
=

0

0

lim
𝑥,𝑦 → 0,0

𝑥2𝑦2

𝑥2 + 𝑦2

𝑥 = 𝑟 cos 𝜃

𝑦 = 𝑟 sin 𝜃

𝑟2 = 𝑥2 + 𝑦2

Remember that 𝑟 → 0+ if and only if 𝑥, 𝑦 → 0,0 .

= lim
𝑟→0+

𝑟 cos 𝜃 2 𝑟 sin 𝜃 2

𝑟

= lim
𝑟→0+

𝑟3 cos2 𝜃 sin2 𝜃 = 0



CONTINUITY

A function 𝑓 𝑥, 𝑦  is said to be continuous at 𝑥0, 𝑦0 if 𝑓 𝑥0, 𝑦0  is 

defined and if

lim
𝑥,𝑦 → 𝑥0,𝑦0

𝑓 𝑥, 𝑦 = 𝑓 𝑥0, 𝑦0

In addition, if 𝑓 is continuous at every point in an open set 𝐷, then 

we say that 𝑓 is continuous on 𝐷, and if 𝑓 is continuous at every point

in the 𝑥𝑦 −plane, then we say that 𝑓 is continuous everywhere.



CONTINUITY

Example 𝑓 𝑥, 𝑦 =
𝑥3𝑦2

1 − 𝑥𝑦
is continuous except where 1 − 𝑥𝑦 = 0

𝑦 =
1

𝑥

Example Let 𝑓 𝑥, 𝑦 = ቐ
sin 𝑥2+𝑦2

𝑥2+𝑦2 : 𝑥, 𝑦 ≠ 0,0

1 : 𝑥, 𝑦 = 0,0

Show that 𝑓 is continuous at (0,0).



CONTINUITY

Example Let 𝑓 𝑥, 𝑦 = ቐ
sin 𝑥2+𝑦2

𝑥2+𝑦2 : 𝑥, 𝑦 ≠ 0,0

1 : 𝑥, 𝑦 = 0,0

Show that 𝑓 is continuous at (0,0).

𝑓 0,0 = 1 is defined

lim
𝑥,𝑦 → 0,0

𝑓 𝑥, 𝑦 = lim
𝑥,𝑦 → 0,0

sin 𝑥2 + 𝑦2

𝑥2 + 𝑦2

= lim
𝑟→0+

sin 𝑟2

𝑟2

= 1 = 𝑓 0,0
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PARTIAL DERIVATIVES OF FUNCTIONS OF TWO VARIABLES

• How will the value of a function be affected by a change in one of its 

independent variables?

• The procedure used to determine the rate of change of a function 

𝑓 𝑥, 𝑦  with respect to one of its several independent variables is 

called partial differentiation, and the result is referred to as the 

partial derivative of 𝑓  with respect to the chosen independent 

variable.



PARTIAL DERIVATIVES OF FUNCTIONS OF TWO VARIABLES

Definition of Partial Derivatives of a Function of Two Variables



PARTIAL DERIVATIVES OF FUNCTIONS OF TWO VARIABLES

NOTE This previous definition indicates that if 𝑧 = 𝑓 𝑥, 𝑦  then:

✓ To find 𝑓𝑥 you consider 𝑦 constant and differentiate with respect 

to 𝑥.

✓ Similarly, to find 𝑓𝑦 you consider 𝑥 constant and differentiate 

with respect to 𝑦.



THE PARTIAL DERIVATIVE FUNCTIONS

Example Find 𝑓𝑥 𝑥, 𝑦  and 𝑓𝑦 𝑥, 𝑦  for 𝑓 𝑥, 𝑦 = 2𝑥3𝑦2 + 2𝑦 + 4𝑥 and 

use those partial derivatives to compute 𝑓𝑥 1,3  and 𝑓𝑦 1,3 .

Keeping 𝑦 fixed (constant) and differentiating with respect to 𝑥 yields

𝑓𝑥 𝑥, 𝑦 =
𝑑

𝑑𝑥
2𝑥3𝑦2 + 2𝑦 + 4𝑥 = 6𝑥2𝑦2 + 4

and keeping 𝑥 fixed (constant) and differentiating with respect to 𝑦 
yields

𝑓𝑦 𝑥, 𝑦 =
𝑑

𝑑𝑦
2𝑥3𝑦2 + 2𝑦 + 4𝑥 = 4𝑥3𝑦 + 2

Thus, 𝑓𝑥 1,3 = 6 12 32 + 4 = 58 𝑓𝑦 1,3 = 4 13 3 + 2 = 14



PARTIAL DERIVATIVE NOTATION



PARTIAL DERIVATIVE NOTATION

Example Find 
𝜕𝑧

𝜕𝑥
 and 

𝜕𝑧

𝜕𝑦
 if 𝑧 = 𝑥4 sin 𝑥𝑦3 .

𝜕𝑧

𝜕𝑥
=

𝜕

𝜕𝑥
𝑥4 sin 𝑥𝑦3

= 𝑥4
𝜕

𝜕𝑥
sin 𝑥𝑦3 + sin 𝑥𝑦3

𝜕

𝜕𝑥
𝑥4

= 𝑥4𝑦3 cos 𝑥𝑦3 + 4𝑥3 sin 𝑥𝑦3



PARTIAL DERIVATIVE NOTATION

Example Find 
𝜕𝑧

𝜕𝑥
 and 

𝜕𝑧

𝜕𝑦
 if 𝑧 = 𝑥4 sin 𝑥𝑦3 .

𝜕𝑧

𝜕𝑦
=

𝜕

𝜕𝑦
𝑥4 sin 𝑥𝑦3

= 𝑥4
𝜕

𝜕𝑦
sin 𝑥𝑦3 = 𝑥4 × 3𝑥𝑦2 cos 𝑥𝑦3

= 3𝑥5𝑦2 cos 𝑥𝑦3



PARTIAL DERIVATIVE NOTATION

Example Find 𝑓𝑥 1, ln 2  and 𝑓𝑦 1, ln 2  if 𝑓 𝑥, 𝑦 = 𝑦𝑒𝑥2𝑦.

𝑓𝑥 =
𝜕

𝜕𝑥
𝑦𝑒𝑥2𝑦

= 𝑦
𝜕

𝜕𝑥
𝑒𝑥2𝑦 = 𝑦 × 2𝑥𝑦𝑒𝑥2𝑦 = 2𝑥𝑦2𝑒𝑥2𝑦

∴  𝑓𝑥 1, ln 2 = 2 1 ln 2 2𝑒 12 ln 2

= 4 ln 2 2



PARTIAL DERIVATIVE NOTATION

Example Find 𝑓𝑥 1, ln 2  and 𝑓𝑦 1, ln 2  if 𝑓 𝑥, 𝑦 = 𝑦𝑒𝑥2𝑦.

𝑓𝑦 =
𝜕

𝜕𝑦
𝑦𝑒𝑥2𝑦 = 𝑦

𝜕

𝜕𝑦
𝑒𝑥2𝑦 + 𝑒𝑥2𝑦

𝜕

𝜕𝑦
𝑦

= 𝑦𝑥2𝑒𝑥2𝑦 + 𝑒𝑥2𝑦 = 𝑦𝑥2 + 1 𝑒𝑥2𝑦

∴  𝑓𝑦 1, ln 2 = 12 ln 2 + 1 𝑒 12 ln 2

= 2 ln 2 + 2



PARTIAL DERIVATIVES VIEWED AS SLOPES

Example Let 𝑓 𝑥, 𝑦 = 𝑥2𝑦 + 5𝑦3.

a) Find the slope of the surface 𝑓 𝑥, 𝑦  in the 𝑥 −direction at the point 
(1, −2).

∵ 𝑓𝑥 𝑥, 𝑦 = 2𝑥𝑦

Thus, the slope in the 𝑥 −direction is 𝑓𝑥 1, −2 = −4

b) Find the slope of the surface 𝑓 𝑥, 𝑦  in the 𝑦 −direction at the point 
(1, −2).

∵ 𝑓𝑦 𝑥, 𝑦 = 𝑥2 + 15𝑦2

Thus, the slope in the 𝑦 −direction is 𝑓𝑦 1, −2 = 61



IMPLICIT PARTIAL DIFFERENTIATION

Example Find the slope of the sphere 𝑥2 + 𝑦2 + 𝑧2 = 1 in the 𝑦 −direction 

at the point
2

3
,

1

3
,

2

3
.

𝜕

𝜕𝑦
𝑥2 + 𝑦2 + 𝑧2 =

𝜕

𝜕𝑦
1

2𝑦 + 2𝑧
𝜕𝑧

𝜕𝑦
= 0

𝜕𝑧

𝜕𝑦
= −

𝑦

𝑧

ቤ
𝜕𝑧

𝜕𝑦 2
3

,
1
3

,
2
3

= −
Τ1 3

Τ2 3

= −
1

2



PARTIAL DERIVATIVES OF FUNCTIONS WITH MORE THAN 
TWO VARIABLES

• For a function 𝑤 = 𝑓 𝑥, 𝑦, 𝑧  of three variables, there are three partial 
derivatives:

𝜕𝑤

𝜕𝑥
= 𝑓𝑥 ,

𝜕𝑤

𝜕𝑦
= 𝑓𝑦 ,

𝜕𝑤

𝜕𝑧
= 𝑓𝑧

• The partial derivative 𝑓𝑥 is calculated by holding 𝑦 and 𝑧 constant and 

differentiating with respect to 𝑥.

• For 𝑓𝑦 the variables 𝑥 and 𝑧 are held constant,

• and for 𝑓𝑧 the variables 𝑥 and 𝑦 are held constant.



PARTIAL DERIVATIVES OF FUNCTIONS WITH MORE THAN 
TWO VARIABLES

Example If 𝑓 𝑥, 𝑦, 𝑧 = 𝑥3𝑦2𝑧4 + 2𝑥𝑦 + 𝑧, then

𝑓𝑥 𝑥, 𝑦, 𝑧 = 3𝑥2𝑦2𝑧4 + 2𝑦

𝑓𝑦 𝑥, 𝑦, 𝑧 = 2𝑥3𝑦𝑧4 + 2𝑥

𝑓𝑧 𝑥, 𝑦, 𝑧 = 4𝑥3𝑦2𝑧3 + 1

Example If 𝑓 𝑥, 𝑦, 𝑧, 𝑤 =
𝑥+𝑦+𝑧

𝑤
, then

𝜕𝑓

𝜕𝑤
= −

𝑥 + 𝑦 + 𝑧

𝑤2



PARTIAL DERIVATIVES OF FUNCTIONS WITH MORE THAN 
TWO VARIABLES

Example If 𝑤 =
𝑥2−𝑧2

𝑦2+𝑧2, then

𝜕𝑤

𝜕𝑧
=

𝑦2 + 𝑧2 −2𝑧 − 𝑥2 − 𝑧2 2𝑧

𝑦2 + 𝑧2 2

=
−2𝑧 𝑥2 + 𝑦2

𝑦2 + 𝑧2 2



HIGHER-ORDER PARTIAL DERIVATIVES

✓ Suppose that 𝑓 is a function of two variables 𝑥 
and 𝑦.

✓ Since the partial derivatives 𝑓𝑥 and 𝑓𝑦 are also 

functions of 𝑥 and 𝑦, these functions may 
themselves have partial derivatives.

✓ This gives rise to four possible second-order 
partial derivatives of 𝑓 , which are defined by



HIGHER-ORDER PARTIAL DERIVATIVES

• The last two cases are called the mixed second-order 

partial derivatives or the mixed second partials.

• Observe that the two notations for the mixed 

second partials have opposite conventions for the 

order of differentiation.

• Let 𝑓 be a function of two variables. If 𝑓𝑥𝑦 and 𝑓𝑦𝑥 

are continuous on some open disk, then 𝑓𝑥𝑦 = 𝑓𝑦𝑥 

on that disk.



HIGHER-ORDER PARTIAL DERIVATIVES

Example

Find the second-order partial derivatives of

𝑓 𝑥, 𝑦 = 𝑥2𝑦3 + 𝑥4𝑦

𝑓𝑥 𝑥, 𝑦 = 2𝑥𝑦3 + 4𝑥3𝑦

𝑓𝑥𝑥 =
𝜕2𝑓

𝜕𝑥2
=

𝜕

𝜕𝑥

𝜕𝑓

𝜕𝑥
=

𝜕

𝜕𝑥
2𝑥𝑦3 + 4𝑥3𝑦 = 2𝑦3 + 12𝑥2𝑦

𝑓𝑦 𝑥, 𝑦 = 3𝑥2𝑦2 + 𝑥4

𝑓𝑦𝑦 =
𝜕2𝑓

𝜕𝑦2
=

𝜕

𝜕𝑦

𝜕𝑓

𝜕𝑦
=

𝜕

𝜕𝑦
3𝑥2𝑦2 + 𝑥4 = 6𝑥2𝑦

𝑓𝑥𝑦 =
𝜕2𝑓

𝜕𝑦𝜕𝑥
=

𝜕

𝜕𝑦

𝜕𝑓

𝜕𝑥
=

𝜕

𝜕𝑦
2𝑥𝑦3 + 4𝑥3𝑦 = 6𝑥𝑦2 + 4𝑥3 = 𝑓𝑦𝑥



HIGHER-ORDER PARTIAL DERIVATIVES

Third-order, fourth-order, and higher-order partial derivatives can be 
obtained by successive differentiation. Some possibilities are

Example Let 𝑓 𝑥, 𝑦 = 𝑦2𝑒𝑥 + 𝑦. Find 𝑓𝑥𝑦𝑦.



PARTIAL DERIVATIVES AND CONTINUITY

In contrast to the case of functions of a single variable, the existence of 
partial derivatives for a multivariable function does not guarantee the 
continuity of the function.

Example Let 𝑓 𝑥, 𝑦 = ቐ
−

𝑥𝑦

𝑥2 + 𝑦2
: 𝑥, 𝑦 ≠ 0,0

0 : 𝑥, 𝑦 = 0,0

We previously show that lim
𝑥,𝑦 → 0,0

−
𝑥𝑦

𝑥2 + 𝑦2 does not exist.

∴ 𝑓 𝑥, 𝑦  is discontinuous at 0,0 .



PARTIAL DERIVATIVES AND CONTINUITY

Example Let 𝑓 𝑥, 𝑦 = ቐ
−

𝑥𝑦

𝑥2 + 𝑦2
: 𝑥, 𝑦 ≠ 0,0

0 : 𝑥, 𝑦 = 0,0

∴ 𝑓 𝑥, 𝑦  is discontinuous at 0,0 .

We will have to use the definitions of the partial derivatives to determine 
whether 𝑓 has partial derivatives at 0,0 , and if so, we find the values of 
those derivatives.



PARTIAL DERIVATIVES AND CONTINUITY

Example Let 𝑓 𝑥, 𝑦 = ቐ
−

𝑥𝑦

𝑥2 + 𝑦2
: 𝑥, 𝑦 ≠ 0,0

0 : 𝑥, 𝑦 = 0,0

∴ 𝑓 𝑥, 𝑦  is discontinuous at 0,0 .

This shows that 𝒇 has partial derivatives at 𝟎, 𝟎  and the values of 
both partial derivatives are 𝟎 at that point.
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CHAIN RULES FOR DERIVATIVES

If 𝑦 is a differentiable function of 𝑥 and 𝑥 is 

a differentiable function of 𝑡 , then the 

chain rule for functions of one variable 

states that, under composition, 𝑦 becomes 

a differentiable function of 𝑡 with

𝑑𝑦

𝑑𝑡
=

𝑑𝑦

𝑑𝑥

𝑑𝑥

𝑑𝑡

𝑦

𝑥

𝑡

𝑑𝑦

𝑑𝑥

𝑑𝑥

𝑑𝑡



CHAIN RULES FOR DERIVATIVES

• Let 𝑤 = 𝑓 𝑥, 𝑦  where 𝑓 is a differentiable 

function of 𝑥 and 𝑦.

• If 𝑥 = 𝑔 𝑡  and 𝑦 = ℎ 𝑡  where 𝑔 and ℎ are 

differentiable functions of 𝑡  then 𝑤  is a 

differentiable function of 𝑡.

• And

𝑤

𝑥

𝑡

𝑑𝑦

𝑑𝑡

𝑑𝑥

𝑑𝑡

𝑦

𝑡

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝑑𝑤

𝑑𝑡
=

𝜕𝑤

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑤

𝜕𝑦

𝑑𝑦

𝑑𝑡



CHAIN RULES FOR DERIVATIVES

𝑤

𝑥

𝑡

𝑑𝑦

𝑑𝑡

𝑑𝑥

𝑑𝑡

𝑦

𝑡

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝑑𝑤

𝑑𝑡
=

𝜕𝑤

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑤

𝜕𝑦

𝑑𝑦

𝑑𝑡Example Let 𝑤 = 𝑥2𝑦 − 𝑦2, where 𝑥 = sin 𝑡 

and 𝑦 = 𝑒𝑡. Find
𝑑𝑤

𝑑𝑡
 when 𝑡 = 0.

𝑑𝑤

𝑑𝑡
=

𝜕𝑤

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑤

𝜕𝑦

𝑑𝑦

𝑑𝑡

= 2𝑥𝑦 cos 𝑡 + 𝑥2 − 2𝑦 𝑒𝑡

= 2 sin 𝑡  𝑒𝑡 cos 𝑡 + sin2 𝑡 − 2𝑒𝑡 𝑒𝑡

ቤ
𝑑𝑤

𝑑𝑡
𝑡=0

= −2
NOTE 𝑤 = 𝑒𝑡 sin2 𝑡 − 𝑒2𝑡



CHAIN RULES FOR DERIVATIVES

𝑤

𝑥

𝑑𝑧

𝑑𝑥

𝑑𝑦

𝑑𝑥

𝑦

𝑥

𝜕𝑤

𝜕𝑥 𝜕𝑤

𝜕𝑦

Example Let 𝑤 = 𝑥𝑦 + 𝑦𝑧, where 𝑦 = sin 𝑥 and 
𝑧 = 𝑒𝑥. Use an appropriate form of the 
chain rule to find Τ𝑑𝑤 𝑑𝑥.

𝑑𝑤

𝑑𝑥
=

𝜕𝑤

𝜕𝑥
+

= 𝑦 + 𝑥 + 𝑧 cos 𝑥 + 𝑦 𝑒𝑥

= 1 + 𝑒𝑥 sin 𝑥 + 𝑥 + 𝑒𝑥 cos 𝑥

𝑧

𝑥

𝜕𝑤

𝜕𝑧

𝜕𝑤

𝜕𝑦

𝑑𝑦

𝑑𝑥
+

𝜕𝑤

𝜕𝑧

𝑑𝑧

𝑑𝑥

NOTE

𝑤 = 𝑥 sin 𝑥 + 𝑒𝑥 sin 𝑥



CHAIN RULES FOR DERIVATIVES
𝑧

𝑥
𝜕𝑥

𝜕𝑢

𝑢

𝜕𝑧

𝜕𝑥

𝜕𝑧

𝜕𝑦
Example Given that 𝑧 = 𝑒𝑥𝑦, 𝑥 = 2𝑢 + 𝑣, and 

𝑦 = Τ𝑢 𝑣. Find Τ𝜕𝑧 𝜕𝑢 and Τ𝜕𝑧 𝜕𝑣.

𝜕𝑧

𝜕𝑢
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑢
+

= 𝑦𝑒𝑥𝑦 2 + 𝑥𝑒𝑥𝑦 Τ1 𝑣

𝑦

𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑢

𝑢 𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦

𝜕𝑣

= 𝑒𝑥𝑦 2𝑦 +
𝑥

𝑣

𝜕𝑧

𝜕𝑣
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑣
+

= 𝑦𝑒𝑥𝑦 1 + 𝑥𝑒𝑥𝑦 Τ−𝑢 𝑣2

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑣

= 𝑒𝑥𝑦 𝑦 −
𝑥𝑢

𝑣2

= 𝑒 2𝑢+𝑣 Τ𝑢 𝑣 1 +
4𝑢

𝑣

= −
2𝑢2

𝑣2
𝑒 2𝑢+𝑣 Τ𝑢 𝑣



CHAIN RULES FOR DERIVATIVES

𝑤

𝑥
𝜕𝑥

𝜕𝜃
𝜌

𝜕𝑤

𝜕𝑥 𝜕𝑤

𝜕𝑦

Example

Given that 𝑤 = 𝑥2 + 𝑦2 − 𝑧2, and
𝑥 = 𝜌 sin 𝜙 cos 𝜃
𝑦 = 𝜌 sin 𝜙 sin 𝜃
𝑧 = 𝜌 cos 𝜙

Use appropriate forms of the 
chain rule to find Τ𝜕𝑤 𝜕𝜃.

𝜕𝑤

𝜕𝜃
=

𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝜃
+ = 2𝑥 −𝜌 sin 𝜙 sin 𝜃 + 2𝑦 𝜌 sin 𝜙 cos 𝜃

𝑧

𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝜃

𝜌

𝜃

𝑦

𝜙

𝜌 𝜃

𝜙

𝜙

𝜕𝑦

𝜕𝜃

= 0 This result is explained by the fact that 𝑤 
does not vary with 𝜃.
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DIRECTIONAL DERIVATIVES

• In this section we extend the concept of a partial derivative to 

the more general notion of a directional derivative.

• You will see that 𝑓𝑥 𝑥, 𝑦  and 𝑓𝑦 𝑥, 𝑦  can be used to find the 

slope in any direction.

• To determine the slope at a point on a surface, you will define a 

new type of derivative called a directional derivative.



DIRECTIONAL DERIVATIVES

• To do this is to use a unit vector

u = 𝑢1i + 𝑢2j

that has its initial point at (𝑥0, 𝑦0) and points in the desired 

direction.



DIRECTIONAL DERIVATIVES

If 𝑓 𝑥, 𝑦  is a function of 𝑥 and 𝑦, and if u = 𝑢1i + 𝑢2j is a unit vector, 

then the directional derivative of 𝑓 in the direction of u at (𝑥0, 𝑦0) is 

denoted by 𝐷u𝑓 𝑥0, 𝑦0  and is defined by

𝐷u𝑓 𝑥0, 𝑦0 = 𝑓𝑥 𝑥0, 𝑦0 𝑢1 + 𝑓𝑦 𝑥0, 𝑦0 𝑢2



DIRECTIONAL DERIVATIVES

Example Find the directional derivative of 𝑓 𝑥, 𝑦 = 𝑒𝑥𝑦  at (−2,0) in 
the direction of the unit vector that makes an angle of Τ𝜋 3 
with the positive 𝑥 −axis.

𝑓𝑥 𝑥, 𝑦 = 𝑦𝑒𝑥𝑦 𝑓𝑦 𝑥, 𝑦 = 𝑥𝑒𝑥𝑦

𝑓𝑥 −2,0 = 0 𝑓𝑦 −2,0 = −2

u = cos
𝜋

3
i + sin

𝜋

3
j

u =
1

2
i +

3

2
j

𝐷u𝑓 −2,0 = 𝑓𝑥 −2,0 𝑢1 + 𝑓𝑦 −2,0 𝑢2

= 0
1

2
+ −2

3

2
= − 3



DIRECTIONAL DERIVATIVES

Example Find the directional derivative of 𝑓 𝑥, 𝑦, 𝑧 = 𝑥2𝑦 − 𝑦𝑧3 + 𝑧 at 
(1, −2,0) in the direction of the vector a = 2i + j − 2k.

𝑓𝑥 𝑥, 𝑦, 𝑧 = 2𝑥𝑦

𝑓𝑦 𝑥, 𝑦, 𝑧 = 𝑥2 − 𝑧3

u =
a

a

=
2

3
i +

1

3
j −

2

3
k𝑓𝑧 𝑥, 𝑦, 𝑧 = −3𝑦𝑧2 + 1

𝑓𝑥 1, −2,0 = −4

𝑓𝑦 1, −2,0 = 1

𝑓𝑧 1, −2,0 = 1

=
2i + j − 2k

22 + 12 + −2 2



DIRECTIONAL DERIVATIVES

Example Find the directional derivative of 𝑓 𝑥, 𝑦, 𝑧 = 𝑥2𝑦 − 𝑦𝑧3 + 𝑧 at 
(1, −2,0) in the direction of the vector a = 2i + j − 2k.

u =
a

a
=

2

3
i +

1

3
j −

2

3
k

𝐷u𝑓 1, −2,0 = 𝑓𝑥 1, −2,0 𝑢1 + 𝑓𝑦 1, −2,0 𝑢2 + 𝑓𝑧 1, −2,0 𝑢3

= −4
2

3
+ 1

1

3
+ 1

−2

3
= −3

𝑓𝑥 1, −2,0 = −4 𝑓𝑦 1, −2,0 = 1 𝑓𝑧 1, −2,0 = 1



THE GRADIENT

NOTE 𝐷u𝑓 𝑥0, 𝑦0 = 𝑓𝑥 𝑥0, 𝑦0 𝑢1 + 𝑓𝑦 𝑥0, 𝑦0 𝑢2

= 𝑓𝑥 𝑥0, 𝑦0 , 𝑓𝑦 𝑥0, 𝑦0 ∙ 𝑢1, 𝑢2

= ∇𝑓 ⋅ u



PROPERTIES OF THE GRADIENT

Let 𝑓 be a function of either two variables or three variables and let 𝑃 
denote the point 𝑃 𝑥0, 𝑦0  or 𝑃 𝑥0, 𝑦0, 𝑧0 , respectively. Assume that 𝑓 is 
differentiable at 𝑃.

a) If ∇𝑓 = 0 at 𝑃, then all directional derivatives of 𝑓 at 𝑃 are zero.

b) If ∇𝑓 ≠ 0 at 𝑃, then among all possible directional derivatives of 𝑓 at 

𝑃, the derivative in the direction of ∇𝑓 at 𝑃 has the largest value. The 

value of this largest directional derivative is ∇𝑓  at 𝑃.

c) If ∇𝑓 ≠ 0 at 𝑃, then among all possible directional derivatives of 𝑓 at 

𝑃, the derivative in the opposite direction of ∇𝑓 at 𝑃 has the smallest 

value. The value of this smallest directional derivative is − ∇𝑓  at 𝑃.



PROPERTIES OF THE GRADIENT

Example Let 𝑓 𝑥, 𝑦 = 𝑥2𝑒𝑦. Find the maximum value of a directional 
derivative at (−2,0), and find the unit vector in the direction in 
which the maximum value occurs.

∇𝑓 𝑥, 𝑦 = 𝑓𝑥 𝑥, 𝑦 i + 𝑓𝑦 𝑥, 𝑦 j = 2𝑥𝑒𝑦i + 𝑥2𝑒𝑦j

∇𝑓 −2,0 = −4i + 4j

So, the maximum value of the directional derivative is

∇𝑓 −2,0 = −4 2 + 42 = 4 2



PROPERTIES OF THE GRADIENT

Example Let 𝑓 𝑥, 𝑦 = 𝑥2𝑒𝑦. Find the maximum value of a directional 
derivative at (−2,0), and find the unit vector in the direction in 
which the maximum value occurs.

So, the maximum value of the directional derivative is

∇𝑓 −2,0 = −4 2 + 42 = 4 2

This maximum occurs in the direction of ∇𝑓 −2,0 .

The unit vector in this direction is
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EXTREMA

• A function 𝑓 of two variables is said to have 

a relative maximum at a point (𝑥0, 𝑦0) if 

there is a disk centered at (𝑥0, 𝑦0) such that 

𝑓(𝑥0, 𝑦0) ≥ 𝑓(𝑥, 𝑦) for all points (𝑥, 𝑦) that 

lie inside the disk.

• And 𝑓 is said to have an absolute maximum 

at (𝑥0, 𝑦0)  if 𝑓(𝑥0, 𝑦0) ≥ 𝑓(𝑥, 𝑦)  for all 

points (𝑥, 𝑦) in the domain of 𝑓.



EXTREMA

• A function 𝑓 of two variables is said to have 

a relative minimum at a point (𝑥0, 𝑦0) if 

there is a disk centered at (𝑥0, 𝑦0) such that 

𝑓 𝑥0, 𝑦0 ≤ 𝑓(𝑥, 𝑦) for all points (𝑥, 𝑦) that 

lie inside the disk.

• And 𝑓 is said to have an absolute minimum 

at (𝑥0, 𝑦0)  if 𝑓 𝑥0, 𝑦0 ≤ 𝑓(𝑥, 𝑦)  for all 

points (𝑥, 𝑦) in the domain of 𝑓.



BOUNDED SETS

A set of points in 2 −space is called 

bounded if the entire set can be 

contained within some rectangle.

And is called unbounded if there is 

no rectangle that contains all the 

points of the set.



THE EXTREME-VALUE THEOREM

If 𝑓(𝑥, 𝑦) is continuous on a closed and bounded set 𝑅, then 𝑓 has 

both an absolute maximum and an absolute minimum on 𝑅.

NOTE If any of the conditions in the Extreme-Value Theorem fail to 

hold, then there is no guarantee that an absolute maximum 

or absolute minimum exists on the region 𝑅.



FINDING RELATIVE EXTREMA

NOTE If 𝑓 is differentiable and

∇𝑓 𝑥0, 𝑦0 = 𝑓𝑥 𝑥0, 𝑦0 i + 𝑓𝑦 𝑥0, 𝑦0 j = 0i + 0j = 0

then every directional derivative at 𝑥0, 𝑦0  must be 0.



FINDING RELATIVE EXTREMA



THE SECOND PARTIALS TEST

NOTE 𝐷 =
𝑓𝑥𝑥 𝑥0, 𝑦0 𝑓𝑥𝑦 𝑥0, 𝑦0

𝑓𝑥𝑦 𝑥0, 𝑦0 𝑓𝑦𝑦 𝑥0, 𝑦0



THE SECOND PARTIALS TEST

Example 𝑓 𝑥, 𝑦 = 2𝑥2 + 𝑦2 + 8𝑥 − 6𝑦 + 20.

𝑓𝑥 𝑥, 𝑦 = 4𝑥 + 8

𝑓𝑦 𝑥, 𝑦 = 2𝑦 − 6

The critical point is −2,3 .

𝑓 has a relative minimum at −2,3  by the second partial test, 
and the value of this relative minimum is 𝑓 −2,3 = 3.

𝑓𝑥𝑥 𝑥, 𝑦 = 4

𝑓𝑦𝑦 𝑥, 𝑦 = 2

𝑓𝑥𝑦 𝑥, 𝑦 = 0

𝑓𝑥𝑥 −2,3 = 4

𝑓𝑦𝑦 −2,3 = 2

𝑓𝑥𝑦 −2,3 = 0

𝐷 = 𝑓𝑥𝑥 −2,3 𝑓𝑦𝑦 −2,3 − 𝑓𝑥𝑦
2 −2,3 = 4 2 − 0 2 = 8 > 0

> 0



THE SECOND PARTIALS TEST

Example 𝑓 𝑥, 𝑦 = 𝑦2 − 𝑥2.

𝑓𝑥 𝑥, 𝑦 = −2𝑥

𝑓𝑦 𝑥, 𝑦 = 2𝑦

The critical point is 0,0 .

𝑓𝑥𝑥 0,0 = −2

𝑓𝑦𝑦 0,0 = 2

𝑓𝑥𝑦 0,0 = 0

𝐷 = 𝑓𝑥𝑥 0,0 𝑓𝑦𝑦 0,0 − 𝑓𝑥𝑦
2 0,0 = −2 2 − 0 2 = −4 < 0

𝑓 has a saddle point at 0,0  by the second partial test.



THE SECOND PARTIALS TEST

Example Locate all relative extrema and saddle points of

𝑓 𝑥, 𝑦 = 4𝑥𝑦 − 𝑥4 − 𝑦4

𝑓𝑥 𝑥, 𝑦 = 4𝑦 − 4𝑥3

𝑓𝑦 𝑥, 𝑦 = 4𝑥 − 4𝑦3

= 0

= 0

𝑦 = 𝑥3

𝑥 = 𝑦3

𝑥 = 𝑥3 3 = 𝑥9

𝑥9 − 𝑥 = 0 𝑥 𝑥8 − 1 = 0

𝑥

−1

0

1

𝑦 = 𝑥3

−1

0

1

𝑓𝑥𝑥 𝑥, 𝑦 = −12𝑥2

𝑓𝑦𝑦 𝑥, 𝑦 = −12𝑦2

𝑓𝑥𝑦 𝑥, 𝑦 = 4



THE SECOND PARTIALS TEST

Example Locate all relative extrema and saddle points of

𝑓 𝑥, 𝑦 = 4𝑥𝑦 − 𝑥4 − 𝑦4
𝑥

−1

0

1

𝑦 = 𝑥3

−1

0

1

𝑓𝑥𝑥 𝑥, 𝑦 = −12𝑥2

𝑓𝑦𝑦 𝑥, 𝑦 = −12𝑦2

𝑓𝑥𝑦 𝑥, 𝑦 = 4

Critical Point 𝑓𝑥𝑥 𝑓𝑦𝑦 𝑓𝑥𝑦 𝐷 = 𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓𝑥𝑦
2

Type

−1, −1
0,0
1,1

−12
0

−12

−12
0

−12

4
4
4

128
−16
128

Local Max

Saddle

Local Max
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EXTREMUM PROBLEMS WITH CONSTRAINTS

• In this section we will study a powerful new method for maximizing or 

minimizing a function subject to constraints on the variables.

• This method will help us to solve certain optimization problems that are 

difficult or impossible to solve using the methods studied in the last 

section.

• We wish to:

Find extrema of the function 𝑧 = 𝑓 𝑥, 𝑦  subject to a constraint given 

by 𝑔 𝑥, 𝑦 = 𝑐.



EXTREMUM PROBLEMS WITH CONSTRAINTS

The scalar 𝜆 is called a Lagrange multiplier.NOTE



EXTREMUM PROBLEMS WITH CONSTRAINTS



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example At what point(s) on the line 𝑥 + 𝑦 = 3 does
𝑓 𝑥, 𝑦 = 9 − 𝑥2 − 𝑦2

have an absolute maximum, and what is that maximum?

𝑔 𝑥, 𝑦 = 𝑥 + 𝑦 − 3

𝑓𝑥 𝑥, 𝑦 = 𝜆𝑔𝑥 𝑥, 𝑦

𝑓𝑦 𝑥, 𝑦 = 𝜆𝑔𝑦 𝑥, 𝑦

𝑔 𝑥, 𝑦 = 0

−2𝑥 = 𝜆

−2𝑦 = 𝜆

𝑥 + 𝑦 − 3 = 0

−2𝑥 = −2𝑦



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example At what point(s) on the line 𝑥 + 𝑦 = 3 does
𝑓 𝑥, 𝑦 = 9 − 𝑥2 − 𝑦2

have an absolute maximum, and what is that maximum?

𝑔 𝑥, 𝑦 = 𝑥 + 𝑦 − 3

𝑓𝑥 𝑥, 𝑦 = 𝜆𝑔𝑥 𝑥, 𝑦

𝑓𝑦 𝑥, 𝑦 = 𝜆𝑔𝑦 𝑥, 𝑦

𝑔 𝑥, 𝑦 = 0

−2𝑥 = 𝜆

−2𝑦 = 𝜆

𝑥 + 𝑦 − 3 = 0

𝑥 = 𝑦

2𝑥 − 3 = 0

𝑥 =
3

2
𝑦 =

3

2



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example At what point(s) on the line 𝑥 + 𝑦 = 3 does
𝑓 𝑥, 𝑦 = 9 − 𝑥2 − 𝑦2

have an absolute maximum, and what is that maximum?

𝑥 =
3

2
𝑦 =

3

2

• Subject to the constraint 𝑥 + 𝑦 = 3, the function 𝑓 has 

absolute maximum at
3

2
,

3

2
.

• The value of the absolute maximum is 𝑓
3

2
,

3

2
=

9

2
.



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Use Lagrange multipliers to find the maximum and minimum 
values of

𝑓 𝑥, 𝑦 = 𝑥 − 3𝑦 − 1
subject to the constraint 𝑥2 + 3𝑦2 = 16.

𝑔 𝑥, 𝑦 = 𝑥2 + 3𝑦2 − 16𝑓𝑥 𝑥, 𝑦 = 𝜆𝑔𝑥 𝑥, 𝑦

𝑓𝑦 𝑥, 𝑦 = 𝜆𝑔𝑦 𝑥, 𝑦

𝑔 𝑥, 𝑦 = 0

1 = 2𝜆𝑥

−3 = 6𝜆𝑦

𝑥2 + 3𝑦2 − 16 = 0



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Use Lagrange multipliers to find the maximum and minimum 
values of

𝑓 𝑥, 𝑦 = 𝑥 − 3𝑦 − 1
subject to the constraint 𝑥2 + 3𝑦2 = 16.

1 = 2𝜆𝑥

−3 = 6𝜆𝑦

𝑥2 + 3𝑦2 − 16 = 0

1

−3
=

𝑥

3𝑦

4𝑥2 − 16 = 0

𝑥 = 2

𝑥 = −2−𝑥 = 𝑦

÷

𝑦 = −2

𝑦 = 2

𝑓 2, −2 = 7

𝑓 −2,2 = −9

MAX

MIN



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find three positive numbers whose sum is 48 and such that their 
product is as large as possible.

Let the three numbers 𝑥, 𝑦 and 𝑧.

Constraint: 𝑥 + 𝑦 + 𝑧 = 48

Function: 𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦𝑧

Find the maximum value of 𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦𝑧 subject to the 
constraint 𝑥 + 𝑦 + 𝑧 = 48.



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find the maximum value of 𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦𝑧 subject to the 
constraint 𝑥 + 𝑦 + 𝑧 = 48.

𝑔 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 + 𝑧 − 48

𝑓𝑥 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑥 𝑥, 𝑦, 𝑧

𝑓𝑦 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑦 𝑥, 𝑦, 𝑧

𝑔 𝑥, 𝑦, 𝑧 = 0

𝑓𝑧 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑧 𝑥, 𝑦, 𝑧

𝑦𝑧 = 𝜆

𝑥𝑧 = 𝜆

𝑥 + 𝑦 + 𝑧 − 48 = 0

𝑥𝑦 = 𝜆

𝑦

𝑥
= 1



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find the maximum value of 𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦𝑧 subject to the 
constraint 𝑥 + 𝑦 + 𝑧 = 48.

𝑔 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 + 𝑧 − 48

𝑓𝑥 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑥 𝑥, 𝑦, 𝑧

𝑓𝑦 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑦 𝑥, 𝑦, 𝑧

𝑔 𝑥, 𝑦, 𝑧 = 0

𝑓𝑧 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑧 𝑥, 𝑦, 𝑧

𝑦𝑧 = 𝜆

𝑥𝑧 = 𝜆

𝑥 + 𝑦 + 𝑧 − 48 = 0

𝑥𝑦 = 𝜆

𝑦 = 𝑥



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find the maximum value of 𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦𝑧 subject to the 
constraint 𝑥 + 𝑦 + 𝑧 = 48.

𝑔 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 + 𝑧 − 48

𝑓𝑥 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑥 𝑥, 𝑦, 𝑧

𝑓𝑦 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑦 𝑥, 𝑦, 𝑧

𝑔 𝑥, 𝑦, 𝑧 = 0

𝑓𝑧 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑧 𝑥, 𝑦, 𝑧

𝑦𝑧 = 𝜆

𝑥𝑧 = 𝜆

𝑥 + 𝑦 + 𝑧 − 48 = 0

𝑥𝑦 = 𝜆

𝑦 = 𝑥
𝑧

𝑦
= 1



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find the maximum value of 𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦𝑧 subject to the 
constraint 𝑥 + 𝑦 + 𝑧 = 48.

𝑔 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 + 𝑧 − 48

𝑓𝑥 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑥 𝑥, 𝑦, 𝑧

𝑓𝑦 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑦 𝑥, 𝑦, 𝑧

𝑔 𝑥, 𝑦, 𝑧 = 0

𝑓𝑧 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑧 𝑥, 𝑦, 𝑧

𝑦𝑧 = 𝜆

𝑥𝑧 = 𝜆

𝑥 + 𝑦 + 𝑧 − 48 = 0

𝑥𝑦 = 𝜆

𝑦 = 𝑥

𝑦 = 𝑧



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find the maximum value of 𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦𝑧 subject to the 
constraint 𝑥 + 𝑦 + 𝑧 = 48.

𝑔 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 + 𝑧 − 48

𝑓𝑥 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑥 𝑥, 𝑦, 𝑧

𝑓𝑦 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑦 𝑥, 𝑦, 𝑧

𝑔 𝑥, 𝑦, 𝑧 = 0

𝑓𝑧 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑧 𝑥, 𝑦, 𝑧

𝑦𝑧 = 𝜆

𝑥𝑧 = 𝜆

𝑥 + 𝑦 + 𝑧 − 48 = 0

𝑥𝑦 = 𝜆

𝑦 = 𝑥

𝑦 = 𝑧
𝑥 = 𝑦 = 𝑧

3𝑥 − 48 = 0 𝑥 = 16 𝑦 = 16 𝑧 = 16

𝑓 16,16,16 = 163 = 4096
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