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Probability Sample Spaces and Events

Definition 1 (SAMPLE SPACE)
The set of all possible outcomes of an experiment is called the
sample space and it is usually denoted by the letter S or Ω. Each
outcome in a sample space is called an element of the sample space,
or simply a sample point.

Definition 2 (EVENT)
An event is a subset of a sample space.
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Probability Sample Spaces and Events

Example 1 (Flipping 2 Coins)
The sample space for the possible outcomes of two flips of a coin
may be written

S =
{
HH ,HT ,TH ,TT

}
Getting different flips is an event of this experiment, and we write
A =

{
HT ,TH

}
.

Note: The sample space S in the previous example contained a finite
number of elements; but if a coin is flipped until a head appears for
the first time, we obtain the sample space with unending elements.

S =
{
H ,TH ,TTH ,TTTH ,TTTTH , · · ·

}
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Probability Sample Spaces and Events

Example 2 (Rolling 2 Dice)
The sample space that might be appropriate for an experiment in
which we roll a pair of dice, one red and one green, where the
elements are the totals of the numbers turned up by the two dice is
S =

{
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

}

The event B =
{
3, 6, 9, 12

}
describes the number in S that is

divisible by 3.
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Probability Sample Spaces and Events

Exercise 1
(1) Three dice are tossed, one red, one blue, and one green. What

outcomes make up the event A that the sum of the three faces
showing equals 5?

(2) An urn contains six chips numbered 1 through 6. Three are
drawn out. What outcomes are in the event “Second smallest
chip is a 3”? Assume that the order of the chips is irrelevant.
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Probability Sample Spaces and Events

Unions, Intersections, and Complements
* In many problems of probability we are interested in events that
are actually combinations of two or more events, formed by
taking unions, intersections, and complements.

* Sample spaces and events, particularly relationships among
events, are often depicted by means of Venn diagrams, in which
the sample space is represented by a rectangle, while events are
represented by regions within the rectangle, usually by circles or
parts of circles.
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Probability Sample Spaces and Events

Definition 3
Let A and B be any two events defined over the same sample space
S. Then
(1) The union of A and B, written A ∪ B, is the subset of S that

contains all the elements that are either in A, in B, or in both.
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Probability Sample Spaces and Events

(2) The intersection of A and B, written A ∩ B, is the subset of S
that contains all the elements that are in both A and B.

(3) The complement of A, written Ac , is the subset of S that
contains all the elements of S that are not in A.
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Probability Sample Spaces and Events

Example 3
Let A be the set of x ’s for which x2 + 2x = 8; let B be the set for
which x2 + x = 6. Find A ∩ B and A ∪ B.

Solution: Since the first equation factors into (x + 4)(x − 2) = 0, its
solution set is A =

{
− 4, 2

}
. Similarly, the second equation can be

written (x + 3)(x − 2) = 0, making B =
{
− 3, 2

}
. Therefore,

A ∩ B =
{
2
}
and A ∪ B =

{
− 4,−3, 2

}
.
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Probability Sample Spaces and Events

Definition 4 (MUTUALLY EXCLUSIVE EVENTS)
Two events A and B having no elements in common are said to be
mutually exclusive – that is A ∩ B = Φ where Φ is the empty set.

Example 4
In a single throw of two dice, define A to be the event that the two
faces showing an odd sum. Let B be the event that the two faces
themselves are odd. Then clearly A and B are mutually exclusive
since the sum of two odd numbers necessarily being even.
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Probability Sample Spaces and Events

Note: If A is subset of B, in symbols A ⊆ B, then A ∪ B = B and
A ∩ B = A.

Example 5
Suppose the events A1,A2, · · · ,Ak are telescoping intervals of real
numbers such that Ai = [0, 1/i); i = 1, 2, · · · , k . Then

A1 ∩ A2 · · · ∩ Ak = [0, 1) ∩ [0, 1/2) ∩ · · · ∩ [0, 1/k) = [0, 1/k)
A1 ∪ A2 · · · ∪ Ak = [0, 1) ∪ [0, 1/2) ∪ · · · ∪ [0, 1/k) = [0, 1)
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Probability Sample Spaces and Events

The Use of Venn Diagrams

Example 6
When two events A and B are defined on a sample space, we will
frequently need to consider
(1) the event that exactly one (of the two) occurs.

The shaded area in the figure represents the event E that either
A or B, but not both, occurs (that is, exactly one occurs).

Note: The event that only A occurs is A ∩ Bc , and the event
that only B occurs is B ∩ Ac .
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Probability Sample Spaces and Events

(2) the event that at most one (of the two) occurs.
The shaded area in the figure represents the event F that at
most one of the two events occurs.

Note: F = (A ∩ B)c = Ac ∪ Bc (De Morgan Laws).
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Probability Sample Spaces and Events

Example 7
During orientation week, the latest Spiderman movie was shown
twice at State University. Among the entering class of 6000
freshmen, 850 went to see it the first time, 690 the second time,
while 4700 failed to see it either time. How many saw it twice?

Solution: Since 6000 = (850− x) + x + (690− x) + 4700, then
x = 240.

850− x 690− x

4700

A B

x
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Probability Sample Spaces and Events

Exercise 2
(1) Use Venn diagrams to verify:

* Associative Laws:
(a) A ∪ (B ∪ C) = (A ∪ B) ∪ C.
(b) A ∩ (B ∩ C) = (A ∩ B) ∩ C.

* Distributive Laws:
(a) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
(b) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

* De Morgan Laws:
(a) (A ∪ B)c = Ac ∩ Bc .
(b) (A ∩ B)c = Ac ∪ Bc .

(2) For two events A and B defined on a sample space S,
N(A ∩ Bc) = 15, N(Ac ∩ B) = 50, and N(A ∩ B) = 2. Given
that N(S) = 120, how many outcomes belong to neither A nor
B?
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Probability The Probability of an Event
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Probability The Probability of an Event

If A is any event defined on a sample space S, the symbol P(A) will
denote the probability of A, and we will refer to P : A→

[
0, 1

]
as the

probability function with the following axioms:
(1) Let A be any event defined over S. Then P(A) ≥ 0.
(2) P(S) = 1.
(3) If A1,A2,A3, · · · is a finite or infinite sequence of mutually

exclusive events of S,
(
Ai ∩ Aj = Φ for each i 6= j

)
, then

P (A1 ∪ A2 ∪ A3 ∪ · · · ) = P (A1) + P (A2) + P (A3) + · · ·
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Probability The Probability of an Event

Example 8
An experiment has four possible outcomes, A, B, C , and D, that are
mutually exclusive. Explain why the following assignments of
probabilities are not permissible:
(1) P(A) = 0.12, P(B) = 0.63, P(C) = 0.45, P(D) = −0.20;
(2) P(A) = 9/120, P(B) = 45/120, P(C) = 27/120, P(D) = 46/120

Solution:
(1) P(D) = −0.20 violates axiom 1;
(2) P(S) = P(A ∪ B ∪ C ∪ D) = P(A) + P(B) + P(C) + P(D) =

127/120 6= 1, and this violates axiom 2.
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Probability The Probability of an Event

Theorem 1
If A is an event in a discrete sample space S, then P(A) equals the
sum of the probabilities of the individual outcomes comprising A.

Proof.
Let O1,O2,O3, · · · , be the finite or infinite sequence of outcomes
that comprise the event A. Thus,

A = O1 ∪ O2 ∪ O3 ∪ · · ·

and since the individual outcomes, the O’s, are mutually exclusive,
the third axiom of probability yields

P(A) = P (O1) + P (O2) + P (O3) + · · ·

Feras Awad (Philadelphia University) Probability Theory May 15, 2019 24 / 247



Probability The Probability of an Event

Example 9
If we twice flip a balanced coin, what is the probability of getting at
least one head?
Solution: Letting A denote the event that we will get at least one
head. Since S =

{
HH ,HT ,TH ,TT

}
, we get A =

{
HH ,HT ,TH

}
,

and P(A) = P(HH) + P(HT ) + P(TH) = 1/4 + 1/4 + 1/4 = 3/4.

Exercise 3
A die is loaded in such a way that each odd number is twice as likely
to occur as each even number. Find P(G), where G is the event that
a number greater than 3 occurs on a single roll of the die.
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Probability The Probability of an Event

Theorem 2
If an experiment can result in any one of N different equally likely
outcomes, and if n of these outcomes together constitute event A,
then the probability of event A is P(A) = n

N .

Proof.
Let O1,O2, · · · ,ON represent the individual outcomes in S, each with
probability 1/N. If A is the union of n of these mutually exclusive
outcomes, and it does not matter which ones, then

P(A) = P (O1 ∪ O2 ∪ · · · ∪ On)

= P (O1) + P (O2) + · · ·+ P (On) = 1
N + 1

N + · · ·+ 1
N︸ ︷︷ ︸

n−terms

= n
N
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Probability The Probability of an Event

Theorem 3
If A and Ac are complementary events in a sample space S, then
P (Ac) = 1− P(A).

Proof.
Since A and Ac are mutually exclusive, and S = A ∪ Ac , then

1 = P(S)
= P (A ∪ Ac)
= P (A) + P (Ac)

P (Ac) = 1− P (A)
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Probability The Probability of an Event

Theorem 4
P (Φ) = 0 for any sample space S.

Proof.
Since S and Φ are mutually exclusive and S ∪ Φ = S, it follows that

P(S) = P(S ∪ Φ)
= P(S) + P(Φ)

and, hence, that P (Φ) = 0.
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Probability The Probability of an Event

Theorem 5
If A and B are events in a sample space S and A ⊆ B, then
P(A) ≤ P(B).

Proof.
Since A ⊆ B, we can write B = A ∪ (Ac ∩ B). Then, since A and
Ac ∩ B are mutually exclusive, we get:
P(B) = P(A) + P (Ac ∩ B) ≥ P(A).

Theorem 6
For any event A, 0 ≤ P(A) ≤ 1.

Proof.
Since Φ ⊆ A ⊆ S for any event A in S, then P(Φ) ≤ P(A) ≤ P(S)
which leads to 0 ≤ P(A) ≤ 1.
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Probability The Probability of an Event

Theorem 7
If A and B are any two events in a sample space S, then
P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

Proof:
Assigning the probabilities a, b, and c to the mutually exclusive
events A ∩ B, A ∩ Bc , and Ac ∩ B as in the Venn diagram below, we
find that

P(A ∪ B) = a + b + c
= (a + b) + (a + c)− a
= P(A) + P(B)− P(A ∩ B)
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Probability The Probability of an Event

Example 10
Let A and B be two events defined on a sample space S such that
P(A) = 0.3, P(B) = 0.5, and P(A ∪ B) = 0.7. Find

(1) P(A ∩ B) (2) P(Ac ∪ Bc) (3) P(Ac ∩ B)

Solution:
(1) P(A ∩ B) = P(A) + P(B)− P(A ∪ B) = 0.3 + 0.5− 0.7 = 0.1.
(2) P(Ac ∪ Bc) = P ((A ∩ B)c) = 1− P(A ∩ B) = 1− 0.1 = 0.9.
(3) P(Ac ∩ B) = P(B)− P(A ∩ B) = 0.5− 0.1 = 0.4.
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Probability The Probability of an Event

Exercise 4
(1) Let A and B be any two events defined on S. Suppose that

P(A) = 0.4, P(B) = 0.5, and P(A ∩ B) = 0.1. What is the
probability that A or B but not both occur?

(2) Let A and B be two events defined on S. If the probability that
at least one of them occurs is 0.3 and the probability that A
occurs but B does not occur is 0.1, what is P(B)?

(3) An urn contains 24 chips, numbered 1 through 24. One is drawn
at random. Let A be the event that the number is divisible by 2
and let B be the event that the number is divisible by 3. Find
P(A ∪ B).
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Probability The Probability of an Event

(4) Three events A, B, and C are defined on a sample space, S.
Given that P(A) = 0.2, P(B) = 0.1, and P(C) = 0.3, what is
the smallest possible value for P ((A ∪ B ∪ C)c)?

(5) Two dice are tossed. Assume that each possible outcome has a
1/36 probability. Let A be the event that the sum of the faces
showing is 6, and let B be the event that the face showing on
one die is twice the face showing on the other. Calculate
P (A ∩ Bc).
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Probability Combinatorial Probability
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Probability Combinatorial Probability

The mathematical methods of counting are formally known as
combinatorial methods.

Theorem 8 (THE MULTIPLICATION RULE)
If an operation consists of k steps, of which the first can be done in
n1 ways, for each of these the second step can be done in n2 ways,
for each of the first two the third step can be done in n3 ways, and so
forth, then the whole operation can be done in
n1 × n2 × n3 × · · · × nk ways.

Example 11
In how many different ways can one answer all the questions of a
true-false test consisting of 20 questions?

Solution: There are 2× 2× · · · × 2 = 220 = 1048576 different ways.
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Probability Combinatorial Probability

Example 12
The combination lock on a briefcase has two dials, each marked off
with sixteen notches. To open the case, a person first turns the left
dial in a certain direction for two revolutions and then stops on a
particular mark. The right dial is set in a similar fashion, after having
been turned in a certain direction for two revolutions. How many
different settings are possible?
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Probability Combinatorial Probability

Solution: Opening the briefcase corresponds to the four-step
sequence (A1,A2,A3,A4) detailed in the table. Applying the
multiplication rule, we see that one 2× 16× 2× 16 = 1024 different
settings are possible.
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Probability Combinatorial Probability

Example 13
How many different 7−place license plates are possible if the first 3
places are to be occupied by letters and the final 4 by numbers if
repetition among letters or numbers were prohibited?

Solution: There would be 26× 25× 24× 10× 9× 8× 7 =
78624000 possible license plates.

Exercise 5
How many integers between 100 and 999 have distinct digits? How
many of those are odd numbers?
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Probability Combinatorial Probability

Definition 5 (PERMUTATIONS)
A permutation is a distinct arrangement of n different elements of a
set.

Example 14
How many permutations are there of the letters a, b, and c?

Solution: The possible arrangements are abc , acb, bac , bca, cab,
and cba, so the number of distinct permutations is 6 = 3!.

Theorem 9
The number of permutations of n distinct objects is n!.

Feras Awad (Philadelphia University) Probability Theory May 15, 2019 39 / 247



Probability Combinatorial Probability

Example 15
A class in probability theory consists of 6 men and 4 women. An
examination is given, and the students are ranked according to their
performance. Assume that no two students obtain the same score.
(1) How many different rankings are possible?

Solution: (6 + 4)! = 10! = 3628800.
(2) If the men are ranked just among themselves and the women just

among themselves, how many different rankings are possible?
Solution: 6!× 4! = 720× 24 = 17280.
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Probability Combinatorial Probability

Example 16
Saleem has 10 books that he is going to put on his bookshelf. Of
these, 4 are mathematics books, 3 are chemistry books, 2 are history
books, and 1 is a language book. Saleem wants to arrange his books
so that all the books dealing with the same subject are together on
the shelf. How many different arrangements are possible?

Solution: 4!︸︷︷︸
subjects

×

 4!︸︷︷︸
math.

× 3!︸︷︷︸
chem.

× 2!︸︷︷︸
his.

× 1!︸︷︷︸
lang.

 = 6912.
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Probability Combinatorial Probability

Note: We shall now determine the number of permutations of a set
of n objects when certain of the objects are indistinguishable from
each other.

Theorem 10
The number of ways to arrange n objects, n1 being of one kind, n2 of
a second kind, · · · , and nr of an rth kind, is

n!
n1! n2! · · · nr !

where n1 + n2 + · · ·+ nr = n.
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Probability Combinatorial Probability

Example 17
How many different letter arrangements can be formed from the
letters ABB?
Solution: We first note that there are 3! = 6 permutations of the
letters AB1B2.

AB1B2 AB2B1︸ ︷︷ ︸
ABB

B1AB2 B2AB1︸ ︷︷ ︸
BAB

B1B2A B2B1A︸ ︷︷ ︸
BBA

But, two of the three are identical, then the number of permutations
is 3!

2! 1! = 3.
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Probability Combinatorial Probability

Example 18
A deliveryman is currently at Point X and needs to stop at Point O
before driving through to Point Y as in the figure. How many
different routes can he take without ever going out of his way?
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Probability Combinatorial Probability

Solution: Notice that any admissible path from, say, X to O is an
ordered sequence of 11 “moves” - nine east (E) and two north (N).
Pictured in the figure, for example, is the particular X to O route
EENEEEENEEE . Similarly, any acceptable path from O to Y will
necessarily consist of five moves east and three moves north (the one
indicated is EENNENEE ). By the multiplication rule, the total
number of admissible routes from X to Y that pass through 0 is

11!
9! 2! ×

8!
5! 3! = 55× 56 = 3080.
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Probability Combinatorial Probability

Theorem 11
The number of permutations of n distinct objects taken r at a time is

Pn
r = n!

(n − r)! for r = 0, 1, 2, · · · , n.

Example 19
Four names are drawn from among the 24 members of a club for the
offices of president, vice president, treasurer, and secretary. In how
many different ways can this be done?

Solution: P24
4 = 24!

20! = 24× 23× 22× 21 = 255024.
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Probability Combinatorial Probability

Theorem 12
The number of permutations of n distinct objects arranged in a circle
is (n − 1)!.

Exercise 6
(1) (a) In how many ways can 3 boys and 3 girls sit in a row?

(b) In how many ways can 3 boys and 3 girls sit in a row if the boys
and the girls are each to sit together?

(c) In how many ways if only the boys must sit together?
(d) In how many ways if no two people of the same gender are

allowed to sit together?
(2) How many numbers greater than four million can be formed

from the digits 2, 3, 4, 4, 5, 5, 5?
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Probability Combinatorial Probability

(3) In how many ways can the word ABRACADABRA be formed in
the array pictured below? Assume that the word must begin with
the top A and progress diagonally downward to the bottom A.
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Probability Combinatorial Probability

Definition 6 (COMBINATIONS)
A combination is a selection of r objects taken from n distinct
objects without regard to the order of selection.

Note: Actually, “combination” means the same as “subset,” and
when we ask for the number of combinations of r objects selected
from a set of n distinct objects, we are simply asking for the total
number of subsets of r objects that can be selected from a set of n
distinct objects.

Theorem 13
The number of combinations of n distinct objects taken r at a time is

Cn
r =

(
n
r

)
= n!

r ! (n − r)! = Pn
r
r ! for r = 0, 1, 2, · · · , n
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Probability Combinatorial Probability

Example 20
In how many different ways can six tosses of a coin yield two heads
and four tails?

Solution: C 6
2 =

(
6
2

)
= 6!

2! 4! = 15 = C 6
4 .

Example 21
From a group of 5 women and 7 men, how many different committees
consisting of 2 women and 3 men can be formed? What if 2 of the
men are feuding and refuse to serve on the committee together?

Solution: There are C 5
2 × C 7

3 = 350 possible committees consisting
of 2 women and 3 men. Now, the number of groups that do not
contain both of the feuding men is

C 5
2 ×

[
C 2

0C 5
3 + C 2

1C 5
2

]
= 300.
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Probability Combinatorial Probability

Exercise 7
(1) How many straight lines can be drawn between five points (A,

B, C, D, and E), no three of which are collinear?
(2) Nine students, five men and four women, interview for four

summer internships sponsored by a city newspaper.
(a) In how many ways can the newspaper choose a set of four

interns?
(b) In how many ways can the newspaper choose a set of four

interns if it must include two men and two women in each set?
(c) How many sets of four can be picked such that not everyone in

a set is of the same gender?
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Probability Combinatorial Probability

(3) Consider a group of 20 people. If everyone shakes hands with
everyone else, how many handshakes take place?

(4) From a group of 8 women and 6 men, a committee consisting of
3 men and 3 women is to be formed. How many different
committees are possible if 1 man and 1 woman refuse to serve
together?

(5) A person has 8 friends, of whom 5 will be invited to a party.
How many choices if 2 of the friends will only attend together?
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Probability Combinatorial Probability

Note:
* In the previous slides, our concern focused on counting the
number of ways a given operation, or sequence of operations,
could be performed.

* Now we want to couple those enumeration results with the
notion of probability. Putting the two together makes a lot of
sense, since there are many combinatorial problems where an
enumeration, by itself, is not particularly relevant.

* In a combinatorial setting, making the transition from an
enumeration to a probability is easy. If there are n ways to
perform a certain operation and a total of m of those satisfy
some stated condition, call it A, then P(A) is defined to be the
ratio m/n. This assumes, of course, that all possible outcomes
are equally likely.
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Probability Combinatorial Probability

Example 22
An urn contains six chips, numbered 1 through 6. Two are chosen at
random and their numbers are added together. What is the
probability that the resulting sum is equal to 5?

Solution: C 2
1

C 6
2

= 2
15.

Example 23
An urn contains eight chips, numbered 1 through 8. A sample of
three is drawn without replacement. What is the probability that the
largest chip in the sample is a 5?

Solution: C 1
1 × C 4

2
C 8

3
= 3

28.
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Example 24
Suppose that n fair dice are rolled. What are the chances that all n
faces will be the same?

Solution: 6
6n = 61−n.

Example 25
A group of 6 men and 6 women is randomly divided into 2 groups of
size 6 each. What is the probability that both groups will have the
same number of men?

Solution: C 6
3 × C 6

3
C 12

6
= 100

231.

Feras Awad (Philadelphia University) Probability Theory May 15, 2019 55 / 247



Probability Combinatorial Probability

Example 26
What is the probability that
two drawn random numbers
between 0 and 1 have a
sum less than or equal to 1?

Solution: The shape
described by 0 ≤ x , y ≤ 1
and x + y ≤ 1 is a triangle
with three vertices (0, 0),
(0, 1), and (1, 0).

The required probability equals the area
of the triangle relative to the area of the
square, which is 0.5× 1× 1

1 = 0.5.
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Exercise 8
(1) Six dice are rolled one time. What is the probability that each of

the six faces appears?
(2) Group of children, 85 of them are boys. If I pick two children at

random, there’s a 50% chance both are boys. How many girls
are there in the group?

(3) In a drawer 5 red, 8 blue, and 5 green socks. Two drawn at
random. What is the probability of getting a matching pair?
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(4) Place the numbers 1, 2, · · · , 9 at random so that they fill a 3× 3
grid. What is the probability that each of the row sums and each
of the column sums is odd?

(5) A box contains 20 balls numbered 1, 2, · · · , 20. If 3 balls are
randomly taken from the box without replacement, what is the
probability that one of them is the average of the other two?

(6) If the number is selected at random from the set of all five-digit
numbers in which the sum of the digits is equal to 43, what is
the probability that the number will be divisible by 11?
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Probability Conditional Probability and Independent Events

Introduction: Consider a fair die being
tossed, with A defined as the event “6
appears.” Clearly, P(A) = 1/6. But
suppose that the die has already been
tossed by someone who refuses to tell us
whether or not A occurred but does
enlighten us to the extent of confirming
that B occurred, where B is the event
“Even number appears.” What are the
chances of A now? Here, common sense
can help us: There are three equally likely
even numbers making up the event B,
one of which satisfies the event A, so the
“updated” probability is 1/3.
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Definition 7 (CONDITIONAL PROBABILITY)
If A and B are any two events in a sample space S and P(B) 6= 0,
the conditional probability of A given B is

P(A|B) = P(A ∩ B)
P(B)

Theorem 14 (MULTIPLICATION RULE)
If A and B are any two events in a sample space S and P(B) 6= 0,
then P(A ∩ B) = P(A|B)P(B).
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Example 27
Ten cards numbered 1 through 10 are placed in a hat, mixed and
then one card is pulled at random. If the card is an even numbered
card, what is the probability that its number is divisible by 3?

Solution: Let A be the event “the card’s number is divisible by 3”
and B be the event “the card is an even numbered card.” Observe
that P(B) = 5

10 . Now the event A ∩ B is the event that the card’s
number is both even and divisible by 3, which happens only when the
number of the card is 6. Hence P(A ∩ B) = 1

10 . Then

P(A|B) =
1/10
5/10

= 1
5
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Example 28
Suppose that two fair dice are tossed. What is the probability that
the sum equals 10 given that it exceeds 8?

Solution: Let A be the sum equals 10, then

A =
{

(4, 6), (6, 4), (5, 5)
}

Also, let B be the sum exceeds 8, then

B =
{

(3, 6), (6, 3), (4, 5), (5, 4), (4, 6), (6, 4), (5, 5), (5, 6), (6, 5), (6, 6)
}

Hence, P(A|B) = 3
10.
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Example 29
An urn contains one red chip and one white chip. One chip is drawn
at random. If the chip selected is red, that chip together with two
additional red chips are put back into the urn. If a white chip is
drawn, the chip is returned to the urn. Then a second chip is drawn.
What is the probability that both selections are red?

Solution: Let R1 be the first chip is red, and R2 is the second chip is
red, then

P (R1 ∩ R2) = P (R2|R1) P (R1)

= 3
4 ×

1
2

= 3
8
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Example 30
Urn I contains two black balls and
four white balls; urn II, three black
and one white. A ball is drawn at
random from urn I and transferred
to urn II. Then a ball is drawn
from urn II. What is the
probability that the ball drawn
from urn II is black?
Solution:

P (B2) = P (B2|B1)P (B1) + P (B2|W1)P (W1)

= 4
5 ×

2
6 + 3

5 ×
4
6 = 2

3 .
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Exercise 9
(1) Find P(A ∩ B) if P(A) = 0.2, P(B) = 0.4, and

P(A|B) + P(B|A) = 0.75.
(2) If P(A|B) < P(A), show that P(B|A) < P(B).
(3) Let A and B be two events such that P ((A ∪ B)c) = 0.6 and

P(A ∩ B) = 0.1. Let E be the event that either A or B but not
both will occur. Find P(E |A ∪ B).

(4) A fair coin is tossed three times. What is the probability that at
least two heads will occur given that at most two heads have
occurred?

(5) Two fair dice are rolled. What is the probability that the number
on the first die was at least as large as 4 given that the sum of
the two dice was 8?
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(6) Urn I contains three red chips and one white chip. Urn II
contains two red chips and two white chips. One chip is drawn
from each urn and transferred to the other urn. Then a chip is
drawn from the first urn. What is the probability that the chip
ultimately drawn from urn I is red?

(7) Two events A and B are defined such that
* the probability that A occurs but B does not occur is 0.2,
* the probability that B occurs but A does not occur is 0.1, and
* the probability that neither occurs is 0.6.

What is P(A|B)?
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(8) Sarah throws a dart that lands within one of the 24 numbered
regions on the dartboard shown. What is the probability that the
number of the region her dart hits is even? Assume that the
probability of hitting on the dartboard is proportional to its area.
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Definition 8 (INDEPENDENCE)
Two events A and B are independent if and only if one of the
following holds:

P(A ∩ B) = P(A)× P(B)
P(A|B) = P(A)
P(B|A) = P(B).

Otherwise, the events are said to be dependent.

Definition 9 (INDEPENDENCE OF MORE THAN TWO
EVENTS)
Events A1,A2, · · · , and Ak are independent if and only if the
probability of the intersections of any 2, 3, · · · , or k of these events
equals the product of their respective probabilities.
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Example 31
The figure shows a Venn diagram with probabilities assigned to its
various regions. Show that

(1) P(A ∩ B ∩ C) =
P(A)× P(B)× P(C) does
not necessarily imply that A,
B, and C are all pairwise
independent.

(2) if A is independent of B and
A is independent of C , then
B is not necessarily
independent of C .
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Solution: As can seen from the diagram, P(A) = 0.60,
P(B) = 0.80, P(C) = 0.50, P(A ∩ B) = 0.48, P(A ∩ C) = 0.30,
P(B ∩ C) = 0.38, and P(A ∩ B ∩ C) = 0.24. So,
(1) P(A ∩ B ∩ C) = 0.24 = P(A)× P(B)× P(C), and

0.48 = P(A ∩ B) = P(A)× P(B) = 0.48 3

0.30 = P(A ∩ C) = P(A)× P(C) = 0.30 3

0.38 = P(B ∩ C) 6= P(B)× P(C) = 0.24 7

(2) It is clear from part (1).
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Example 32
Prove that if A and B are independent, then A and Bc are also
independent.

Proof:

P (A ∩ Bc) = P(A)− P(A ∩ B) = P(A)− P(A)× P(B)
= P(A)

[
1− P(B)

]
= P(A)× P (Bc)

Example 33
A coin is tossed and a die is rolled. Find the probability of tossing a
tail and then rolling a number greater than 2.

Solution: Let A be tossing a tail, and B be rolling a number greater
than 2, then P(A ∩ B) = P(A)× P(B) = 1

2 ×
4
6 = 1

3 .
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Exercise 10
(1) Show that if events A and B are independent, then events Ac

and Bc are independent.
(2) If events A, B, and C are independent, show that A and B ∩ C

are independent. Then show that A and B ∪ C are independent.
(3) A sharpshooter hits a target with probability 0.75. Assuming

independence, find the probabilities of getting
(a) a hit followed by two misses,
(b) two hits and a miss in any order.

(4) If two fair dice are rolled, what is the conditional probability that
the first one lands on 6 given that the sum of the dice is 8?
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(5) An urn contains 6 white and 9 black balls. If 4 balls are to be
randomly selected without replacement, what is the probability
that the first 2 selected are white and the last 2 black?

(6) Consider 3 urns. Urn A contains 2 white and 4 red balls, urn B
contains 8 white and 4 red balls, and urn C contains 1 white and
3 red balls. If 1 ball is selected from each urn, what is the
probability that the ball chosen from urn A was white given that
exactly 2 white balls were selected?

(7) Two men, A and B are shooting a target. The probability that A
hits the target is P(A) = 1

3 , and the probability that B shoots
the target is P(B) = 1

5 , one independently of the other. Find the
probability that
(a) A misses the target,
(b) both men hit the target,
(c) at least one of them hits the target,
(d) none of them hits the target.
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Probability Bayes’ Rule

Definition 10
For some positive integer k , let the sets B1,B2, · · · ,Bk be such that
* S = B1 ∪ B2 ∪ · · · ∪ Bk ,
* Bi ∩ Bj = Φ for i 6= j .

Then the collection of sets {B1,B2, · · · ,Bk} is said to be a partition
of S.

Note: If A is any subset of S and
{B1,B2, · · · ,Bk} is a partition of S, then
A can be decomposed as follows:
A = (A ∩ B1)∪ (A ∩ B2)∪ · · ·∪ (A ∩ Bk).

Feras Awad (Philadelphia University) Probability Theory May 15, 2019 76 / 247



Probability Bayes’ Rule

Theorem 15
Assume that {B1,B2, · · · ,Bk} is a partition of S such that
P (Bi) 6= 0, for i = 1, 2, · · · , k. Then for any event A:

P(A) =
k∑

i=1
P (A ∩ Bi) =

k∑
i=1

P (A|Bi)P (Bi)

Theorem 16 (Bayes’ Rule)
Assume that {B1,B2, · · · ,Bk} is a partition of S such that
P (Bi) 6= 0, for i = 1, 2, · · · , k. Then

P (Bj |A) = P (A|Bj)P (Bj)
k∑

i=1
P (A|Bi)P (Bi)
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Example 34
A student answers a multiple-choice examination question that offers
four possible answers. Suppose the probability that the student knows
the answer to the question is 0.8 and the probability that the student
will guess is 0.2. If the student correctly answers a question, what is
the probability that the student really knew the correct answer?

Solution: Let A be “the student correctly answers the question”, Bg
be “the correct answer is by guessing”, and Bs be “the correct answer
by sure knowledge”. Then

P (Bs |A) = P (A|Bs)P (Bs)
P (A|Bs)P (Bs) + P (A|Bg )P (Bg )

= (1)(0.8)
(1)(0.8) + (0.25)(0.2) = 16

17
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Example 35
A personnel director has two lists of applicants for jobs. List 1
contains the names of five women and two men, whereas list 2
contains the names of two women and six men. A name is randomly
selected from list 1 and added to list 2. A name is then randomly
selected from the augmented list 2. Given that the name selected is
that of a man, what is the probability that a woman’s name was
originally selected from list 1?

Solution: Let A be “the name selected from list 2 is a man”, Bw be
“the name selected from list 1 is a woman”, and Bm be “the name
selected from list 1 is a man”. Then

P (Bw |A) = P (A|Bw )P (Bw )
P (A|Bw )P (Bw ) + P (A|Bm)P (Bm)

=

(
6
9

) (
5
7

)
(

6
9

) (
5
7

)
+
(

7
9

) (
2
7

) = 15
22
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Exercise 11
(1) On rainy days, Saleem is late to work with probability 0.3; on

non-rainy days, he is late with probability 0.1. With probability
0.7, it will rain tomorrow.
(a) Find the probability that Saleem is early tomorrow.
(b) Given that Saleem was early, what is the conditional probability

that it rained?
(2) With probability 0.6, the present was hidden by mom; with

probability 0.4, it was hidden by dad. When mom hides the
present, she hides it upstairs 70% of the time and downstairs
30% of the time. Dad is equally likely to hide it upstairs or
downstairs.
(a) What is the probability that the present is upstairs?
(b) Given that it is downstairs, what is the probability it was hidden

by dad?
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(3) In a T-maze, a rat is given food if it turns left and an electric
shock if it turns right. On the first trial there is a 50− 50
chance that a rat will turn either way; then, if it receives food on
the first trial, the probability is 0.68 that it will turn left on the
next trial, and if it receives a shock on the first trial, the
probability is 0.84 that it will turn left on the next trial. What is
the probability that a rat will turn left on the second trial?

(4) Saleem takes a twenty-question multiple-choice exam where
each question has five possible answers. Some of the answers he
knows, while others he gets right just by making lucky guesses.
Suppose that the conditional probability of his knowing the
answer to a randomly selected question given that he got it right
is 0.92. How many of the twenty questions was he prepared for?
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(5) Two sections of a senior probability course are being taught.
From what she has heard about the two instructors listed, Sarah
estimates that her chances of passing the course are 0.85 if she
gets Professor X and 0.60 if she gets Professor Y. The section
into which she is put is determined by the registrar. Suppose
that her chances of being assigned to Professor X are four out of
ten. Fifteen weeks later we learn that Sarah did, indeed, pass
the course. What is the probability she was enrolled in Professor
X’s section?

(6) There are 3 coins in a box. One is a two-headed coin, another is
a fair coin, and the third is a biased coin that comes up heads
70% of the time. When one of the 3 coins is selected at random
and flipped, it shows heads. What is the probability that it was
the two-headed coin?
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Probability Distributions and Probability Densities Discrete Random Variables and Probability Distributions

Definition 11 (RANDOM VARIABLE)
If S is a sample space with a probability measure and X is a
real-valued function defined over the elements of S, then X is called
a random variable.

Example 36
If a balanced coin tossed twice. List the equally likely elements of the
sample space, and the corresponding values x of the random variable
X , the total number of heads.

Solution:
S HH HT TH TT

Prob. 1/4 1/4 1/4 1/4

X 2 1 1 0
Thus,
P
(
at least one head

)
= P(X ≥ 1) = P(X = 1) + P(X = 2) = 3

4.
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Definition 12 (DISCRETE RANDOM VARIABLES)
A random variable X is said to be discrete if it can assume only a
finite or countably infinite number of distinct values.

Note: Recall that a set of elements is countably infinite if the
elements in the set can be put into one-to-one correspondence with
the positive integers.
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Definition 13 (PROBABILITY DISTRIBUTION)
If X is a discrete random variable, the function given by
f (x) = P(X = x) for each x within the range of X is called the
probability distribution of X .

Note: The probability distribution for a discrete random variable X
can be represented by a formula, a table, or a graph.

Theorem 17
A function can serve as the probability distribution of a discrete
random variable X if and only if its values, f (x), satisfy the
conditions
(1) f (x) ≥ 0 for each value within its domain;
(2)

∑
x
f (x) = 1, where the summation extends over all the values

within its domain.
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Example 37
Find a formula for the probability distribution of the total number of
heads obtained in four tosses of a balanced coin.
Solution: Note that X = 0, 1, 2, 3, 4. Thus, the formula for the
probability distribution can be written as

f (x) = C 4
x

24 , for x = 0, 1, 2, 3, 4

X = x 0 1 2 3 4
P(X = x) 1/16 4/16 6/16 4/16 1/16
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The graph of the figure is called a bar chart, but it is also referred to
as a histogram.
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There are many problems in which it is of interest to know the
probability that the value of a random variable is less than or equal to
some real number x .

Definition 14 (DISTRIBUTION FUNCTION)
If X is a discrete random variable, the function given by

F (x) = P(X ≤ x) =
∑
t≤x

f (t) for −∞ < x <∞

where f (t) is the value of the probability distribution of X at t, is
called the distribution function, or the cumulative distribution of X .

Note: The distribution function is defined not only for the values
taken on by the given random variable, but for all real numbers.
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Theorem 18
The values F (x) of the distribution function of a discrete random
variable X satisfy the conditions
(1) F (−∞) = 0 and F (∞) = 1;
(2) if a < b, then F (a) ≤ F (b) for any real numbers a and b.

Example 38
Find the distribution function of the total number of heads obtained
in four tosses of a balanced coin.
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Solution: From example (37), we have

F (0) = f (0) = 1/16

F (1) = f (0) + f (1) = 5/16

F (2) = f (0) + f (1) + f (2) = 11/16

F (3) = f (0) + f (1) + f (2) + f (3) = 15/16

F (4) = f (0) + f (1) + f (2) + f (3) + f (4) = 1

Hence, the distribution function is given by

F (x) =



0 : x < 0
1/16 : 0 ≤ x < 1
5/16 : 1 ≤ x < 2
11/16 : 2 ≤ x < 3
15/16 : 3 ≤ x < 4
1 : x ≥ 4
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Theorem 19
If the range of a random variable X consists of the values
x1 < x2 < x3 < · · · < xn, then f (x1) = F (x1), and

f (xi) = F (xi)− F (xi−1) for i = 2, 3, · · · , n

Example 39
Find the probability distribution of the random variable X if its
distribution function is given by

F (x) =


0 : x < 0
0.25 : 0 ≤ x < 1
0.75 : 1 ≤ x < 2
1 : x ≥ 2
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Solution: Making use of theorem (19), the range of X is x1 = 0,
x2 = 1, and x3 = 2, and

f (0) = F (0) = 0.25
f (1) = F (1)− F (0) = 0.75− 0.25 = 0.5
f (2) = F (2)− F (1) = 1− 0.27 = 0.25

and comparison with the probabilities in the table in example (36)
reveals that the random variable with which we are concerned here is
the total number of heads appears if a balanced coin tossed twice.

X = x 0 1 2
P(X = x) 0.25 0.5 0.25
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Exercise 12
(1) For each of the following, determine k so that the function can

serve as the probability distribution of a random variable with
the given range:
(a) f (x) = x + k

25 for x = 1, 2, 3, 4, 5.
(b) f (x) = (1− k)kx for x = 0, 1, 2, · · · .

(2) Verify the following:
(a) P (X > xi) = 1− F (xi).
(b) P (X ≥ xi) = 1− F (xi−1).
(c) P (xi < X ≤ xj) = F (xj)− F (xi).
(d) P (xi ≤ X ≤ xj) = F (xj)− F (xi−1).
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(3) If X has the distribution function,

F (x) =



0 : x < −1
0.25 : −1 ≤ x < 1
0.50 : 1 ≤ x < 3
0.75 : 3 ≤ x < 5
1 : x ≥ 5

find:
(a) P(X ≤ 3), P(X = 3), P(X < 3),
(b) P(X ≥ 1),
(c) P(−0.4 < X ≤ 4),
(d) the probability distribution of X .
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A continuous random variable is a random variable where the data
can take infinitely many, uncountable values. For example, a random
variable measuring the time taken for something to be done is
continuous since there are an infinite number of possible times that
can be taken.

Definition 15 (PROBABILITY DENSITY FUNCTION)
A function with values f (x), defined over the set of all real numbers,
is called a probability density function of the continuous random
variable X if and only if

P(a ≤ X ≤ b) =
∫ b

a
f (x) dx

for any a, b ∈ R with a ≤ b.

Feras Awad (Philadelphia University) Probability Theory May 15, 2019 98 / 247



Probability Distributions and Probability Densities Continuous Random Variables and Probability Density Functions

Note:
* Probability density functions are also referred to, more briefly, as
probability densities, density functions, densities, or p.d.f.’s.

* Note that f (c), the value of the probability density of X at c ,
does not give P(X = c) as in the discrete case. In connection
with continuous random variables, probabilities are always
associated with intervals and P(X = c) = 0 for any c ∈ R.

P(X = c) = P(c ≤ X ≤ c)

=
c∫

c

f (x) dx = 0
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Theorem 20
If X is a continuous random variable and a, b ∈ R with a ≤ b, then

P(a ≤ X ≤ b) = P(a < X ≤ b)
= P(a ≤ X < b) = P(a < X < b)

Theorem 21
A function f (x) can serve as a probability density of a continuous
random variable X if its values satisfy the conditions
(1) f (x) ≥ 0 for −∞ < x <∞;

(2)
∞∫
−∞

f (x) dx = 1.
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Example 40

Given f (x) =

cx2 : 0 ≤ x ≤ 2
0 : elsewhere

(1) Find the value of c for which f (x) is a valid probability density
function.

(2) Evaluate P(1 ≤ X < 2).

Solution:
(1) We require a value for c such that

∫ ∞
−∞

cx2 dx = 1→
∫ 2

0
cx2 dx = 1→ cx3

3

]2

0
= 1→ c = 3

8

(2) P(1 ≤ X < 2) =
∫ 2

1

3
8x

2 dx = 7
8.
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Definition 16 (DISTRIBUTION FUNCTION)
If X is a continuous random variable and the value of its probability
density at t is f (t), then the function given by

F (x) = P(X ≤ x) =
∫ x

−∞
f (t) dt for −∞ < x <∞

is called the distribution function or the cumulative distribution
function of X .
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Theorem 22
If f (x) and F (x) are the values of the probability density and the
distribution function of X at x, then P(a ≤ X ≤ b) = F (b)− F (a)
for any constants a, b ∈ R with a ≤ b, and

f (x) = dF (x)
dx ; where the derivative exists.

Example 41
Find the distribution function of the random variable X whose
probability density is given by

f (x) =


x : 0 < x < 1
2− x : 1 ≤ x < 2
0 : elsewhere
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Solution:

F (x) =



∫ x

−∞
0 dt : x ≤ 0

0 +
∫ x

0
t dt : 0 < x < 1

1
2 +

∫ x

1
(2− t) dt : 1 ≤ x < 2

1 +
∫ ∞

2
0 dt : x ≥ 2

=



0 : x ≤ 0
x2

2 : 0 < x < 1

−x2

2 + 2x − 1 : 1 ≤ x < 2
1 : x ≥ 2
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Example 42
Find a probability density function for the random variable whose
distribution function is given by

F (x) =


0 : x ≤ 0
x : 0 < x < 1
1 : x ≥ 1

Solution:

f (x) = dF (x)
dx =


0 : x < 0
1 : 0 < x < 1
0 : x > 1

=

1 : 0 < x < 1
0 : elsewhere
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Exercise 13
(1) The p.d.f. of the random variable X is given by

f (x) =


k√
x : 0 < x < 4

0 : elsewhere

Find:
(a) the value of k;
(b) the distribution function of the random variable X;
(c) P

(
X < 1

4

)
and P(X > 1).
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(2) Find the distribution function of the random variable X whose
probability density is given by

f (x) =



x
2 : 0 < x ≤ 1

1
2 : 1 < x ≤ 2

3− x
2 : 2 < x < 3

0 : elsewhere
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(3) The distribution function of the random variable Y is given by

F (y) =


0 : y < −1
y + 1
2 : −1 ≤ y ≤ 1

1 : y ≥ 1

Find:
(a) P(Y = −1) and P

(
−1

2 ≤ Y ≤ 1
2

)
;

(b) the probability density of Y .
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In this section we shall be concerned first with the bivariate case,
that is, with situations where we are interested at the same time in a
pair of random variables defined over a joint sample space. Later, we
shall extend this discussion to the multivariate case, covering any
finite number of random variables.

Definition 17 (JOINT PROBABILITY DISTRIBUTION)
If X and Y are discrete random variables, the function given by
f (x , y) = P(X = x ,Y = y) for each pair of values (x , y) within the
range of X and Y is called the joint probability distribution of X and
Y .
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Theorem 23
A bivariate function can serve as the joint probability distribution of a
pair of discrete random variables X and Y if and only if its values,
f (x , y), satisfy the conditions
(1) f (x , y) ≥ 0 for each pair of values (x , y) within its domain;
(2) ∑

x

∑
y
f (x , y) = 1, where the double summation extends over all

possible pairs (x , y) within its domain.
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Example 43
Two cards are selected at random from a box containing 3 red, 2
blue, and 4 white cards. If X and Y are, respectively, the numbers of
red and blue cards included among the 2 cards drawn from the box,
find the probabilities associated with all possible pairs of values of X
and Y .
Solution: Since X = 0, 1, 2 and Y = 0, 1, 2, then the possible pairs
are (0, 0), (0, 1), (1, 0), (1, 1), (0, 2), and (2, 0). The probability
function f (x , y) associated with any pair of values (x , y) within the
range of the random variables X and Y is

f (x , y) = P(X = x ,Y = y) =
C 3

x C 2
y C 4

2−x−y

C 9
2

for x = 0, 1, 2, y = 0, 1, 2, and 0 ≤ x + y ≤ 2. We obtain the values
shown in the following table:
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x
0 1 2

0 1/6 1/3 1/12

y 1 2/9 1/6

2 1/36

Example 44
Determine the value of k for which the function given by

f (x , y) = kxy for x = 1, 2, 3; y = 1, 2, 3

can serve as a joint probability distribution.

Solution: Since ∑
x

∑
y
f (x , y) = 1, then

k + 2k + 3k + 2k + 4k + 6k + 3k + 6k + 9k = 1
36k = 1→ k = 1/36
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Definition 18 (JOINT DISTRIBUTION FUNCTION)
If X and Y are discrete random variables, the function given by

F (x , y) = P(X ≤ x ,Y ≤ y) =
∑
s≤x

∑
t≤y

f (x , y) for −∞ < x <∞
−∞ < y <∞

where f (s, t) is the value of the joint probability distribution of X
and Y at (s, t), is called the joint distribution function, or the joint
cumulative distribution of X and Y .

Feras Awad (Philadelphia University) Probability Theory May 15, 2019 114 / 247



Probability Distributions and Probability Densities Multivariate Distributions

Example 45
If the values of the joint probability distribution of X and Y are as
shown in the table

x
−1 0 1 3

−1 2/89 1/89 2/89 10/89

y 2 5/89 4/89 5/89 13/89

3 10/89 9/89 10/89 18/89

find:
(1) F (1, 1);
(2) P(X < 1,Y ≥ 2);
(3) P(X + Y > 2).
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Solution:
(1) F (1, 1) = P(X ≤ 1,Y ≤ 1) = f (−1,−1) + f (0,−1) + f (1,−1)

= 2
89 + 1

89 + 2
89 = 5

89 .

(2) P(X < 1,Y ≥ 2) = f (−1, 2) + f (0, 2) + f (−1, 3) + f (0, 3)

= 5
89 + 4

89 + 10
89 + 9

89 = 28
89 .

(3) P(X + Y > 2) = f (0, 3) + f (1, 2) + f (1, 3) + f (3, 2) + f (3, 3)

= 9
89 + 5

89 + 10
89 + 13

89 + 18
89 = 55

89 .
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Exercise 14
If the values of the joint probability distribution of X and Y are as
shown in the table

x
0 1 2

0 1/12 1/6 1/24

y 1 1/4 1/4 1/40

2 1/8 1/20

3 1/120

find:

(1) P(X = 1,Y = 2);
(2) P(X = 0, 1 ≤ Y < 3);
(3) P(X + Y ≤ 1);

(4) P(X > Y );
(5) F (2, 0);
(6) F (4, 2.7).
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Definition 19 (JOINT PROBABILITY DENSITY
FUNCTION)
A bivariate function with values f (x , y) defined over the xy−plane is
called a joint probability density function of the continuous random
variables X and Y if and only if

P
[
(X ,Y ) ∈ A

]
=
∫∫
A

f (x , y) dx dy

for any region A in the xy−plane.
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Theorem 24
A bivariate function can serve as a joint probability density function
of a pair of continuous random variables X and Y if its values,
f (x , y), satisfy the conditions
(1) f (x , y) ≥ 0 for −∞ < x <∞ , −∞ < y <∞

(2)
∫ ∞
−∞

∫ ∞
−∞

f (x , y) dx dy = 1.
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Example 46
Given the joint probability density function

f (x , y) =


3
5x(y + x) : 0 < x < 1 , 0 < y < 2
0 : elsewhere

of two random variables X and Y , find P
[
(X ,Y ) ∈ A

]
, where A is

the region
{

(x , y) | 0 < x < 1/2, 1 < y < 2
}
.

Solution: P
[
(X ,Y ) ∈ A

]
= P (0 < X < 1/2, 1 < Y < 2)

=
∫ 2

1

∫ 1/2

0

3
5x(y + x) dx dy = 11

80
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Definition 20 (JOINT DISTRIBUTION FUNCTION)
If X and Y are continuous random variables, the function given by

F (x , y) = P
(
X ≤ x ,Y ≤ y

)
=
∫ x

−∞

∫ y

−∞
f (s, t) dsdt

where x , y ∈ R and f (s, t) is the joint probability density of X and Y
at (s, t), is called the joint distribution function of X and Y .

Note: Partial differentiation in Definition 20 leads to

f (x , y) = ∂2

∂x∂y F (x , y)
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Example 47
If the joint probability density of X and Y is given by

f (x , y) =


3
5x(y + x) : 0 < x < 1 , 0 < y < 2
0 : elsewhere

find the joint distribution function of these two random variables.

Solution:
* For x ≤ 0 or y ≤ 0, it follows immediately that F (x , y) = 0.
* For 0 < x < 1 and 0 < y < 2, we get

F (x , y) =
∫ x

0

∫ y

0

3
5s(t + s) dtds = 1

20x
2y(4x + 3y)
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* For x ≥ 1 and 0 < y < 2, we get

F (x , y) =
∫ 1

0

∫ y

0

3
5s(t + s) dtds = 1

20y(3y + 4)

* For 0 < x < 1 and y ≥ 2, we get

F (x , y) =
∫ x

0

∫ 2

0

3
5s(t + s) dtds = 1

5x
2(2x + 3)

* For x > 1 and y > 2, we get

F (x , y) =
∫ 1

0

∫ 2

0

3
5s(t + s) dtds = 1
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Since the joint distribution function is everywhere continuous, the
boundaries between any two of these regions can be included in either
one, and we can write

F (x , y) =



0 : for x ≤ 0 or y ≤ 0
1
20x

2y(4x + 3y) : for 0 < x < 1 and 0 < y < 2
1
20y(3y + 4) : for x ≥ 1 and 0 < y < 2
1
5x

2(2x + 3) : for 0 < x < 1 and y ≥ 2
1 : for x > 1 and y > 2
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Example 48
Find the joint probability density of the two random variables X and
Y whose joint distribution function is given by

F (x , y) =

(1− e−x ) (1− e−y ) : for x > 0 and y > 0
0 : elsewhere

Solution: Since
∂2

∂x∂y
[(
1− e−x

) (
1− e−y

)]
= ∂

∂x

[
∂

∂y
(
1− e−x

) (
1− e−y

)]

= ∂

∂x
[(
1− e−x

)
e−y

]
= e−xe−y = e−(x+y)

then f (x , y) =

e−(x+y) : for x > 0 and y > 0
0 : elsewhere
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Note: All the definitions of this section can be generalized to the
multivariate case, where there are n random variables.

Example 49
If the joint probability distribution of three discrete random variables
X , Y , and Z is given by

f (x , y , z) = (x + y)z
63 for x = 1, 2; y = 1, 2, 3; z = 1, 2

find P
(
X = 2,Y + Z ≤ 3

)
.

Solution: P
(
X = 2,Y + Z ≤ 3

)
= f (2, 1, 1) + f (2, 1, 2) + f (2, 2, 1)

= 3
63 + 6

63 + 4
63 = 13

63
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Example 50
If the trivariate probability density of X1,X2, and X3 is given by

f (x1, x2, x3) =

(x1 + x2) e−x3 : for 0 < x1 < 1, 0 < x2 < 1, x3 > 0
0 : elsewhere

find P
[

(X1,X2,X3) ∈ A
]
, where A is the region

{
(x1, x2, x3)

∣∣∣ 0 < x1 <
1
2 ,

1
2 < x2 < 1, x3 < 1

}
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Solution:

P
[

(X1,X2,X3) ∈ A
]

= P
(
0 < X1 <

1
2 ,

1
2 < X2 < 1,X3 < 1

)
=
∫ 1

0

∫ 1

1/2

∫ 1/2

0
(x1 + x2) e−x3 dx1dx2dx3

=
∫ 1

0

∫ 1

1/2

(1
8 + x2

2

)
e−x3 dx2dx3

=
∫ 1

0

1
4e
−x3 dx3

= 1
4
(
1− e−1

)
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Exercise 15
(1) Determine k so that

f (x , y) =

kx(x − y) : for 0 < x < 1, −x < y < x
0 : elsewhere

can serve as a joint probability density.
(2) If the joint probability density of X and Y is given by

f (x , y) =

2 : for x > 0, y > 0, x + y < 1
0 : elsewhere

find:

a) P (X ≤ 1/2, Y ≤ 1/2)
b) P (X + Y ≥ 2/3)

c) P (X ≥ 2Y )
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(3) Find the joint probability density of the two random variables X
and Y whose joint distribution function is given by

F (x , y) =

1− e−x − e−y + e−x−y : for x > 0, y > 0
0 : elsewhere

then use it to find P(X + Y > 3).
(4) If the joint probability density of X and Y is given by

f (x , y) =

3x : for 0 ≤ y ≤ x ≤ 1
0 : elsewhere

find:

a) F (1/2, 1/3), b) P
(

Y ≤ X
2

)
.

Feras Awad (Philadelphia University) Probability Theory May 15, 2019 131 / 247



Probability Distributions and Probability Densities Multivariate Distributions

(5) If the joint probability density of X and Y is given by

f (x , y) =

1 : for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 : elsewhere

a) What is P (X − Y > 1/2) ?
b) What is P (XY < 1/2) ?
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To introduce the concept of a marginal distribution, let us consider
the following example.

Example 51
In Example 43 we derived the joint probability distribution of two
random variables X and Y , the numbers of red and blue cards
included among the 2 cards drawn from the box containing 3 red, 2
blue, and 4 white cards. Find the probability distribution of X alone
and that of Y alone.
Solution: The results of Example 43 are shown in the following
table, together with the marginal totals, that is, the totals of the
respective rows and columns:
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x
0 1 2

0 1/6 1/3 1/12 7/12

y 1 2/9 1/6 7/18

2 1/36 1/36
5/12 1/2 1/12

The column totals are the probabilities that X will take on the values
0, 1, and 2. By the same token, the row totals are the probabilities
that Y will take on the values 0, 1, and 2.

x 0 1 2
g(x) 5/12 1/2 1/12

y 0 1 2
h(y) 7/12 7/18 1/36
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Definition 21 (MARGINAL DISTRIBUTION.)
If X and Y are discrete random variables and f (x , y) is the value of
their joint probability distribution at (x , y), the function given by

g(x) =
∑

y
f (x , y)

for each x within the range of X is called the marginal distribution of
X . Correspondingly, the function given by

h(y) =
∑

x
f (x , y)

for each y within the range of Y is called the marginal distribution of
Y .

Feras Awad (Philadelphia University) Probability Theory May 15, 2019 136 / 247



Probability Distributions and Probability Densities Marginal Distributions

Definition 22 (MARGINAL DENSITY.)
If X and Y are continuous random variables and f (x , y) is the value
of their joint probability density at (x , y), the function given by

g(x) =
∫ ∞
−∞

f (x , y) dy for −∞ < x <∞

is called the marginal density of X . Correspondingly, the function
given by

h(y) =
∫ ∞
−∞

f (x , y) dx for −∞ < y <∞

is called the marginal density of Y .
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Example 52
Given the joint probability density

f (x , y) =


3
5x(y + x) : 0 < x < 1 , 0 < y < 2
0 : elsewhere

find the marginal densities of X and Y .

Solution: Performing the necessary integrations, we get

g(x) =
∫ ∞
−∞

f (x , y) dy =
∫ 2

0

3
5x(y + x) dy = 6

5x(x + 1)

for 0 < x < 1 and g(x) = 0 elsewhere. Likewise,

h(y) =
∫ ∞
−∞

f (x , y) dx =
∫ 1

0

3
5x(y + x) dx = 1

10(3y + 2)

for 0 < y < 2 and h(y) = 0 elsewhere.
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Suppose that A and B are the events X = x and Y = y so that we
can write the conditional probability of the event X = x given Y = y
as

P(X = x | Y = y) = P(X = x ,Y = y)
P(Y = y) = f (x , y)

h(y)
provided P(Y = y) = h(y) 6= 0, where f (x , y) is the value of the
joint probability distribution of X and Y at (x , y), and h(y) is the
value of the marginal distribution of Y at y .
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Definition 23 (CONDITIONAL DISTRIBUTION.)
If f (x , y) is the value of the joint probability distribution of the
discrete random variables X and Y at (x , y) and h(y) is the value of
the marginal distribution of Y at y , the function given by

f (x |y) = f (x , y)
h(y) ; h(y) 6= 0

for each x within the range of X is called the conditional distribution
of X given Y = y . Correspondingly, if g(x) is the value of the
marginal distribution of X at x , the function given by

w(y |x) = f (x , y)
g(x) ; g(x) 6= 0

for each y within the range of Y is called the conditional distribution
of Y given X = x .
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Example 53
Given the values of the joint probability distribution of X and Y
shown in the table

x
0 1 2

0 1/9 2/9 1/9

y 1 2/9 2/9

2 1/9

find:
a) the marginal distribution of X ;
b) the marginal distribution of Y ;
c) P(Y ≥ 1|X = 0);
d) the conditional distribution of X given Y = 1.
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Solution: Note that the marginal totals are

x
0 1 2

0 1/9 2/9 1/9 4/9

y 1 2/9 2/9 4/9

2 1/9 1/9
4/9 4/9 1/9

a) x 0 1 2
g(x) 4/9 4/9 1/9

b) y 0 1 2
h(y) 4/9 4/9 1/9
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c) P(Y ≥ 1|X = 0) = P(Y ≥ 1,X = 0)
P(X = 0) = f (0, 1) + f (0, 2)

g(0)

=
2/9 + 1/9

4/9
= 3

4

d) Since f (x = 0|y = 1) = f (0, 1)
h(1) =

2/9
4/9

= 1
2

f (x = 1|y = 1) = f (1, 1)
h(1) =

2/9
4/9

= 1
2

f (x = 2|y = 1) = f (2, 1)
h(1) = 0

4/9
= 0

then
x 0 1 2

f (x |1) 1/2 1/2 0
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Definition 24 (CONDITIONAL DENSITY.)
If f (x , y) is the value of the joint density of the continuous random
variables X and Y at (x , y) and h(y) is the value of the marginal
distribution of Y at y , the function given by

f (x |y) = f (x , y)
h(y) ; h(y) 6= 0

for x ∈ R, is called the conditional density of X given Y = y .
Correspondingly, if g(x) is the value of the marginal density of X at
x , the function given by

w(y |x) = f (x , y)
g(x) ; g(x) 6= 0

for y ∈ R, is called the conditional density of Y given X = x .

Feras Awad (Philadelphia University) Probability Theory May 15, 2019 145 / 247



Probability Distributions and Probability Densities Conditional Distributions

Example 54
With reference to Example 52, find the conditional density of X given
Y = y , and use it to evaluate P (X ≤ 1/2|Y = 1/2).

Solution: f (x |y) = f (x , y)
h(y) = 3x(y + x)/5

(3y + 2)/10 = 6x(x + y)
3y + 2 for

0 < x < 1 and f (x |y) = 0 elsewhere. Now,

f
(
x
∣∣∣∣12
)

= 6
7x(2x + 1)

and then

P (X ≤ 1/2|Y = 1/2) =
∫ 1/2

0

6
7x(2x + 1) dx = 5

28
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Exercise 16
(1) Given the values of the joint probability distribution of X and Y

shown in the table
x

−1 1
−1 1/8 1/2

y 0 0 1/4

1 1/8 0
find:

a) the marginal distribution of X;
b) the marginal distribution of Y ;
c) the conditional distribution of X given Y = −1.
d) the conditional distribution of Y given X = 1.
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(2) If the joint probability density of X and Y is given by

f (x , y) =


1
4(2x + y) : for 0 < x < 1, 0 < y < 2
0 : elsewhere

a) Find the marginal density of X .
b) Find the conditional density of Y given X = 1

4.
c) Find the marginal density of Y .
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Current Subject

2 Probability Distributions and Probability Densities
Discrete Random Variables and Probability Distributions
Continuous Random Variables and Probability Density Functions
Multivariate Distributions
Marginal Distributions
Conditional Distributions
Independent Random Variables
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Definition 25 (INDEPENDENCE OF RANDOM
VARIABLES.)
If f (x , y) is the value of the joint probability distribution (density) of
the discrete (continuous) random variables X ,Y at (x , y) and g(x) is
the value of the marginal distribution (density) of X and h(y) is the
value of the marginal distribution (density) of Y , then the random
variables X and Y are independent if and only if

f (x , y) = g(x) · h(y)

for all (x , y) within their range. If X and Y are not independent,
they are said to be dependent.
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Example 55
Check whether X and Y are independent if their joint probability
distribution f (x , y) is given by

x
−1 1

y −1 1/4 1/4

1 1/4 1/4

Solution: Note that the probability distribution of X is

x −1 1
g(x) 1/2 1/2

and the probability distribution of Y is
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y −1 1
h(y) 1/2 1/2

Since

f (−1,−1) = g(−1) · h(−1)
f (−1, 1) = g(−1) · h(1)
f (1,−1) = g(1) · h(−1)
f (1, 1) = g(1) · h(1)

then X , Y are independent.
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Example 56
Check whether X and Y are independent if their joint probability
distribution f (x , y) is given by x

0 1

y 0 1/3 1/3

1 1/3 0

Solution: Note that the probability distribution of X is

x 0 1
g(x) 2/3 1/3

and the probability distribution of Y is

y 0 1
h(y) 2/3 1/3

Since, for example, f (0, 0) 6= g(0) · h(0) then X , Y are dependent.
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Example 57
If the joint probability density of X and Y is given by

f (x , y) =

6xy 2 : if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 : otherwise

Show that X and Y are independent.

Solution: Since

g(x) =


∫ 1

0
6xy 2 dy : if 0 ≤ x ≤ 1

0 : otherwise

=

2x : if 0 ≤ x ≤ 1
0 : otherwise
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h(y) =


∫ 1

0
6xy 2 dx : if 0 ≤ y ≤ 1

0 : otherwise

=

3y 2 : if 0 ≤ y ≤ 1
0 : otherwise

and f (x , y) = g(x) · h(y), then X , Y are independent.
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Example 58
If the joint probability density of X and Y is given by

f (x , y) =

2 : if 0 ≤ y ≤ x ≤ 1
0 : otherwise

Show that X and Y are dependent.
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Solution: Since

g(x) =


∫ x

0
2 dy : if 0 ≤ x ≤ 1

0 : otherwise

=

2x : if 0 ≤ x ≤ 1
0 : otherwise

h(y) =


∫ 1

y
2 dx : if 0 ≤ y ≤ 1

0 : otherwise

=

2(1− y) : if 0 ≤ y ≤ 1
0 : otherwise

and f (x , y) 6= g(x) · h(y), then X , Y are dependent.
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Exercise 17
(1) Check whether X and Y are independent or not if their joint

probability distribution is given by
x

−1 1
−1 1/8 1/2

y 0 0 1/4

1 1/8 0
(2) If the joint probability density of X and Y is given by

f (x , y) =

24y(1− x − y) : for x > 0, y > 0, x + y < 1
0 : elsewhere

Determine whether the two random variables are independent or
not.
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Current Subject

3 Mathematical Expectation
The Expected Value of a Random Variable
Moments and Moment-Generating Functions
Product Moments
Moments of Linear Combinations of Random Variables
Conditional Expectations
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Mathematical Expectation The Expected Value of a Random Variable

* Originally, the concept of a mathematical expectation arose in
connection with games of chance.

* The mean for a sample or population was computed by adding
the values and dividing by the total number of values, as shown
in these formulas:

X =
∑ x
n µ =

∑ x
N

* Experiment [1]:
How would you compute the mean of the number of spots that
show on top when a die is rolled? You could try rolling the die,
say, 10 times, recording the number of spots, and finding the
mean; however, this answer would only approximate the true
mean. What about 100 rolls or 1000 rolls?
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Using Mathematica, we easily simulate the experiment:

rolls = 10ˆRange[6];
N@Total[RandomInteger[{1, 6}, #]]/# & /@ rolls

rolls 101 102 103 104 105 106

mean 3.8 3.67 3.487 3.5197 3.50123 3.50172
That is, if it were possible to roll the dice many times or an
infinite number of times, the average of the number of spots
would be 3.5.
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* Experiment [2]:
Suppose two coins are tossed repeatedly, and the number of
heads that occurred is recorded. What will be the mean of the
number of heads? Using Mathematica, we easily simulate this
experiment:

flips = 10ˆRange[6];
X = {0, 1, 2};
prob = {0.25, 0.50, 0.25};
N@Total[RandomChoice[prob -> X, #]]/# & /@ flips

flips 101 102 103 104 105 106

mean 1.3 0.96 0.965 1.0001 0.99503 1.00052
That is, if it were possible to toss the coins many times or an
infinite number of times, the average of the number of heads
would be 1.
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The sample space of experiment (2) is HH, HT, TH, TT and
each outcome has a probability of 1/4. Now, in the long run, you
would expect two heads (HH) to occur approximately 1/4 of the
time, one head to occur approximately 1/2 of the time (HT or
TH), and no heads (TT) to occur approximately 1/4 of the time.
Hence, on average, you would expect the number of heads to be

1
4 × 2 + 1

2 × 1 + 1
4 × 0 = 1.

* Hence, to find the mean (Expected Value) for a probability
distribution, you must multiply each possible outcome by its
corresponding probability and find the sum of the products.
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Definition 26 (EXPECTED VALUE.)
If X is a discrete random variable and f (x) is the value of its
probability distribution at x , the expected value of X is

E (X ) =
∑

x
x · f (x)

Correspondingly, if X is a continuous random variable and f (x) is the
value of its probability density at x , the expected value of X is

E (X ) =
∞∫
−∞

xf (x) dx
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Example 59
If X is the random variable corresponding to the number oh heads
when we flip two coins, then the probability distribution of X is:

x 0 1 2
f (x) 1/4 1/2 1/4

So that, E (x) = 1
4 × 0 + 1

2 × 1 + 1
4 × 2 = 1
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Example 60
If the probability density of X is given by

f (x) =


4

π (1 + x2) : 0 < x < 1

0 : elsewhere

then

E (X ) =
∞∫
−∞

xf (x) dx

= 4
π

1∫
0

x
1 + x2 dx = 2

π

[
ln
(
1 + x2

) ]1

0

= ln 4
π
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Theorem 25
If X is a discrete random variable and f (x) is the value of its
probability distribution at x , the expected value of g(X ) is given by

E
(
g(X )

)
=
∑

x
g(x) · f (x)

Correspondingly, if X is a continuous random variable and f (x) is the
value of its probability density at x , the expected value of g(X ) is
given by

E
(
g(X )

)
=

∞∫
−∞

g(x)f (x) dx
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Example 61
If X is the number of points rolled with a balanced die, find the
expected value of g(X ) = 2X 2 + 1.

Solution: Since each possible outcome has the probability 1
6, we get

E
(
g(X )

)
=

6∑
x=1

(
2x2 + 1

)
· 16

=
(
2 · 12 + 1

)
· 16 + · · ·+

(
2 · 62 + 1

)
· 16 = 94

3

X 1 2 3 4 5 6
2X 2 + 1 3 9 19 33 51 73
f (x) 1/6 1/6 1/6 1/6 1/6 1/6
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Example 62

If X has the probability density f (x) =

e−x : x > 0
0 : elsewhere

, find the

expected value of g(X ) = e3X/4.

Solution:

E
(
e3X/4

)
=
∞∫

0

e3x/4 · e−x dx

=
∞∫

0

e−x/4 dx

= −1
4

[
e−x/4

]∞
0

= 1
4 .
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Theorem 26
If a and b are constants, then E

(
aX + b

)
= aE

(
X
)

+ b.

Corollary 1
If a is a constant, then E

(
aX
)

= aE
(
X
)
.

Corollary 2
If b is a constant, then E

(
b
)

= b.

Theorem 27

If c1, c2, · · · , cn are constants, then E
[ n∑

i=1
cigi(x)

]
=

n∑
i=1

ciE [gi(x)].
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Example 63
Let Y be a random variable with f (y) given in the accompanying
table. E (Y ), E (Y 2), E

[
(2Y − 1)2

]
.

y 1 2 3 4
f (y) 0.4 0.3 0.2 0.1

Solution:
(1) E (Y ) = (1)(0.4) + (2)(0.3) + (3)(0.2) + (4)(0.1) = 2.
(2) E (Y 2) = (1)2(0.4) + (2)2(0.3) + (3)2(0.2) + (4)2(0.1) = 5.
(3) E

[
(2Y − 1)2

]
= E

(
4Y 2 − 4Y + 1

)
= 4E

(
Y 2
)
− 4E (Y ) + 1 = 13

Feras Awad (Philadelphia University) Probability Theory May 15, 2019 171 / 247



Mathematical Expectation The Expected Value of a Random Variable

Example 64
If the probability density of X is given by

f (x) =

2(1− x) : 0 < x < 1
0 : elsewhere

show that E (X r ) = 2
(r + 1)(r + 2) , and use this result to evaluate

E
[
(3 + X )2

]
.

Solution: E (X r ) =
∫ 1

0
2x r (1− x) dx = 2

∫ 1

0

(
x r − x r+1

)
dx

= 2
[ 1
r + 1 −

1
r + 2

]
= 2

(r + 1)(r + 2)
So, E

[
(3 + X )2

]
= E (X 2 + 6X + 9) = E (X 2) + 6E (X ) + 9 = 67

6
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Theorem 28
If X and Y are discrete random variables and f (x , y) is the value of
their joint probability distribution at (x , y), the expected value of
g(X ,Y ) is

E
[
g(X ,Y )

]
=
∑

x

∑
y
g(x , y) · f (x , y)

Correspondingly, if X and Y are continuous random variables and
f (x , y) is the value of their joint probability density at (x , y), the
expected value of g(X ,Y ) is

E
[
g(X ,Y )

]
=
∫ ∞
−∞

∫ ∞
−∞

g(x , y)f (x , y) dxdy
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Example 65
If the values of the joint probability distribution of X and Y are as
shown in the table, find the expected value of g(X ,Y ) = X + Y .

x
0 1 2

0 1/6 1/3 1/12

y 1 2/9 1/6

2 1/36

Solution: E (X + Y ) =
2∑

x=0

2∑
y=0

(x + y)f (x , y)

= (0 + 0) · 16 + (0 + 1) · 29 + (0 + 2) · 136
+ (1 + 0) · 13 + (1 + 1) · 16 + (2 + 0) · 112
= 10/9
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Example 66
If the joint probability density of X and Y is given by

f (x , y) =


2
7(x + 2y) : for 0 < x < 1, 1 < y < 2
0 : elsewhere

find the expected value of g(X ,Y ) = X
Y 3 .

Solution: E
(

X
Y 3

)
=
∫ ∞
−∞

∫ ∞
−∞

x
y 3 · f (x , y) dxdy

=
∫ 2

1

∫ 1

0

x
y 3 ·

2
7(x + 2y) dxdy

=
∫ 2

1

∫ 1

0

(
2x2

7y 3 + 4x
7y 2

)
dxdy = 15

84
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Exercise 18
(1) Find the expected value of the discrete random variable X

having the probability distribution

f (x) =

∣∣∣x − 2
∣∣∣

7 for x = −1, 0, 1, 3

Also, find E (X 2), then find E [X · (2− 5X )].
(2) Find the expected value of the random variable Y whose

probability density is given by

f (y) =


1
8(y + 1) : 2 < y < 4
0 : elsewhere
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(3) Find the expected value of the random variable X whose
probability density is given by

f (x) =


x : 0 < x < 1
2− x : 1 ≤ x < 2
0 : elsewhere

(4) If the values of the joint probability distribution of X and Y are
as shown in the table, find: E (X ), E (Y ), E (X · Y ).

x
0 1 2

0 1/9 2/9 1/9

y 1 2/9 2/9

2 1/9
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(5) If the joint probability density of X and Y is given by

f (x , y) =

6(1− y) : 0 ≤ x ≤ y ≤ 1
0 : elsewhere

find: E (X ), E (Y ), E (X − 3Y ).
(6) If the joint probability density of X and Y is given by

f (x , y) =

1 : 0 ≤ x ≤ 2, 0 ≤ y ≤ 1, 2y ≤ x
0 : elsewhere

find: E (X ), E (Y ), E (X + Y ).
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Current Subject

3 Mathematical Expectation
The Expected Value of a Random Variable
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Product Moments
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* An important class of discrete random variables is one in which
X represents a count and consequently takes integer values:
X = 0, 1, 2, 3, · · · .

xi 0 1 2 · · · n · · ·
pi p0 p1 p2 · · · pn · · ·

* A mathematical device useful in finding the probability
distributions and other properties of integer-valued random
variables is the moment-generating function.

* In statistics, the mathematical expectations called the moments
of the distribution of a random variable or simply the moments
of a random variable, are of special importance.
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Mathematical Expectation Moments and Moment-Generating Functions

Definition 27 (MOMENTS ABOUT THE ORIGIN)
The r th moment about the origin of a random variable X , denoted
by µ′r , is the expected value of X r ; symbolically

µ′r = E [X r ] =
∑

x
x r f (x)

for r = 0, 1, 2, · · · when X is discrete, and

µ′r = E [X r ] =
∫ ∞
−∞

x r f (x) dx

when X is continuous.

Definition 28 (MEAN OF A DISTRIBUTION)
µ′1 is called the mean of the distribution of X , or simply the mean of
X , and it is denoted simply by µ.
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Definition 29 (MOMENTS ABOUT THE MEAN)
The r th moment about the mean of a random variable X , denoted by
µr , is the expected value of (X − µ)r , symbolically

µr = E [(X − µ)r ] =
∑

x
(x − µ)r f (x)

for r = 0, 1, 2, · · · when X is discrete, and

µr = E [(X − µ)r ] =
∫ ∞
−∞

(x − µ)r f (x) dx

when X is continuous.

Definition 30 (VARIANCE)
µ2 is called the variance of the distribution of X , or simply the
variance of X , and it is denoted by σ2, σ2

X , var(X ), or V (X ). The
standard deviation of X is σ =

√
σ2.

Feras Awad (Philadelphia University) Probability Theory May 15, 2019 182 / 247



Mathematical Expectation Moments and Moment-Generating Functions

Note: The parameters µ and σ are meaningful numerical descriptive
measures that locate the center and describe the spread associated
with the values of a random variable X . They do not, however,
provide a unique characterization of the distribution of X .
(1) µ′1 = µ is the mean of the distribution of X ,
(2) µ2 is the variance of the distribution of X ,
(3) µ3 is used to construct a measure of skewness, which describes

whether the probability mass is more to the left or the right of
the mean, compared to a normal distribution.

(4) µ4 is used to construct a measure of kurtosis, which measures
the “width” of a distribution.
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Theorem 29
σ2 = µ′2 − µ2

Proof.

σ2 = µ2 = E
[
(X − µ)2

]
= E

[
X 2 − 2µX + µ2

]
= E

[
X 2
]

︸ ︷︷ ︸
µ′

2

−2µE
[
X
]

︸ ︷︷ ︸
µ

+µ2 = µ′2 − µ2

Theorem 30
If X has the variance σ2, then var

(
aX + b

)
= a2σ2.
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Example 67
A fair coin is tossed three times. Let X be the random variable
defined by X =

[
number
of heads

]
−
[

number
of tails

]
. Find the mean and the

variance of the distribution of X .
Solution: The probability distribution of X is given by:

X −3 −1 1 3
P(X ) 1/8 3/8 3/8 1/8

Hence,
µ = E

[
X
]

=
(
−3× 1

8

)
+
(
−1× 3

8

)
+
(
1× 3

8

)
+
(
3× 1

8

)
= 0

µ′2 = E
[
X 2
]

=
(
9× 1

8

)
+
(
1× 3

8

)
+
(
1× 3

8

)
+
(
9× 1

8

)
= 3

∴ σ2 = µ′2 − µ = 3− 0 = 3.
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Example 68
Find var(X ) if the probability density of X is given by

f (x) =

2(1− x) : 0 < x < 1
0 : elsewhere

Solution: We have shown, in Example 64, that
µ′r = E (X r ) = 2

(r + 1)(r + 2) . So,

var(X ) = µ′2 − µ2 = E
[
X 2
]
− E

[
X
]2

= 1
6 −

1
9 = 1

18 .
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Although the moments of most distributions can be determined
directly by evaluating the necessary integrals or sums, an alternative
procedure sometimes provides considerable simplifications.

Definition 31 (MOMENT GENERATING FUNCTION)
The moment generating function of a random variable X , where it
exists, is given by

MX (t) = E
[
etX

]
=
∑

x
etx f (x)

when X is discrete, and

MX (t) = E
[
etX

]
=
∫ ∞
−∞

etx f (x) dx

when X is continuous.
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To explain why we refer to this function as a “moment-generating”
function, let us substitute for etx its Maclaurin’s series expansion,
that is,

etx = 1 + tx + t2x2

2! + t3x3

3! + · · ·+ t rx r

r ! + · · ·

For the discrete case (in the continuous case, the argument is the
same), we thus get

MX (t) =
∑

x

[
1 + tx + t2x2

2! + · · ·+ t rx r

r ! + · · ·
]
f (x)

=
∑

x
f (x) + t

∑
x
xf (x) + t2

2!
∑

x
x2f (x) + · ·+t r

r !
∑

x
x r f (x) + ··

= 1 + µ · t + µ′2 ·
t2

2! + · · ·+ µ′r ·
t r

r ! + · · ·
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Example 69
Find the moment-generating function of the random variable whose

probability density is given by f (x) =

e−x : x > 0
0 : elsewhere

and use it

to find an expression for µ′r .

Solution: MX (t) = E
[
etX

]
=
∫ ∞
−∞

etx f (x) dx

=
∫ ∞

0
ex(t−1) dx = 1

t − 1e
x(t−1)

]∞
0

= 1
1− t

for t < 1. As is well known, when |t| < 1, the Maclaurin’s series for
this moment-generating function is

MX (t) = 1 + t + t2 + · · ·+ t r + · · ·

= 1 + t + 2! · t
2

2! + · · ·+ r ! · t
r

r ! + · · ·

and hence µ′r = r ! for r = 0, 1, 2, · · · .
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Theorem 31
d rMX (t)

dt r

∣∣∣∣∣
t=0

= µ′r

Example 70

Given that X has the probability distribution f (x) = 1
8

(
3
x

)
for

x = 0, 1, 2, 3. Find the moment-generating function of this random
variable and use it to determine µ′1 and µ′2.

Solution: Since MX (t) = E
[
eXt
]

= 1
8

3∑
x=0

ext
(
3
x

)

= 1
8
(
1 + 3et + 3e2t + e3t

)
= 1

8 (1 + et)3
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then

µ′1 = M ′X (0) =
[3
8 (1 + et)2 et

]
t=0

= 3
2

µ′2 = M ′′X (0) =
[3
4 (1 + et)2 e2t + 3

8 (1 + et)2 et
]

t=0
= 3

Theorem 32
If a and b are constants, then
(1) MX+a = E

[
e(X+a)t

]
= eatMX (t),

(2) MbX = E
[
ebXt

]
= MX (bt),

(3) MX+a
b

= E
[
e( X+a

b )t
]

= e a
b tMX

( t
b

)
.
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Exercise 19
(1) Show that µ0 = 1 and that µ1 = 0 for any random variable for

which E (X ) exists.
(2) Find µ, µ′2, and σ2 for the random variable X that has the

probability distribution f (x) = 1
2 for x = −2 and x = 2.

(3) Find µ, µ′2, and σ2 for the random variable X that has the
probability density

f (x) =


x
2 : 0 < x < 2
0 : elsewhere
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(4) Find µ′r and σ2 for the random variable X that has the
probability density

f (x) =


1

x ln 3 : 1 < x < 3
0 : elsewhere

(5) If the probability density of X is given by

f (x) =

2x−3 : x > 1
0 : elsewhere

check whether its mean and its variance exist.
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(6) Find the moment-generating function of the continuous random
variable X whose probability density is given by

f (x) =

1 : 0 < x < 1
0 : elsewhere

and use it to find µ′1, µ′2, and σ2.
(7) Find the moment-generating function of the discrete random

variable X that has the probability distribution

f (x) = 2
(1
3

)x
for x = 1, 2, 3, · · ·

and use it to find µ′1, µ′2, and σ2.
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(8) Explain why there can be no random variable for which
MX (t) = t

1− t .

(9) Given the moment-generating function MX (t) = e3t+8t2 , find the
moment-generating function of the random variable
Y = 1

4
(
X − 3

)
, and use it to determine the mean and the

variance of Y .
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Current Subject

3 Mathematical Expectation
The Expected Value of a Random Variable
Moments and Moment-Generating Functions
Product Moments
Moments of Linear Combinations of Random Variables
Conditional Expectations
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Definition 32 (PRODUCT MOMENTS ABOUT THE
ORIGIN.)
The r th and sth product moment about the origin of the random
variables X and Y , denoted by µ′r ,s , is the expected value of X rY s ;
symbolically,

µ′r ,s = E [X rY s ] =
∑

x

∑
y
x ry s f (x , y)

for r = 0, 1, 2, · · · and s = 0, 1, 2, · · · when X and Y are discrete,
and

µ′r ,s = E [X rY s ] =
∫ ∞
−∞

∫ ∞
−∞

x ry s f (x , y) dxdy

when X and Y are continuous.
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Definition 33 (Product Moments About the Mean.)
The r th and sth product moment about the means of the random
variables X and Y , denoted by µr ,s , is the expected value of
(X − µX )r (Y − µY )s ; symbolically,

µr ,s = E [(X − µX )r (Y − µY )s ]
=
∑

x

∑
y

(x − µX )r (y − µY )s f (x , y)

for r = 0, 1, 2, · · · and s = 0, 1, 2, · · · when X and Y are discrete,
and

µr ,s = E [(X − µX )r (Y − µY )s ]

=
∫ ∞
−∞

∫ ∞
−∞

(x − µX )r (y − µY )s f (x , y) dxdy

when X and Y are continuous.
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In statistics, µ1,1 is of special importance because it is indicative of
the relationship, if any, between the values of X and Y ; thus, it is
given a special symbol and a special name.

Definition 34 (COVARIANCE.)
µ1,1 is called the covariance of X and Y , and it is denoted by σXY ,
cov(X ,Y ), or C(X ,Y ).

Theorem 33
σXY = µ′1,1 − µXµY

Proof.
Homework.
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Example 71
The joint and marginal probabilities of X and Y are recorded as
follows:

x
0 1 2

0 1/6 1/3 1/12 7/12

y 1 2/9 1/6 7/18

2 1/36 1/36
5/12 1/2 1/12

Find the covariance of X and Y .
Solution: Referring to the joint probabilities given here, we get
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µ′1,1 = E
[
XY

]
= 0 · 0 · 16 + 0 · 1 · 29 + 0 · 2 · 136 + 1 · 0 · 13 + 1 · 1 · 16 + 2 · 0 · 112
= 1

6

and using the marginal probabilities, we get

µX = 0 · 512 + 1 · 12 + 2 · 112 = 2
3

µY = 0 · 712 + 1 · 718 + 2 · 136 = 4
9

It follows that σXY = µ′1,1 − µXµY = 1
6 −

2
3 ×

4
9 = − 7

54.
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Example 72
Find the covariance of the random variables whose joint probability
density is given by

f (x , y) =

2 : x > 0, y > 0, x + y < 1
0 : elsewhere
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Solution:

µX = E
[
X
]

=
∫ 1

0

∫ 1−x

0
2x dydx = 1

3
µY = E

[
Y
]

=
∫ 1

0

∫ 1−x

0
2y dydx = 1

3
µ′1,1 = E

[
XY

]
=
∫ 1

0

∫ 1−x

0
2xy dydx = 1

12
∴ σXY = µ′1,1 − µXµY = 1

12 −
1
3 ×

1
3 = − 1

36

Theorem 34
If X and Y are independent, then E

[
XY

]
= E

[
X
]
E
[
Y
]
and

σXY = 0.
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Example 73
If the joint probability distribution of X and Y is given by

x
−1 0 1

−1 1/6 1/3 1/6 2/3

y 0 0 0 0 0
1 1/6 0 1/6 1/3

1/3 1/3 1/3

show that their covariance is zero even though the two random
variables are not independent.
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Solution: Using the probabilities shown in the margins, we get

µX = −1 · 13 + 0 · 13 + 1 · 13 = 0

µY = −1 · 23 + 0 · 0 + 1 · 13 = −1
3

µ′1,1 = (−1) · (−1) · 16 + (−1) · (1) · 16 + (1) · (−1) · 16 + (1) · (1) · 16
= 0

Thus,σXY = 0− 0 · −1/3 = 0, the covariance is zero, but the two
random variables are not independent. For instance,
f (−1,−1) 6= g(−1)h(−1).
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Product moments can also be defined for the case where there are
more than two random variables. Here let us merely state the
important result, in the following theorem.

Theorem 35
If X1,X2, · · · ,Xn are independent, then

E [X1X2 · · ·Xn] = E [X1]E [X2] · · ·E [Xn]
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Exercise 20
(1) If X and Y have the joint probability distribution

x
−1 0 1

0 0 1/6 1/12

y 1 1/4 0 1/2

show that:
(a) cov(X , Y ) = 0,
(b) the two random variables are not independent.
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(2) If the probability density of X is given by

f (x) =


1 + x : −1 < x ≤ 0
1− x : 0 < x < 1
0 : elsewhere

and U = X and V = X 2, show that
(a) cov(U, V ) = 0,
(b) U and V are dependent.
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Mathematical Expectation Moments of Linear Combinations of Random Variables

In this section we shall derive expressions for the mean and the
variance of a linear combination of n random variables and the
covariance of two linear combinations of n random variables.

Theorem 36

If X1,X2, · · · ,Xn are random variables, and Y =
n∑

i=1
aiXi where

a1, a2, · · · , an are constants, then

E
[
Y
]

=
n∑

i=1
aiE [Xi ] =

n∑
i=1

aiµXi

and var
(
Y
)

=
n∑

i=1
a2

i var (Xi) + 2
∑∑

i<j
aiajcov (Xi ,Xj)

where the double summation extends over all values of i and j, from
1 to n, for which i < j .
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Since cov (Xi ,Xj) = 0 when Xi and Xj are independent, we obtain
the following corollary.

Corollary 3
If the random variables X1,X2, · · · ,Xn are independent and

Y =
n∑

i=1
aiXi , then

var
(
Y
)

=
n∑

i=1
a2

i var (Xi)
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Example 74
If the random variables X , Y , and Z have the

means : µX = 2, µY = −3, µZ = 4,
variances : σ2

X = 1, σ2
Y = 5, σ2

Z = 2,
covariances : cov(X ,Y ) = −2, cov(X ,Z ) = −1, cov(Y ,Z ) = 1,

find the mean and the variance of W = 3X − Y + 2Z .

Solution:

E
[
W
]

= 3µX − µY + 2µZ = 17,
var (W ) = 32 · σ2

X + (−1)2 · σ2
Y + 22 · σ2

Z

+ 2(3)(−1)σXY + 2(3)(2)σXZ + 2(−1)(2)σYZ

= 18
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Theorem 37

If X1,X2, · · · ,Xn are random variables and Y1 =
n∑

i=1
aiXi and

Y2 =
n∑

i=1
biXi where a1, a2, · · · , an, b1, b2, · · · , bn are constants, then

cov (Y1,Y2) =
n∑

i=1
aibjvar (Xi) +

∑∑
i<j

(aibj + ajbi) · cov (Xi ,Xj).

Corollary 4
If the random variables X1,X2, · · · ,Xn are independent, and

Y1 =
n∑

i=1
aiXi and Y2 =

n∑
i=1

biXi , then

cov (Y1,Y2) = ∑n
i=1 aibjvar (Xi).
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Example 75
If the random variables X , Y , and Z have the

means : µX = 3, µY = 5, µZ = 2,
variances : σ2

X = 8, σ2
Y = 12, σ2

Z = 18,
covariances : cov(X ,Y ) = 1, cov(X ,Z ) = −3, cov(Y ,Z ) = 2,

find the covariance of U = X + 4Y + 2Z and V = 3X − Y − Z .

Solution:

cov (U ,V ) = cov
(
X + 4Y + 2Z , 3X − Y − Z

)
= 3σ2

X − 4σ2
Y − 2σ2

Z + 11cov(X ,Y )
+ 5cov(X ,Z )− 6cov(Y ,Z )

= −76

Feras Awad (Philadelphia University) Probability Theory May 15, 2019 214 / 247



Mathematical Expectation Moments of Linear Combinations of Random Variables

Exercise 21
(1) If X1, X2, and X3 are random variables have the means 4, 9, and

3 and the variances 3, 7, and 5, and covariances
cov (X1,X2) = 1, cov (X1,X3) = −3, cov (X2,X3) = −2, find
the mean and the variance of Y = 2X1 − 3X2 + 4X3.

(2) If var (X1) = 5, var (X2) = 4, var (X3) = 7, cov (X1,X2) = 3,
cov (X1,X3) = −2, and X2 and X3 are independent, find the
covariance of Y1 = X1− 2X2 + 3X3 and Y2 = −2X1 + 3X2 + 4X3.

(3) If the joint probability density of X and Y is given by

f (x , y) =


1
3
(
x + y

)
: 0 < x < 1, 0 < y < 2

0 : elsewhere

find the variance of W = 3X + 4Y − 5.
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Mathematical Expectation Conditional Expectations

Definition 35 (CONDITIONAL EXPECTATION)
If X is a discrete random variable, and f (x |y) is the value of the
conditional probability distribution of X given Y = y at x , the
conditional expectation of u(X ) given Y = y is

E
[
u(X )|y

]
=
∑

x
u(x)f (x |y)

Correspondingly, if X is a continuous variable and f (x |y) is the value
of the conditional probability distribution of X given Y = y at x , the
conditional expectation of u(X ) given Y = y is

E
[
u(X )|y

]
=
∫ ∞
−∞

u(x)f (x |y) dx
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Note:
(1) Similar expressions based on the conditional probability

distribution or density of Y given X = x define the conditional
expectation of v(Y ) given X = x .

(2) If we let u(X ) = X in Definition 35, we obtain the conditional
mean of the random variable X given Y = y , which we denote
by µX |y = E

[
X |y

]
.

(3) Correspondingly, the conditional variance of X given Y = y is

σ2
X |y = E

[
(X − µX |y )2|y

]
= E

[
X 2|y

]
− µ2

X |y

where E [X 2|y ] is given by Definition 35 with u(X ) = X 2.

Feras Awad (Philadelphia University) Probability Theory May 15, 2019 218 / 247



Mathematical Expectation Conditional Expectations

Example 76
If the joint probability density of X and Y is given by

f (x , y) =


2
3

(
x + 2y

)
: 0 < x < 1, 0 < y < 1

0 : elsewhere

find the conditional mean and the conditional variance of X given
Y = 1

2 .

Solution: Since the marginal density of Y is

h(y) =
∫ ∞
−∞

f (x , y) dx =


∫ 1

0

2
3
(
x + 2y

)
dx : 0 < y < 1

0 : elsewhere

=


1
3
(
1 + 4y

)
: 0 < y < 1

0 : elsewhere
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then f (x |y) = f (x , y)
h(y) =


2x + 4y
1 + 4y : 0 < x < 1

0 : elsewhere

∴ f
(
x
∣∣∣∣12
)

=


2
3(x + 1) : 0 < x < 1
0 : elsewhere

Thus, µX | 12
= E

[
X
∣∣∣∣12
]

=
∫ 1

0

2
3x(x + 1) dx = 5

9 ,

E
[
X 2

∣∣∣∣12
]

=
∫ 1

0

2
3x

2(x + 1) dx = 7
18 ,

σ2
X | 12

= E
[
X 2

∣∣∣∣12
]
− µ2

X | 12
= 7

18 −
(5
9

)2
= 13

162

.
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Exercise 22
(1) If the joint probability density of X and Y is given by

f (x , y) =


1
3
(
x + y

)
: 0 < x < 1, 0 < y < 2

0 : elsewhere

find the conditional mean and the conditional variance of Y
given X = 3

4 .

(2) If X and Y have the joint probability distribution
x

−1 0 1
0 0 1/6 1/12

y 1 1/4 0 1/2

find the conditional mean and the conditional variance of X
given Y = 1.
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Special Probability Distributions and Densities The Discrete Uniform Distribution

If a random variable can take on k different values with equal
probability, we say that it has a discrete uniform distribution.

Definition 36 (DISCRETE UNIFORM DISTRIBUTION.)
A random variable X has a discrete uniform distribution and it is
referred to as a discrete uniform random variable if and only if its
probability distribution is given by

f (x) = 1
k for x = x1, x2, · · · , xk

where xi 6= xj when i 6= j .
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Exercise 23
If X has the discrete uniform distribution f (x) = 1

k for
x = 1, 2, · · · , k, show that:

(a) its mean is µ = k + 1
2 ;

(b) its variance is σ2 = k2 − 1
12 ;

(c) moment-generating function is MX (t) =
et
(
1− ekt

)
k (1− et) .
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The Binomial Distribution
The Negative Binomial and Geometric Distributions
The Poisson Distribution
The Exponential Distribution

Feras Awad (Philadelphia University) Probability Theory May 15, 2019 225 / 247



Special Probability Distributions and Densities The Binomial Distribution

If an experiment has two possible outcomes, “success” and “failure,”
and their probabilities are, respectively, θ and 1− θ, then the number
of successes, 0 or 1, has a Bernoulli distribution.

Definition 37 (BERNOULLI DISTRIBUTION)
A random variable X has a Bernoulli distribution and it is referred to
as a Bernoulli random variable if and only if its probability
distribution is given by

f (x ; θ) = θx (1− θ)1−x for x = 0, 1
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Special Probability Distributions and Densities The Binomial Distribution

Definition 38 (BINOMIAL DISTRIBUTION.)
A random variable X has a binomial distribution and it is referred to
as a binomial random variable if and only if its probability distribution
is given by

b
(
x ; n, θ

)
=
(
n
x

)
θx (1− θ)n−x for x = 0, 1, · · · , n

Example 77
Find the probability of getting five heads in 12 flips of a balanced
coin.

Solution: b
(
5; 12, 1/2

)
=
(
12
5

)(1
2

)5 (
1− 1

2

)12−5
= 99

512.
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Special Probability Distributions and Densities The Binomial Distribution

Theorem 38
b
(
x ; n, θ

)
= b

(
n − x ; n, 1− θ

)
Theorem 39
The mean and the variance of the binomial distribution are

µ = nθ and σ2 = nθ(1− θ)

Theorem 40
The moment-generating function of the binomial distribution is given
by

MX (t) = [1 + θ (et − 1)]n
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Special Probability Distributions and Densities The Negative Binomial and Geometric Distributions

In connection with repeated Bernoulli trials, we are sometimes
interested in the number of the trial on which the kth success occurs.

Definition 39 (NEGATIVE BINOMIAL DISTRIBUTION.)
A random variable X has a negative binomial distribution and it is
referred to as a negative binomial random variable if and only if

b∗
(
x ; k , θ

)
=
(
x − 1
k − 1

)
θk(1− θ)x−k for x = k , k + 1, k + 2, · · ·
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Special Probability Distributions and Densities The Negative Binomial and Geometric Distributions

Example 78
If the probability is 0.40 that a child exposed to a certain contagious
disease will catch it, what is the probability that the tenth child
exposed to the disease will be the third to catch it?

Solution: b∗
(
10; 3, 0.4

)
=
(
9
2

)
(0.4)3(0.6)7 = 0.0645.

Theorem 41

b∗
(
x ; k , θ

)
= k

x · b
(
k ; x , θ

)
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Special Probability Distributions and Densities The Negative Binomial and Geometric Distributions

Theorem 42
The mean and the variance of the negative binomial distribution are

µ = k
θ

and σ2 = k
θ

(1
θ
− 1

)

Definition 40 (GEOMETRIC DISTRIBUTION.)
A random variable X has a geometric distribution and it is referred to
as a geometric random variable if and only if its probability
distribution is given by

g(x ; θ) = θ(1− θ)x−1 for x = 1, 2, 3, · · ·
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Special Probability Distributions and Densities The Negative Binomial and Geometric Distributions

Theorem 43
The moment-generating function of the geometric distribution is
given by

MX (t) = θet

1− et(1− θ)

Example 79
If the probability is 0.75 that an applicant for a driver’s license will
pass the road test on any given try, what is the probability that an
applicant will finally pass the test on the fourth try?

Solution: g(4; 0.75) = 0.75× (0.25)3 = 0.0117.
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Special Probability Distributions and Densities The Poisson Distribution

When n is large, the calculation of binomial probabilities with the
formula of Definition 38 will usually involve a prohibitive amount of
work. In this section we shall present a probability distribution that
can be used to approximate binomial probabilities of this kind.
Specifically, we shall investigate the limiting form of the binomial
distribution when n→∞, θ → 0, while nθ remains constant. Letting
this constant be λ, that is, nθ = λ and, hence, θ = λ

n .
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Special Probability Distributions and Densities The Poisson Distribution

Definition 41 (POISSON DISTRIBUTION.)
A random variable has a Poisson distribution and it is referred to as a
Poisson random variable if and only if its probability distribution is
given by

p(x ;λ) = λxe−λ
x ! for x = 0, 1, 2, · · ·

Note: In general, the Poisson distribution will provide a good
approximation to binomial probabilities when n ≥ 20 and θ ≤ 0.05.
When n ≥ 100 and nθ < 10, the approximation will generally be
excellent.
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Special Probability Distributions and Densities The Poisson Distribution

Example 80
If 2 percent of the books bound at a certain bindery have defective
bindings, use the Poisson approximation to the binomial distribution
to determine the probability that 5 of 400 books bound by this
bindery will have defective bindings.

Solution: Since x = 5 and λ = 400× 0.02 = 8, then

p(5; 8) = 85 × e−8

5! ≈ 0.093

Feras Awad (Philadelphia University) Probability Theory May 15, 2019 237 / 247



Special Probability Distributions and Densities The Poisson Distribution

Theorem 44
The mean and the variance of the Poisson distribution are given by

µ = λ and σ2 = λ

Theorem 45
The moment-generating function of the Poisson distribution is given
by

MX (t) = eλ(et−1)
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Special Probability Distributions and Densities The Exponential Distribution

Definition 42 (EXPONENTIAL DISTRIBUTION.)
A random variable X has an exponential distribution and it is referred
to as an exponential random variable if and only if its probability
density is given by

g(x ; θ) =


1
θ
e−x/θ : x > 0

0 : elsewhere

where θ > 0.
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Special Probability Distributions and Densities The Exponential Distribution

Note: The exponential distribution applies not only to the occurrence
of the first success in a Poisson process but it applies also to the
waiting times between successes.

Theorem 46
The mean and the variance of the exponential distribution are given
by

µ = θ and σ2 = θ2
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