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This book is prepared for the students at Philadelphia Univer-
sity in Jordan who are taking Math 372, a course in Computer
Aided Mathematics. Topics in Set Theory, Number Theory,
Calculus, Linear Algebra and Statistics are covered after in-
troducing a brief introduction about Mathematica. The entire
document was written in LaTeX, implemented for Windows us-
ing the MiKTeX 2.9 distribution. As for the text editor of my
choice, I fancy TeXstudio 2.12.6. All the commands were im-
plemented using Mathematica 11.3.1.
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Before Starting

This book is meant to be an active companion during the process of learning how
to use Mathematica. The main body of the text will certainly provide insights into
how Mathematica works, but the examples should be retyped as a starting point for
individual exploration. Each chapter contains discussion, tips, and a description of
Mathematica functionality, along with actual examples that serve as starting points.
Each chapter ends with additional exercises to emphasize comprehension, which can
be used as an assignment to students or simply to work through on your own.

No matter what format this book is viewed in, it is recommended that readers
have Mathematica on the desktop or Mathematica Online immediately accessible
to type the examples and work through the exercises. It is recommended that as
readers work through the book, they save a new file for each chapter in Wolfram
Notebook format (.nb), either locally or in the Wolfram Cloud, for future reference.

All new Mathematica students should work through chapters one through twelve (at
least) to obtain the necessary basis of how to use Mathematica for solving mathe-
matical problems in different mathematical subjects. These chapters will be of value
to intermediate Mathematica users by filling in gaps in knowledge that can result
from using Mathematica only for a narrowly defined set of tasks, or by broadening
the horizons of users who may have learned Mathematica from an older version.

There is a lot more to Wolfram Language, like dealing with the vast majority of
options of commands and using new commands for topics and areas that we have
missed, than we have been able to cover in this book.

If you have understood what is in this book, and can do its exercises, then you
can now consider yourself a Wolfram Language programmer! There will always be
more you can learn, but you are ready to start using what you know to do real
programming.

As a mathematician, there will probably be something you want to solve or program
every day. With a traditional computer language it would take too long to actually
do it. But with the Wolfram Language, and with all its built-in knowledge and
automation, anyone who knows the language can write very useful programs even
in a matter of minutes. The first step in creating a program for something is to see
how to think about the thing in computational terms. It might be something where
computers have long been used. It might be something that is only now conceivable
for computers as a result of the Wolfram Language. Whatever it is, try to imagine
a Wolfram Language function for doing it. What input would the function get?
What output would it generate? What might the function be called? Do not at
first think about how you would write the code. Just think about what the function
should do. And only after you have understood that, start writing the code.
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1 Introduction

1.1 What is Mathematica?

Mathematica is a tool for technical computing that is used by mathematicians,
engineers, analysts, and many others around the world. It contains an extensive
knowledge base for working with a very broad range of tasks, including solving
equations, programming, importing and exporting data, visualizing functions and
data, and much more.

Although Mathematica is a very large and powerful system, you can get up and
running with it in just a few minutes and become fairly proficient by learning some
basic concepts about how it is organized, the syntax of its commands, and how to
get help when you are stuck. This course will guide you through these first steps
and provide you with the foundation you need to incorporate Mathematica into your
work and/or teaching.

Mathematica is based on the Wolfram Language , a language designed to provide
the broadest collection of commands and knowledge for a wide variety of areas.
Calculations can often be written in several different styles, with advantages and
disadvantages in each scenario. This book focuses on conventions and shortcuts in
the Wolfram Language to make calculations shorter, clearer, or easier to understand.

1.2 The Structure of Mathematica

The basic parts of the Mathematica system:

1. Mathematica kernel the part that actually performs computations.

2. Mathematica front end the part that handles interaction with the user.

The most common way to work on Mathematica is to use interactive documents
known as notebooks. Notebooks mix Mathematica input and output with text,
graphics, palettes, and other material. You can use notebooks either for doing
ongoing computations, or as a means of presenting or publishing your results. You
should realize that notebooks are part of the “front end” to Mathematica. The
Mathematica kernel which actually performs computations may be run either on
the same computer as the front end, or on another computer connected via some
kind of network or line. In most cases, the kernel is not even started until you
actually do a calculation with Mathematica.

1.3 Common Kinds of Interfaces to Mathematica

1. Notebook interface you interact with Mathematica by creating interactive
documents.

2. Text-based interface you interact with your computer primarily by typing text
on the keyboard. You may be able to start Mathematica with a text-based
interface by double-clicking on a Mathematica Kernel icon.
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3. MathLink interface communication with other programs. An important aspect
of Mathematica is that it can interact not only with human users but also
with other programs. This is achieved primarily through MathLink, which is a
standardized protocol for two-way communication between external programs
and the Mathematica kernel.

1.4 Notebook Interfaces

If you use your computer via a purely graphical interface, you will typically double-
click the Mathematica icon to start Mathematica. In a “notebook” interface, you
interact with Mathematica by creating interactive documents. The notebook front
end includes many menus and graphical tools for creating and reading notebook
documents and for sending and receiving material from the Mathematica kernel. A
notebook mixing text, graphics, and Mathematica input and output.

When Mathematica is first started, it displays an empty notebook with a blinking
cursor. You can start typing right away. Mathematica by default will interpret your
text as input. You enter Mathematica input into the notebook, then press Shift

+ Enter together to make Mathematica process your input. If your keyboard has
a numeric keypad, you can use its Enter key instead of Shift + Enter. After you
send Mathematica input from your notebook, Mathematica will label your input
with In[n]:=. It labels the corresponding output Out[n]=. Labels are added
automatically.
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The output is placed below the input. By default, input/output pairs are grouped
using rectangular cell brackets displayed in the right margin. In addition to the
standard textual input, Mathematica supports the use of generalized, non-textual
input such as graphics and user interface controls, freely mixed with textual input.
To exit Mathematica, you typically choose the Exit menu item in the notebook
interface.

Important Notes When you input a command in Mathematica, make sure you
do the following:

1. Use upper and lower case characters exactly as we do. Mathematica is very
“case sensitive”. If you use the wrong capitalization, you may not get the
desired result.

2. Use exactly the type of brackets we show. There are three types of brackets:
square brackets [ ], parentheses ( ), and curly braces { }. Each has its
own meaning in Mathematica. If you use the wrong one, Mathematica may
not do what you expect.

3. Your output might appear in a slightly different from ours in some examples.
We explain why in the discussion of each example.

4. If your Mathematica notebook contains a lot of output, especially if graphical
output is involved, it can become very large when saved to your disk. Consider
choosing Delete All Output from the Cell menu before saving your notebook
to disk. Your saved file will then be much smaller, and it will be easier to
transmit electronically to others using Mathematica.

5. You can stop Mathematica in the middle of a computation by choosing Abort
Evaluation under the Evaluation menu.

1.5 Editing Cells and Text

1. Start a new cell in a notebook:
Move the mouse to the new location which is between or outside existing
cells. Wait for the cursor to change to the horizontal insertion shape. Click
the mouse. A horizontal line will appear between cells. Start typing.

2. Delete a cell:
Click the cell bracket to select the cell. The bracket will be highlighted.
Choose either the Cut or Clear command from the Edit menu, or hit the
Delete key.
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3. Make a copy of a cell in a new location:
Click the cell bracket to select the cell. The bracket will be highlighted.
Choose the Copy command from the Edit menu. Move the mouse to the
new location. Wait for the cursor to change to the horizontal insertion shape.
Click the mouse. A horizontal line will appear between cells. Choose the
Paste command from the Edit menu.

4. Move a cell to a new location:
Save procedures as above, except use the Cut command instead of the Copy
command.

5. Cut, copy, or paste the text of a cell within the same or another cell:
Handle this the same way that you manipulate text in any word processor.
(Use the mouse to select, and then use one of the Cut, Copy or Paste com-
mands.)

6. Change the font, size, or style of an entire cell:
Click the cell bracket to select the cell. From the Format menu select the
appropriate font, size, and style.

7. Change the font, size, or style of some (or all) of the text within the
cell:

(a) Select the text with the mouse.

(b) From the Format menu select the appropriate font, size, and style.

8. Change the default font, size, or style of all the cells of a given type
in a notebook:

(a) Start with the menu selection Format→Edit Stylesheet to see the Style
Definitions in use with your notebook.

(b) Select a cell style, such as Input, from the pull-down menu.

(c) It appears in the stylesheet window. Click on its grouping bracket.

(d) Make a format change such as Format→Size→ 16. All Input cells in
your notebook now appear in 16 point type.

1.6 Palettes

Palettes are specially-prepared types of notebooks that provide graphical shortcuts
for entering commands and expressions for those who like visual menus. You open
one of them by using the Palettes Menu. There are several predefined palettes
available, depending on the specific version of Mathematica you have. For example,
The Basic Math Assistant palette lets you enter expressions involving integrals,
roots, and fractions in a more pleasing, mathematical way. It also provides buttons
to enter Greek symbols and some special characters directly.
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Many of the buttons on the Basic Math Assistant palette, as well as the other
Assistant palettes available from the Palettes menu, provide command templates
when they are clicked. For example, navigating to the 2D tab of the Basic

Commands section and clicking the Plot button yields the following.

Plot[ function , { var , min , max } ]

Such a template provides the appropriate syntax for the command name and only
requires the user to enter the remaining arguments before evaluating the command.
The arguments can be entered with the keyboard (and Tab can be used to jump
between the placeholders) or by clicking buttons in the palette.

You can use the CreatePalette command to construct your own custom
palette, which is handy if you find yourself doing the same operations and type-
setting constructions over and over again.

9
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2 Mathematica as a Calculator

2.1 Commands for Basic Arithmetic

Mathematica works much like a calculator for basic arithmetic. Just use the +,

-, *, and / keys on the keyboard for addition, subtraction, multiplication, and
division. As an alternative to typing *, you can multiply two numbers by leaving a
space between them (the × symbol will automatically be inserted when you leave a
space between two numbers). You can raise a number to a power using the ^ key.
Use the dot . to type a decimal point.

Example 2.1. Calculate:

1)
25.5

5

25.5 / 5

5.1

2) 4+ 25

4 + 2^5

36

3)
23

5
− 3

5
+ 5 (23)

23/5 - 3/5 + 5 * 2^3

44

Did you notice that when you entered the expressions in Example (2.1), Mathemat-
ica was actively coloring parts of your input as you typed? Mathematica uses this
coloring aid scheme to tell the user whether the input is complete and syntactically
correct.

2.2 Precedence

Mathematica follows the laws of precedence of multiplication over addition and so
on, just as you do by hand. Precedence of common operators is generally defined so
that higher-level operations are performed first. For simple expressions, operations
are typically ordered from highest to lowest in the order:

1. Parentheses.

2. Factorial.

3. Exponentiation, from right to left.

4. Multiplication and Division, from left to right.

5. Addition and Subtraction, from left to right.
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Note Use parentheses ( ) to group terms in expressions. Do not use square
brackets [ ] or curly braces { }, they mean something different.

Example 2.2. In Mathematica, the expression
3× 5

4− 2
− 2

1+ 5
is entered as follows.

(3 * 5) / (4 - 2) - 2 / (1 + 5)

43

6

Note that, Mathematica normally gives you an exact (symbolic) value for every
expression.

2.3 Built-in Constants

The mathematical constants used most often are already built into Mathematica.
The table below shows a few of these. Notice that all names begin with a capital
letter.

π Ratio of a circle’s circumference to its diameter Pi

e Natural exponential E

i Imaginary number I

π/180 Degree to radian conversion multiplier Degree

∞ Positive infinity Infinity

Once again, you will see some coloring aids as you type the names of built-in
constants. When entering Degree, for example, the D will be colored black (it
means something on its own), then the characters will be colored blue until you type
the final e, at which point the entire name will be colored black. That’s because
none of the names De, Deg, Degr, or Degre is known. Also, use parentheses in
expressions to clarify what you mean. This helps avoid mistakes. For example, you
might think that E^2Pi means e2π, but it doesn’t! It is actually e2 × π because
the exponentiation is done before the multiplication of 2 and π. To get e2π, you
should write E^(2Pi).

2.4 Built-in Functions

Mathematica has many built-in functions. These are the ones you will probably use
the most.

Natural logarithm ln x Log[x]

Logarithm to base a loga x Log[a,x]

Exponential ex Exp[x]

Absolute value |x| Abs[x], RealAbs[x]
Square root

√
x Sqrt[x]

Trigonometric sin x, cos x, · · · Sin[x], Cos[x],..

Inverse trigonometric sin−1 x, cos−1 x, · · · ArcSin[x],..

Hyperbolic sinh x, cosh x, · · · Sinh[x], Cosh[x],..

Inverse hyperbolic sinh−1 x, cosh−1 x, · · · ArcSinh[x],..
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Notes

1. The names of Mathematica’s built-in functions begin with an upper-case let-
ter, and each uses square brackets for the argument(s) of the function.

2. Mathematica uses radian measure for trigonometric functions.

Example 2.3. Evaluate:

1) sin

(
2π

3

)
Sin[2 Pi / 3]√
3

2

2) log4 (1024)

Log[4, 1024]

5

3) cos (120◦)

Cos[120 Degree]

−1
2

4)
√
2+
√
8

Sqrt[2] + Sqrt[8]

3
√
2

5) e3 ln 5

Exp[3 Log[5]]

125

6) tan−1(−∞)

ArcTan[-Infinity]

−π
2

To evaluate the real-valued cube root of a real number x, use the CubeRoot[x]

function. We evaluate the value of 3
√
−2.46038 as follows.

CubeRoot[-2.46038]

−1.35
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In general, to evaluate the real-valued nth root of a real number x, use the built-in
function Surd[x,n].

Example 2.4. Evaluate 8

√
390625

6561
.

Surd[390625/6561, 8]
5

3

Notes

1. Log2[x] gives the base-2 logarithm of x. Also, Log10[x] gives the base-10
logarithm of x.

2. You can add a comment to any expression by enclosing it within the symbol
pairs (* and *). For example:

27*3 (* This multiplies 27 and 3. *)

81

Mathematica does not try to evaluate the phrase “This multiplies 27 and 3.”
when it evaluates your input. The phrase is for your use only. Mathematica
reminds you of this by coloring comments gray.

2.5 Numerical and Scientific Notations

Mathematica normally gives you an exact (symbolic) value for every expression, for
example

(3 + 9) * (4 - 8) / 1247 * 67

−3216
1247

You can force Mathematica to give you an answer that looks like the decimal answer
you would get on a calculator by using the function N with square brackets around
an expression. If we attempt to give a result with n−digit precision for an expression
(expr) we use N[expr,n]. For example,

N[(3 + 9)*(4 - 8)/1247*67]

−2.57899

Example 2.5. Find the 45−digits precision of π.

N[Pi, 45]

3.14159265358979323846264338327950288419716940

Example 2.6. Find the numerical value of log2

(√
2+ 7
√
123

1+ sin
(
π
13

)) using 16−digits

of precision.

13
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N[Log2[(Sqrt[2] + Surd[123, 7])/(1 + Sin[Pi/13])], 16]

1.457204671921001

Mathematica uses standard scientific notation to display results when the numbers
either get very large or very small. For example,

N[1234567890]

1.23457× 109

N[1234567890,9]

1.23456789× 109

N[0.000003492836]

3.49284× 10−6

2.6 Prefix, Postfix, Infix Forms for Built-in Functions

There are four ways to write expressions in Mathematica.

f[x,y] Standard form for f[x,y] N[Sqrt[2]] 1.41421
f@x Prefix form for f[x] N@Sqrt[2] 1.41421
x//f Postfix form for f[x] Sqrt[2]//N 1.41421
x∼f∼y Infix form for f[x,y] Sqrt[2]∼N∼13 1.414213562373

You should notice that // has very low precedence. If you put //f at the end of
any expression containing arithmetic or logical operators, the f is applied to the
whole expression. So, for example, x+y//f means f[x+y], not x+f[y]. While the
prefix form @ has a much higher precedence. f@x+y is equivalent to f[x]+y, not
f[x+y]. You can write f[x+y] in prefix form as f@(x+y).

2.7 Mathematica Help

In order to get a quick description of a command, use ?Command. If you need more
explanation use ??Command. If you need even more, use Mathematica’s Document
Center in the Help Menu and search for the command. Mathematica comes with an
excellent Help which contains explanations and many nice examples demonstrating
how to use each of the functions available in this software.

?N

N[expr ] gives the numerical value of expr .
N[expr,n] attempts to give a result with n−digit precision.

14
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Exercises for Chapter 2

1. Compute a 20 decimal place approximation to e, the base of the natural
logarithm.

2. Calculate

(a)

∣∣∣∣∣ log2(128) + 6
√
16777216

cos
(
sin−1

(
1
2

)) ∣∣∣∣∣
(b) tan

(π
5

)
3. Compute the common logarithm (base 10) of 25. What is its numerical

approximation?

4. What happens if you try to subtract ∞ from ∞ ?

5. Can Mathematica calculate the expression 29941 − 1 easily?

6. Show that

√
3
√
64
(
22 +

(
1
2

)2)− 1 = 4.

7. Add parentheses to 4− 2 ∗ 3+ 4 to make 14.

8. What happens if you compute
1

0
?

9. Try to find the numerical value of sin2
(π
5

)
.

10. Use the help to read about the command FunctionExpand, and use it to

prove that sin (24◦) =
1

8

√
3
(√

5 + 1
)
− 1

4

√
1

2

(
5−
√
5
)

.
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3 Variables and Functions

3.1 Rules for Names

You are free to make up the names of the variables you use, as long as you use only
letters and numbers and obey these rules:

1. Names cannot begin with a number.

2. You cannot use names that conflict with the names that are predefined in
Mathematica. For example, you cannot name one of your own variables Sin.

Notice that because of the first rule above, Mathematica will automatically “do the
right thing” with an expression such as 2x. Since this is not an acceptable name,
Mathematica will interpret it as “2” times “x”. All of the following are examples
of legitimate names that you can use for variables:

a, m, pI, A, area, perimeter, ABBA, good4you, classOf2016

Mathematica distinguishes uppercase and lowercase characters. For example, the
names Batman, batman, and batMan are all different. One convention we will use
throughout the remainder of the text is that all of the variable names we define will
begin with a lowercase letter. You will know that the names belong to us, since all
of Mathematica’s predefined names start with an uppercase letter.

3.2 Immediate Assignment

You can define a name by assigning any value to it. You can then use the value
whenever you want later in a computation. You do this using the equal sign =,
which is the symbol for immediate assignment. For example:

a = 3

3

The name “a” can also be called a symbol or a variable. Once you have assigned
a value to a variable, you can recall it by using it directly in an expression:

N@Sqrt[2/a]

0.816497

You may want to know how Mathematica keeps track of all the symbols and variables
that you define. Say we assign the name mySum to the sum of x and 3 times y.

mySum = x + 3 y

x+ 3y

In this case, Mathematica simply repeated our definition because x and y do not
yet have an associated value. Now suppose we assign the value 2 to x and the value
5 to y, and then reevaluate mySum:

16
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x = 2

2

y = 5

5

mySum

17

When Mathematica reevaluated mySum this time, it replaced x and y by their re-
spective values, and simplified the resulting expression.

Note Mathematica will interpret spaces between letters as multiplication, but it
will not put a × sign on the screen. If you are not looking carefully, you may not
notice the difference between the expression x y and xy. The former means x times
y, while the latter is the name of a single variable called xy.
Primarily there are three equalities in Mathematica, =, := and ==. There is a
fundamental difference between = and :=. Consider the following example: Let
Y = 1 and B = 3

Y = 1; B = 3;

Ending your input with ; stops Mathematica from displaying the complicated result
of the computation. Now, let X = Y+ 2 and A := 2B as follows.

X = Y + 2;

A := 2 B;

then find the values of X and A as follows.

X

3

A

6

Now, redefine the values of Y and B to be 3 and 1, respectively, then display the
new values of X and A.

Y = 3; B = 1;

X

3

A

2

17
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From the first example it is clear that when we define X = Y + 2 then X takes the
value of Y+ 2 and this will be assigned to X. No matter if Y changes its value,
the value of X remains the same. In other words, X is independent of Y. But in
A := 2 B, A is dependent on B, and when B changes, the value of A changes too.
Namely using := makes A a function with variable B.
Finally, the equality == is used to compare:

5 == 5

True

3 == 5

False

We will discuss this further later on.

Clearing Symbols You tell Mathematica to forget about the assignment using
the Clear command:

Clear[a]

a

You can also Clear assignments for many names at the same time in one statement
Clear[mySum, x, y, X, Y, A, B]. You can use the command Clear["Global’

*"] to clear all the variable and function names you have created so far in your
Mathematica session.

3.3 Functions

Mathematica has many built−in functions such as N, Sqrt, Sin and Log. You can
add your own functions as well.

Defining Functions To define a function f(x) in Mathematica, you use the syn-
tax:

f[x ] := formula in terms of the variable x

This syntax may look a little awkward, but you should notice:

• The underscore character immediately following the variable on the left, x_,
tells Mathematica that x is the variable of the function.

• The colon−equal sign := is a delayed assignment command. It behaves dif-
ferently from = as we have seen before and Mathematica will not give any
output for this statement.

• After you type the x_, Mathematica visually identifies occurrences of the
variable name in the formula by setting them in italic type. On some systems,
the variable will also appear in a different color, like the green color.

18
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Example 3.1. Define the function f(x) =
x2 + 4

x− 1
in Mathematica, and then eval-

uate the value of f(3), f(−1.2), and f(1).

f[x ] := (x^2 + 4)/(x - 1)

f[3]
13

2

f[-1.2]

−2.47273

f[1]

ComplexInfinity

Functions of Several Variables Functions with more than one variable are de-
fined using a similar syntax, as illustrated in the following examples.

Example 3.2. Define a function that computes the average speed of a moving
object passes a distance 40 (km) in a time 34 (min).

speed[distance , time ] := distance / time

N@speed[40, 34]

1.17647 (* 1.17647 kilometers per minute. *)

N@speed[40, 34/60]

70.5882 (* 70.5882 kilometers per hour. *)

Example 3.3. Heron’s formula states that the area of a triangle whose sides have
lengths a, b, and c is A =

√
s(s− a)(s− b)(s− c) where s is the semi-perimeter

of the triangle; that is, s =
a+ b+ c

2
. Let 4ABC be the triangle with sides a = 4,

b = 13 and c = 15, find its area.

TriangleArea[a , b , c ] := (

s = (a + b + c)/2;

Sqrt[s (s - a) (s - b) (s - c)]

)

TriangleArea[4, 13, 15]

24
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Piecewise Functions A new command named Piecewise has been introduced in
Mathematica 6 specifically for dealing with functions of split definition. Its syntax
has either of these two forms, each of which pairs together values and conditions:

Piecewise[{ {val1, cond1} , {val2, cond2} , · · ·}]

Piecewise[{ {val1, cond1} , {val2, cond2} , · · ·}, default value]

Example 3.4. Let g(x) =


1− x : 0 < x ≤ 2

x ln x : 2 < x ≤ 5

ex : x ≤ 0 or x > 5

. Find the values of g(1),

g(5), and g(−4).

g[x ]:=Piecewise[{{1-x, 0<x<=2}, {x Log[x], 2<x<=5}}, Exp[x]]

g[1]

0

g[5]

5 ln 5

g[-4]

e−4

3.4 Substitution Rule

You can substitute values into any symbolic expression without having to assign
values to the variables explicitly. The substitution symbol “/.” is made using the
slash and period symbols, with no space in between. It is used in the form:

expression /.
{

list of substitutions using ->, separated by commas
}

For example, to substitute x = 2 and y = 5 into the expression x2 − 2xy:

x^2 - 2*x*y /.{x->2, y->5}
−16

The arrow symbol -> is formed by entering the minus sign and greater than sign
together, with no spaces in between. (As soon as you finish typing these two signs,
Mathematica will automatically change them to a very spiffy looking→) The arrow
symbol -> represents a substitution rule. We may use it many times throughout
the lectures. The primary advantage of using the substitution command is that the
value you substitute into a variable is temporary and is not assigned to the variable.
It is not remembered by Mathematica.
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Example 3.5. The roots of a quadratic function f(x) = ax2 + bx+ c are given by
the quadratic formula

r1 =
−b+

√
b2 − 4ac

2a
and r2 =

−b−
√
b2 − 4ac

2a

Let f(x) = x2 + x− 6. Find the larger root of f.

LargerRoot = (-b + Sqrt[b^2 - 4 a c])/(2 a);

LargerRoot /. {a -> 1, b -> 1, c -> -6}
2

3.5 Anonymous Functions

Sometimes we need to “define a function as we go” and use it on the spot. Mathe-
matica enables us to define a function without giving it a name (nor any reference to
any specific variables) use it, and then move on! These functions are called anony-
mous or pure functions. Obviously if we need to use a specific function frequently,
then the best way is to give it a name and define it as we did before. Here is an
anonymous function equivalent to f(x) = x2 + 4.

(#^2+4)&

The expression (#^2+4)& defines a nameless function. As usual we can plug in
data in place of #. The symbol & determines where the definition of the function is
completed. For example, we find the value of f(x) = x2 + 4 when x = 5 using the
pure function form as follows

(#^2+4)&[5]

29

Also, the value of g(x) =
√
x sin(x) when x =

π2

16
in numerical form is

(Sqrt[#] Sin[#])&[Pi^2/16] //N

0.454328

Anonymous functions can handle several variables. Here is an example of an anony-
mous function for f(x, y) =

√
x2 + y2.

Sqrt[#1^2+#2^2]&[3,4]

5

As you might guess, #1 and #2 refer to the first and second variables in the function.
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Exercises for Chapter 3

1. The arc length of a segment of a parabola ABC of an ellipse with semi−minor
axes a and b is given approximately by:

LABC =
1

2

√
b2 + 16a2 +

b2

8a
ln

[
4a+

√
b2 + 16a2

b

]
Determine LABC if a = 11 cm and b = 9 cm.

2. Define the two functions f(x) = x2 − 1 and g(x) = x3.

(a) Evaluate: f
(
g(x)

)
, g
(
2f(3)− 13

)
, f
(
f(f(0.5)))

)
.

(b) What do the following pure functions do?
Nest[#1, #2, #3] &[f, 0.5, 3]

3. In the triangle shown a = 5.3 cm, γ = 32◦, and b = 6 cm. Define α, β, and
c as variables, and then:

(a) Calculate the length c by using the Law of Cosines:

c2 = a2 + b2 − 2ab cos γ.

(b) Calculate the angles α and β (in degrees) using the Law of Cosines.
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4 Lists

4.1 What is a List?

A list in Mathematica is an expression whose elements are separated by commas
and enclosed in { curly braces }. The elements of a list can be of any type, and
need not be all of the same type. For example:

{2, 5, 7, 10, -3, -25}

{"good", 17, {23, 89}}

Lists are important structures in Mathematica. Many of Mathematica’s inputs and
outputs are expressed using lists.

Lists respect order, so that {1,2} is not the same as {2,1} in Mathematica.
Also, a list can contain a copy of the same object several times, so {1,2,1} is defer
from {1,2}.

4.2 Functions Producing Lists

Mathematica provides us with commands for which the output is a list. These
commands have a nature of repetition and replace loops in procedural programming.

Range

Range[imax]

generates the list {1,2,...,imax}

Range[imin,imax]

generates the list {imin,...,imax}

Range[imin,imax,di]

uses step di

Table

Table[expr,{i, imax}]
generates a list of the values of expr when i runs from 1 to imax

Table[expr,{i, imin, imax}]
starts with i = imin

Table[expr,{i, imin, imax, di}]
uses step di

Table[expr,{i, {i1, i2, ...}}]
uses the successive values i1, i2,...

Table[expr, n]

generates a list of n copies of expr.
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Array

Array[f,n]

generates a list of length n, with elements f[i].

Array[f,n,r]

generates a list using the index origin r.

Array[f,n,{a,b}]
generates a list using n values from a to b.

Example 4.1. Produce the list of

1. the first ten integers

Range[10]

{1,2,3,4,5,6,7,8,9,10}

Table[i,{i, 10}]
{1,2,3,4,5,6,7,8,9,10}

Array[#&, 10]

{1,2,3,4,5,6,7,8,9,10}

2. the first 10 even integers

Range[2,20,2]

{2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

Table[2i,{i, 10}]
{2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

Array[2#&, 10]

{2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

3. the reciprocal of the first 10 odd integers

Table[1/(2 i - 1), {i, 10}]{
1,

1

3
,
1

5
,
1

7
,
1

9
,
1

11
,
1

13
,
1

15
,
1

17
,
1

19

}
Array[1/(2 # - 1) &, 10]{
1,

1

3
,
1

5
,
1

7
,
1

9
,
1

11
,
1

13
,
1

15
,
1

17
,
1

19

}

4.3 Working with Elements of a List

Mathematica lets you work with the elements of a list directly. You can do this
using either the Part command, or - as a shortcut - the double square brackets
[[ ]] notation. For example, suppose we’re given the following definition of a list:
mylist = {"good",17,{23,89}}, then
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mylist[[2]]

17

Part[mylist,3]

{23,89}

mylist[[3,2]]

89

One of the nice features of Mathematica is that it often allows us to perform
operations simultaneously on each element of a list with a natural syntax, especially
when the elements of the list are numerical.

Example 4.2. For the list of the first five positive integers do the following.

1. add 6 to each element.

Range[5] + 6

{7, 8, 9, 10, 11}

2. multiply each element by −3.

-3 * Range[5]

{-3, -6, -9, -12, -15}

3. rise each element to the power 5.

Range[5]^5

{1, 32, 243, 1024, 3125}

4. divide 120 by each element.

120 / Range[5]

{120, 60, 40, 30, 24}

If two lists have the same number of elements, we can add, subtract, multiply and
divide them together element by element. For example

{1, 2, 3} + {3, 1, 4}
{4, 3, 7}

{3, 4}^{2, 3}
{9, 64}

{1, 2, 3} * {3, 1, 4}
{3, 2, 12}
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4.4 Listable Functions

There are times when we would like to apply a function to all the elements of a
list. Suppose f is a function and {a,b,c} is a list. We want to be able to “push”
the function f inside the list and get {f[a],f[b],f[c]}. Many of Mathematica’s
built−in functions have the property that they simply “go inside” a list. A function
with this property is said to be listable. For example, All the arithmetic functions
are listable, also Sqrt is a listable function.

Sqrt[{1, 4, 9}]
{1, 2, 3}

Sqrt@{1, 4, 9}
{1, 2, 3}

Should all operations and commands be listable ? The answer is clearly “no.”
The simplest example of a command that should not be listable is the Reverse

command.

Reverse[{{1, 2}, {9, 10}}]
{{9, 10}, {1, 2}}

Indeed, if Reverse were listable, the output above would instead have be treated
as {{2, 1}, {10, 9}}. The Reverse command should not be listable because it
acts on the structure of the list as a whole. It is not designed to act individually on
each element of a list. This observation brings us to the Map command.

Map The Map command can be used to force listability of any command/function
and allow it to act on each element of a list. This command has the form:

Map[ function name , list ]

As an example,

Map[Reverse, {{1, 2}, {9, 10}}]
{{2, 1}, {10, 9}}

The equivalent shorthand to apply a function to a list is /@ as follows

Reverse/@{{1, 2}, {9, 10}}
{{2, 1}, {10, 9}}

4.5 Useful Functions

We will list many of the commands we additionally use to manipulate lists and their
elements. All of the following examples will be demonstrated using the list:

listA = {2, 5, -3, 1.2 , 6.01, 7.5}

• Length reports the number of elements in a list.
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Length[listA]

6

• First and Last are used to find the first and last elements of a list, respec-
tively.

First[listA]

2

Last@listA

7.5

• Sort will arrange the elements of the list in the natural increasing order of
the elements.

Sort@listA

{-3, 1.2, 2, 5, 6.01, 7.5}

• Count will show how many times a particular item appears in a list.

Count[listA,-3]

1

• Total gives the total (sum) of the elements in list.

Total@listA

18.71

• Max and Min yield the numerically largest and smallest element of the list.

Max@listA

7.5

Min[listA]

-3

MinMax@listA

{-3, 7.5}

Exercises for Chapter 4

1. Produce the following lists:

(a) The square of the reciprocal of the first 12 integers

(b) The tuples that contains n, n2, n3 from n = 1 to n = 6

2. Sort the list in exercise (1a) in ascending order.

3. Find the total of the elements in the list in exercise (1a), and write your
answer in numerical form using 50 decimal digits.
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4. Find the value of sin x when x =
{
π,
π

2
,
π

3
,
π

4
,
π

5
,
π

6

}
.

5. For the list { {1,2}, {3,4}, {5,6}, {7,8}, {9,10} }

(a) reverse its elements,

(b) reverse the interior sub-lists only,

(c) reverse the list and each of its interior elements.

6. How many 3−digits number are there ?

7. How to generate a list such as follows using Mathematica?

{{1},{1,2},{1,2,3},{1,2,3,4},{1,2,3,4,5}}
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5 Logic and Set Theory

5.1 Being Logical

In mathematical logic, statements can have a value of True or False. These are
called Boolean expressions. This helps us to “make a decision” and write programs
based on the value of a statement. We have seen ==, which compares the left-hand
side with the right-hand side. For example

3^2+4^2==5^2

True

3-4==1

False

Other logical relations are

• x != y which is True if and only if x and y have different values.

• x < y which is True if and only if x is numerically less than y.

• x > y which is True if and only if x is numerically greater than y.

• x <= y which is True if and only if x is numerically less or equal to y.

• x >= y which is True if and only if x is numerically greater or equal to y.

For example,

3^2+4^2>=5^2

True

Sqrt[49]!=7

False

E > Pi

False

Note In logical expressions, ! means the negation (∼). If we type in Mathematica
3! this means the factorial of 3 which equals 6. We can express the factorial function
of an expr using the Mathematica built-in function Factorial[expr].

310! != Factorial[310]

False

5.2 Truth Tables

One can combine logical statements with the usual Boolean operations And (∧), Or
(∨) or the equivalent shortcuts &&, ||. In general, for two statements A and B, the
statement A ∧ B is false if one of A or B is false and A ∨ B is true if one of them is
true. In order to produce all possible combinations of true and false cases, we use
the command BooleanTable as the following example shows.
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BooleanTable[{p, q, p && q}]
{{True, True, True}, {True, False, False},

{False, True, False}, {False, False, False}}

BooleanTable[{p, q, p || q}]
{{True, True, True}, {True, False, True},

{False, True, True}, {False, False, False}}

In logic, a tautology is a formula that is true in every possible interpretation.
TautologyQ[bf] gives True if all combinations of values of variables make the
Boolean function bf yield True.

BooleanTable[(a || b) || (! a && ! b)]

{True, True, True, True}

TautologyQ[(a || b) || (! a && ! b)]

True

5.3 Element “∈”

In Mathematica, for a variable, one can specify certain domains. This means that
the variable takes its values from a specific type of data. The domains available are
Algebraics, Booleans, Complexes, Integers, Primes, Rationals and Reals.
One of the fundamental theorems in number theory is to show that π is not a
rational number, i.e., is not of the form m/n, where m and n 6= 0 are integers. Look
at the following examples:

Element[Pi, Rationals]

False

Element[Sqrt[25], Integers]

True

IntegerQ[Sqrt[25]]

True

Element[Exp[3/2], Algebraics]

False

Element[Exp[Log[3/2]], Algebraics]

True

Element[131, Primes]

True

PrimeQ[131]

True
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5.4 Handling Sets

Now it has been agreed among mathematicians that any mathematics starts by
considering sets, i.e., collections of objects. As we mentioned, the difference be-
tween mathematical sets and lists in Mathematica is that lists respect order and
repetition, which is to say one can have several copies of one object in a list. Sets
are not sensitive about repeated objects, e.g., the set {a, b} is the same as the set
{a, b, b, a}. There is no concept of sets in Mathematica and if necessary one
considers a list as a set. If one wants to get rid of duplication in a list, one can use

DeleteDuplicates[{a, b, b, a}]
{a,b}

Considering two sets, the natural operations between them are union and intersec-
tion. Mathematica provides Union to collect all elements from different lists into
one list (after removing all the duplication) and Intersection for collecting com-
mon elements (again discarding repeated elements). The following examples show
how these commands work.

U = {1, 2, 3, 4, 5, 7}

A = {1, 4, 7, 3}
{1, 4, 7, 3}

B = {5, 4, 3, 2}
{5, 4, 3, 2}

Union[A,B]

{1, 2, 3, 4, 5, 7}

Intersection[A,B]

{3,4}

Complement[U,A]

{2, 5}

The command Complement[U,A] will give the elements of the universal set U which
are not in the set A.

In mathematics, the power set (or powerset) of any set S, written P(S), is the set
of all subsets of S, including the empty set and S itself. For example, the powerset
of the set {1, 3, 2} is

Subsets[{1, 3, 2}]
{{}, {1}, {3}, {2}, {1, 3}, {1, 2}, {3, 2}, {1, 3, 2}}

To check up a set is a subset of a powerset, we use the function SubsetQ[A,B],
which yields True if B is a subset of A, and False otherwise.

SubsetQ[{1, 2, 3}, {3, 1}]
True
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In mathematics, two sets are said to be disjoint if they have no element in common.
For example,

DisjointQ[{2, 4, 6}, {1, 3, 5}]
True

5.5 Quantifiers

In a statement like x4 + x2 > 0, Mathematica treats the variable x as having a
definite, though unspecified, value. Sometimes, however, it is useful to be able to
make statements about whole collections of possible values for x. You can do this
using quantifiers ∀ ForAll and ∃ Exists. In most cases, the quantifiers can be
simplified by functions like FullSimplify. For example, the following is true.

FullSimplify@Exists[x, x^2 + x^4 > 0]

True

But, the following is false since x = 0 does not satisfy the statement.

FullSimplify@ForAll[x, x^2 + x^4 > 0]

False

Other examples:

FullSimplify@Exists[x, x^2 == x^3]

True

FullSimplify@Exists[x, x^2 == 1 && x^3 == 4]

False

FullSimplify[Exists[{p, q}, p || q && ! q], Booleans]

True

FullSimplify@ForAll[x, x^2 + x^4 >= 0]

True

FullSimplify@ForAll[x, x^2 >= x]

False

Exercises for Chapter 5

1. Construct the truth table for the statement p || (q && r).

2. Show that the statement (p ∧ q) ∨ (∼ p∨ ∼ q) is a tautology.
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3. A contradiction is a formula that is false in every possible interpretation. Show
that the statement (p∧ ∼ q)⇔ (p⇒ q) is a contradiction.
Hint: use Mathematica’s help to read about the commands Equivalent (⇔)
and Implies (⇒).

4. Show that ∀x ∈ N, ∃y ∈ N such that x = 3y or x = 3y+ 1 or x = 3y+ 2.

5. Let U =
{
1, 2, 3, 4, 5, 6, 7

}
, A =

{
2, 5, 7

}
, and B =

{
3, 4, 6, 7

}
.

(a) Determine whether A, and the complement of B are disjoint or not.

(b) Evaluate A ∪ B, B ∩ A, and P(A) ∩ P(B).
(c) Show that A ⊆ A ∪ B and A ∩ B ⊆ A.

6. Prove that −1
2
≤ (x+ y)(1− xy)

(1+ x2) (1+ y2)
≤ 1

2
for all x, y ∈R.
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6 Number Theory

6.1 Primes

A prime number (or a prime) is a natural number greater than 1 that has no positive
divisors other than 1 and itself. A natural number greater than 1 that is not a prime
number is called a composite number. For example, 5 is prime because 1 and 5 are
its only positive integer factors, whereas 6 is composite because it has the divisors
2 and 3 in addition to 1 and 6. Either the built-in function PrimeQ or CompositeQ
will help you to determine whether an integer is prime or composite.

• PrimeQ[expr] yields True if expr is a prime number, and yields False

otherwise.

• CompositeQ[expr] yields False if expr is a prime number, and yields True
otherwise.

For example, the number 13 is prime while 10100 + 1 is composite since

PrimeQ[13]

True

CompositeQ[13]

False

PrimeQ[10^100+1]

False

CompositeQ[10^100+1]

True

The first few primes are 2, 3, 5, 7, 11, 13, · · ·. The first prime is 2, the second is 3,
the sixth is 13, and so on. In Mathematica, Prime[n] gives the nth prime number.
For example,

Prime[1]

2

Prime[6]

13

Prime[2016]

17519

Prime[n] is listable function, that is it can find the primes at many orders or
positions. For example,

Prime[{1,6,2016}]
{2, 13, 17519}
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Example 6.1. Find the first 10 primes.

Prime[Range[10]]

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29}

To find a prime number above a certain value n, you may use NextPrime[n]. If
you would the kth prime above n you should use NextPrime[n,k]. For example,

NextPrime[4]

5

NextPrime[4,3]

11

The number of primes less than or equal to x is evaluated using PrimePi[x]. For
example, there are 25 primes less that or equal to 100 since

PrimePi[100]

25

6.2 Integer Factorization

In number theory, the prime factors of a positive integer are the prime numbers
that divide that integer exactly. The prime factorization of a positive integer is a
list of the integer’s prime factors, together with their multiplicities; the process of
determining these factors is called integer factorization. The fundamental theorem
of arithmetic says that every positive integer has a single unique prime factorization.
To shorten prime factorizations, factors are often expressed in powers (multiplicities).
For example, 360 = 23 × 32 × 5. In Mathematica, we use

FactorInteger[360]

{{2, 3}, {3, 2}, {5, 1}}

The list of all integers that divides a number n can be evaluated using Divisors[n].
For example,

Divisors[10]

{1, 2, 5, 10}

Divisors[13]

{1, 13}

Example 6.2. How many divisors are there for 13!.

Length@Divisors[13!]

1584

Sometimes, you need to know the highest power k of b such that bk divides n. To
do this, use the Mathematica function IntegerExponent[n,b]. For example, the
highest power of 2 that divides 360 is 3.
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IntegerExponent[360,2]

3

Example 6.3. With how many zeros will 130! end ?

IntegerExponent[130!,10]

32

Example 6.4. How many digits are there for 130! ?

IntegerLength[130!]

220

and they are distributed as follows:

14 1’s, 21 2’s, 14 3’s, 23 4’s, 24 5’s,
16 6’s, 20 7’s, 15 8’s, 22 9’s, 51 0’s,

since

DigitCount[130!]

{14, 21, 14, 23, 24, 16, 20, 15, 22, 51}

6.3 Number Theoretic Functions

In mathematics, the remainder is the amount “left over” after performing some
computation. In arithmetic, the remainder is the integer “left over” after dividing
one integer by another to produce an integer quotient (integer division). In com-
puting, the modulo operation finds the remainder after division of one number by
another (sometimes called modulus).

Given two positive numbers, a (the dividend) and n (the divisor), a modulo n

(abbreviated as a mod n) is the remainder of the Euclidean division of a by n. For
instance, the expression “5 mod 2” would evaluate to 1 because 5 divided by 2

leaves a quotient of 2 and a remainder of 1, while “9 mod 3” would evaluate to
0 because the division of 9 by 3 has a quotient of 3 and leaves a remainder of 0;
there is nothing to subtract from 9 after multiplying 3 times 3.

Quotient and Remainder In Mathematica, if we divide a by n, then the quotient
is evaluated using Quotient[a, n] and the remainder (modulus) is Mod[a, n].
For example,

Quotient[5, 2]

2

Mod[5, 2]

1

QuotientRemainder[5, 2]

{2, 1}

36



Feras Awad @2019 6 NUMBER THEORY

QuotientRemainder[9, 3]

{3, 0}

If the remainder is 0 when we divide a by n, then we say that a is divisible by n. To
test whether m is divisible by n you may use Divisible[m,n] which yields True if
m is divisible by n, and yields False if it is not. For example,

Divisible[5, 2]

False

Divisible[130!, 1210]

True

Mod[130!, 1210]

0

GCD and LCM In mathematics, the greatest common divisor (gcd) of two or
more integers, when at least one of them is not zero, is the largest positive integer
that divides the numbers without a remainder. For example, the GCD of 8 and 12
is 4.

GCD[8, 12]

4

The least common multiple of two or more integers is the smallest positive integer
that is divisible by all of them. Since division of integers by zero is undefined, this
definition has meaning only if the integers are different from zero. For example, the
LCM of 8 and 12 is 24.

LCM[8, 12]

24

Example 6.5. Find the GCD and LCM for the numbers 2145, 1716, 9918.

GCD[2145, 1716, 9918]

3

LCM[2145, 1716, 9918]

14182740

In number theory, two integers a and b are said to be relatively prime, mutually
prime, or coprime if the only positive integer that evenly divides both of them is 1.
That is, the only common positive factor of the two numbers is 1. This is equivalent
to their greatest common divisor being 1. For example, 8, 9, and 11 are relatively
prime since

CoprimeQ[8, 9, 11]

True
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The function CoprimeQ[n1, n2, ...] yields True if all pairs of the ni are rela-
tively prime, and yields False otherwise. For example, 6, 9, and 11 are not relatively
prime since 3 divides 6 and 9.

CoprimeQ[6, 9, 11]

False

6.4 Numerical Functions

• Round[x] gives the integer closest to x.

Round[2.4]

2

• Floor[x] gives the greatest integer less than or equal to x.

Floor[7.8]

7

• Ceiling[x] gives the smallest integer greater than or equal to x.

Ceiling[5.2]

6

6.5 Fibonacci Sequence

The sequence 1, 1, 2, 3, 5, 8, 13, 21, · · · is called Fibonacci sequence. By definition,
the first two numbers in the Fibonacci sequence are 1 and 1, and each subsequent
number is the sum of the previous two. The Mathematica function Fibonacci[n]

gives the nth Fibonacci number.

Fibonacci[7]

13

Fibonacci[n] is listable function, so you can find, for example, the first 14 Fi-
bonacci numbers as follows.

Fibonacci[Range[14]]

{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377}

Example 6.6. Find the sum of the first 100 Fibonacci numbers.

Total@Fibonacci[Range[100]]

927372692193078999175

Example 6.7. Determine whether the 13th Fibonacci number is prime or compos-
ite?

PrimeQ[Fibonacci[13]]

True
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6.6 Digits in Numbers

In this section we learn how to convert between numbers and lists. To obtain a
list of the decimal digits in the integer n, you may use IntegerDigits[n]. To
construct an integer from the list of its decimal digits use FromDigits[list].

Example 6.8. Reverse the integer 365435296161.

FromDigits[Reverse[IntegerDigits[365435296161]]]

161692534563

IntegerReverse[365435296161]

161692534563

6.7 Selecting from Lists

So far we have been able to create a list of data by using functions producing lists.
The next step is to be able to choose, from a list, certain data which fit a specific
description. This can be achieved using the command Select. The structure of
Select is as follows.

Select[list, crit]

picks out all elements ei of list for which crit[ei] is True.

Select[list, crit, n]

picks out the first n elements for which crit[ei] is True.

Example 6.9. From the first 25 Fibonacci numbers, find the even numbers of
them?

Select[Fibonacci[Range[25]], EvenQ]

{2, 8, 34, 144, 610, 2584, 10946, 46368}

Select[Fibonacci[Range[25]], EvenQ[#] &]

{2, 8, 34, 144, 610, 2584, 10946, 46368}

Example 6.10. From the first 100 primes, how many of them are greater than 450?

Length@Select[Prime[Range[100]], # > 450 &]

13

Example 6.11. How many numbers of the form 3n5 + 11, when n varies from 1
to 2000, are prime?

Length@Select[Range[1, 2000], PrimeQ[3 #^5 + 11] &]

97

Example 6.12. Find positive integers 1 ≤ n ≤ 2500 such that 1997 divides n2 + (n+ 1)2.

Select[Range[2500], Divisible[#^2 + (# + 1)^2, 1997] &]

{792, 1204}
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Example 6.13. How many 3-digits integer has at least 30 divisors?

Length@Select[Range[100, 999], Length[Divisors[#]] >= 30 &]

2

Example 6.14. How many integers up to 1000 are there will be prime when we
reverse its digits?

Length@Select[Range[1000],PrimeQ@IntegerReverse[#] &]

197

Example 6.15. Notice that 122 = 144 and 212 = 441, i.e., the numbers and their
squares are reverses of each other. Find all the numbers up to 100 with this property.

Select[Range[100],IntegerReverse[#]^2 == IntegerReverse[#^2] &]

{1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 30, 31, 100}

Example 6.16. Show that among the first 200 primes p, the ones such that the
remainder when 19p−1 is divided by p2 is 1 are {3, 7, 13, 43, 137}.

Select[Prime[Range[200]], Mod[19^(# - 1), #^2] == 1 &]

{3, 7, 13, 43, 137}

Example 6.17. A number is called a Harshad number if it is divisible by the sum of
its digits (e.g., 12 is Harshad as it is divisible by 1+2=3). Find all 2-digit Harshad
numbers.

Select[Range[10, 99],

Divisible[#, Total@IntegerDigits[#]] &]

{10, 12, 18, 20, 21, 24, 27, 30, 36, 40,

42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90}

Exercises for Chapter 6

1. Determine whether 25 − 1 is prime or composite?

2. Find the 12th prime number?

3. What is the prime number next to 1000? What is the 5th prime number next
to 1000? What is the 5th prime number previous to 1000?

4. How many primes are there less than 1000?

5. How many 6-digits primes are there?

6. Factor the integer 12345?
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7. Write all the divisors of 12345? How many are there?

8. Round the numbers {0.5, 1.5, 2.5, 3.5, 4.5, 5.5}.

9. To what multiple of 12 the number
√
1590 is closest to ?

10. Between what two consecutive integers does (π + e)3 lie?

11. Find the least common multiple and the greatest common divisor of the in-
tegers 16, 24, 524.

12. Find the quotient and reminder when 13! is divided by 2256.

13. Find the sum of the first 100 primes.

14. Find the sum of the digits of 22!.

15. Find the sum of the first 123 even integers.

16. How many integers are there divide both 1545 and 1230.

17. Show that among the first 500 Fibonacci numbers, 18 of them are prime.

18. For which 1 ≤ n ≤ 1000 does the formula 2n + 1 produce a prime number?

19. An integer p is called prime-palindromic if it is prime and the number when
we reverse the digits of p is also prime (for example 941). Write a code to
find all prime-palindromic numbers up to 1000.

20. Which of the first 10 Fibonacci number is not prime?

21. From the 3-digits integers, how many of them has prime sum of divisors?

22. Show that there is only one positive integer n smaller than 1000 such that
n! + (n+ 1)! is the square of an integer.

23. What digits do not appear as the last digit of the first 12 Fibonacci numbers?

24. A number with n digits is called cyclic if multiplication by 1, 2, 3, · · · , n pro-
duces the same digits in a different order. Find the only 6−digit cyclic number.

25. Recall that for integers m and n, the binomial coefficient

(
n

m

)
is defined by

n!

m!(n− m)!
, and in Mathematica is defined by the function Binomial[n,m].

Define the function bn = 1+

(
n

1

)
+

(
n

2

)
+

(
n

3

)
, and determine whether

22016 is divisible by 23.

26. Find out the maximum number of primes p such that k < p < 2k when k

goes from 1 to 30.
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27. We call repunits the numbers that contain only the digit 1 in their writing,
namely numbers of the form 111 · · · 11.

(a) We know that 11 is a prime repunit number. One wonders what is the
next prime repunit. Find all such numbers up to 500 digits of ones.

(b) Find the smallest repunit divisible by 19.

28. The sum of two positive integers is 5432 and their least common multiple is
223020. Find the numbers.

29. Find the smallest positive multiple of 99999 that contains no 9’s amongst its
digits.

30. Prove that for every integer n > 2, the number 22
n−1 + 1 is not a prime

number.

31. Let A be the sum of the digits of the number 44444444, and B is the sum of
digits of A. Compute the sum of the digits of B.

32. A Dudeney number is a positive integer that is a perfect cube such that the
sum of its decimal digits is equal to the cube root of the number. For example,

4913 = 173 where 17 = 4+ 9+ 1+ 3

Find all 5 digits Dudeney numbers.

33. A number is perfect if it is equal to the sum of its proper divisors. For example,
6 = 1+ 2+ 3 is perfect, while 18 6= 1+ 2+ 3+ 6+ 9 is not. You may use
the command PerfectNumberQ to test whether a number is perfect or not.
For example, PerfectNumberQ[6] returns True, while PerfectNumberQ[18]
returns False.

(a) Write a program to find all the perfect numbers up to 10000.

(b) Use the command PerfectNumber to find the first 7 perfect numbers.

34. A partition of a positive integer n, also called an integer partition, is a way
of writing n as a sum of positive integers. Two sums that differ only in the
order of their summands are considered the same partition. For example, 4
can be partitioned in five distinct ways:

4 = 4

= 3 + 1

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1

Use the command IntegerPartitions to answer the following questions.
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(a) Give a list of all possible ways to partition the integer 5 into smaller
integers ?

(b) Partitions 5 into at most 3 integers ?

(c) Partitions 5 into exactly 3 integers ?

(d) Find all partitions of 5 that involve only 1 and 3 ?

(e) How many ways are there to make change for 156 JOD with paper coins:
1, 5, 10, 20, and 50 ?

35. Goldbach’s conjecture is one of the oldest and best-known unsolved prob-
lems in number theory and all of mathematics. It states:

Every even integer greater than 2 can be expressed as the sum of two
primes.

The expression of a given even number as a sum of two primes is called a
Goldbach partition of that number. The following are examples of Goldbach
partitions for some even numbers:

6=3+ 3

8=3+ 5

10=3+ 7 = 5+ 5

Write a code using Mathematica to find all possible Goldbach partitions given
any even integer n > 2, then use it to find all Goldbach partitions for n = 430.

36. Read more about the command DigitCount in Mathematica Documenta-
tion Center, and then find only the number of 0’s, 5’s and 9’s do appear in
168371921.

37. Twin primes are pairs of primes of the form (p, q) such that q=p+2. For
example, (3,5) and (41,43) are twin primes. How many twin primes are there
up to 429?

38. (a) A palindromic number is a number that remains the same when its
digits are reversed. The command PalindromeQ[n] returns True if
the integer n is identical to IntegerReverse[n], and False otherwise.
From the first 100 primes, how many of them is palindromic?

(b) Show that: All 4-digits palindromic numbers are composite. Hint: You
may use the command AllTrue.

(c) Show that: All 4-digits palindromic numbers are divisible by 11.

39. In mathematics, a Mersenne prime is a prime number of the form Mn = 2n − 1

for some integer n. In order for Mn to be prime, n must itself be prime. This
is true since for composite n with factors a and b, n = ab. Therefore, 2n − 1

can be written as 2ab − 1, which always has the factors (2a − 1) and (2b − 1).
The first five Mersenne primes are Mn = 3, 7, 31, 127, 8191 corresponding to
n = 2, 3, 5, 7, 13.
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(a) In Mathematica, the command MersennePrimeExponentQ[n] returns
True if n is a Mersenne prime exponent, and False otherwise. Using
this command, find all Mersenne prime exponents smaller than 10000.

(b) The command MersennePrimeExponent[n] gives the nth Mersenne
prime exponent. What is the 40th Mersenne prime exponent? How
many digits are there in the 40th Mersenne prime number?
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7 Computer Algebra

The Wolfram Language has a variety of commands for algebraic manipulation oper-
ations like expansion and factoring of polynomials, addition of fractions with unlike
denominators, and collection of terms with like variables. These commands have
names that describe exactly what they do, making it intuitive for new users to find
the right commands for their needs.

7.1 Working with Polynomials and Powers

One of the abilities of Mathematica is to handle symbolic computations, i.e., Math-
ematica can comfortably work with symbols. For example, the Expand command
does exactly what its name says it does:

Expand [(x-2)(x-3)(x+1)^2]

x4 − 3x3 − 3x2 + 7x+ 6

Mathematica can also do the inverse of this task, namely factorize an expression:

Factor[x^2 + 2 x + 1]

(1+ x)2

While expansion of an algebraic expression is a simple and routine procedure, the
factorization of algebraic expressions is often quite challenging. My favorite example
is this one.

Factor[x^10 + x^5 + 1]

(1+ x+ x2) (1− x+ x3 − x4 + x5 − x7 + x8)

Factor only works completely if all the roots are rational.

Factor[x^2 - 2]

−2+ x2

Setting Extension -> {Sqrt[2]} allows factors to be of the form a+ b
√
2 with

a and b rational.

Factor[x^2 - 2, Extension -> {Sqrt[2]}]
−
(√

2− x
) (√

2+ x
)

Factor will not use complex numbers in its answer x2 + 1 unless one of the coef-
ficients is complex, so it won’t write x2 + 1 = (x− i)(x+ i).

Factor[x^2 + 1]

1+ x2

Setting Extension -> {I} allows factors to be of the form a+ bi with a and b

rational.
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Factor[x^2 + 1, Extension -> {I}]
(−i+ x) (i+ x)

In general, Factor[poly,Extension->All] will extend the domain of coefficients
to include any irrational or complex numbers.

Factor[x^2 + 2, Extension -> All](
x− i

√
2
) (

x+ i
√
2
)

Factor[2 + 2 Sqrt[2] x + x^2, Extension -> All](
x+
√
2
)2

Expand and Factor do a nice job even when you use numerical coefficients.

Expand[(x - 1.25) (2 x - 0.5)]

0.625− 3.x+ 2x2

Factor[0.625 - 3 x + 2 x^2]

2.(−1.25+ x)(−0.25+ x)

The Expand and Factor commands also work for polynomials with more than one
variable.

Expand[(2 x - 5 y + 3 z)^2]

4x2 − 20xy+ 25y2 + 12xz− 30yz+ 9z2

Factor[4 x^2 - 20 x y + 25 y^2 + 12 x z - 30 y z + 9 z^2]

(2x− 5y+ 3z)2

The Simplify command produces an expression that is the shortest to write out.
More often than not, this will agree with what you think of as “simplest”. For
example, x2 − 2x+ 1 = (x− 1)2 is factored when you Simplify it:

Simplify[x^2 - 2 x + 1]

(−1+ x)2

However, if we ask Mathematica to simplify x3 + 2x2 − 2x− 1,

Simplify[x^3 + 2 x^2 - 2 x - 1]

−1− 2x+ 2x2 + x3

Mathematica returns the expression, even though x3 + 2x2 − 2x− 1 can be fac-
tored as (x− 1) (x2 + 3x+ 1). Mathematica thinks that writing this cubic poly-
nomial directly with 4 terms is simpler than factoring it into two expressions with
a total of 5 terms. The Expand and Simplify commands can’t help much when
expressions have fractional powers (i.e. roots). For example, you might think that√
x2 = (x2)

1/2
= x, but Mathematica doesn’t agree:

Simplify[Sqrt[x^2]]√
x2
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The reason for the apparent failure should be clear:
√
x2 = x only if x ≥ 0. Some-

times the reason that Mathematica does not simplify expressions is that it treats x
as a complex number. The Simplify command supports an Assumptions option
with which we can force Mathematica to treat x, say, as a nonnegative real num-
ber, or simply a real number. Here’s what happens with the example above when
including appropriate assumptions:

Simplify[Sqrt[x^2], Assumptions -> x >= 0]

x

Simplify[Sqrt[x^2], Assumptions -> Element[x, Reals]]

Abs[x]

Simplify[(x^6)^(1/3), Assumptions -> Element[x, Reals]]

x2

7.2 Working with Rational Functions

A rational function is an expression of the form
P(x)

Q(x)
, where P and Q are polynomials

of a single variable x. The following are three common algebraic operations involving
rational functions. Combining terms over a common denominator can be achieved

with the Together command. For example, to combine
2

3x+ 1
+

5x

x+ 2
:

Together[2/(3 x + 1) + 5 x/(x + 2)]
4+ 7x+ 15x2

(2+ x)(1+ 3x)

Splitting up a rational function into its partial fraction decomposition can be done

with the Apart command. For example, to decompose
11x2 − 17x

(x− 1)2(2x+ 1)

Apart[(11 x^2 - 17 x)/((x - 1)^2 (2 x + 1))]

− 2

(−1+ x)2
+

3

−1+ x
+

5

1+ 2x

The Apart command also does long division. The quotient
x5 − 2x2 + 6x+ 1

x2 + x+ 1
is

found with:

Apart[(x^5 - 2 x^2 + 6 x + 1)/(x^2 + x + 1)]

−1− x2 + x3 +
2+ 7x

1+ x+ x2

7.3 Working with Transcendental Functions

The Simplify command has reasonable success working many basic identities in-
volving the trigonometric and hyperbolic functions, such as
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Simplify[Sin[x]^2 + Cos[x]^2]

1

Simplify[Sin[x/2] Cos[x/2]]
Sin[x]

2

Simplify[Cosh[x]^2 - Sinh[x]^2]

1

The TrigFactor, TrigExpand and TrigReduce commands provide alternate meth-
ods of working with trigonometric functions, performing the jobs suggested by their
names as follows.

TrigExpand[expr ] Splits up sums and integer multiples that ap-
pear in arguments of trigonometric functions,
and then expands out products of trigonomet-
ric functions into sums of powers, using trigono-
metric identities when possible.

For example:

TrigExpand[Sin[2 x]]

2Cos[x]Sin[x]

TrigExpand[Cos[x + y]]

Cos[x]Cos[y]− Sin[x]Sin[y]

TrigExpand[Sin[2 x] Cos[3 x]]

−Sin[x]
2

+
5

2
Cos[x]4Sin[x]− 5Cos[x]2Sin[x]3 +

Sin[x]5

2

TrigFactor[expr ] Splits up sums and integer multiples that appear
in arguments of trigonometric functions, and
then factors resulting polynomials in trigonomet-
ric functions, using trigonometric identities when
possible.

For example:

TrigFactor[Sin[2 x] Cos[3 x]]

2Cos[x]2(−1+ 2Cos[2x])Sin[x]

TrigFactor[Sin[x] + Cos[x]]√
2Sin

[
x+

π

4

]
TrigFactor[Sin[2 x]]

2Cos[x]Sin[x]
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TrigReduce[expr ] Given a trigonometric polynomial, TrigReduce
typically yields a linear expression involving
trigonometric functions with more complicated
arguments.

For example:

TrigReduce[2 Cos[x]^2]

1+ Cos[2x]

TrigReduce[2 Sin[x] Cos[y]]

Sin[x− y] + Sin[x+ y]

TrigReduce[Sin[2 x] Cos[3 x]]
1

2
(−Sin[x] + Sin[5x])

7.4 The FullSimplify Command

You may (and we usually do) prefer to use FullSimplify when working with
transcendental functions. Think of this command as a “full-strength” version of
Simplify. It uses a wider variety of expression simplification possibilities than
Simplify (although it could take a long time with complicated expressions).

Example 7.1. Show that
etanh

−1 x − e− tanh−1 x

etanh
−1 x + e− tanh−1 x

= x.

FullSimplify[(Exp[ArcTanh[x]] - Exp[-ArcTanh[x]])/

(Exp[ArcTanh[x]] + Exp[-ArcTanh[x]])]

x

Exercises for Chapter 7

1. Expand the function (1+ x)2(1− x)3.

2. Factorize the polynomials (1+ x)3 + (1− x)3 and x2 + 5.

3. Write
1

x− 1
+

x

x2 + 1
as single fraction.

4. Decompose
x

x2 + 6x+ 5
into sum of partial fractions.

5. Show that
(1+

√
5)10 − (1−

√
5)10

1024
√
5

= 55.

6. Show that tan

(
3π

11

)
+ 4 sin

(
2π

11

)
=
√
11.
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7. Find all the coefficients of (2+ 3x)10. Hint: see CoefficientList.

8. What is the coefficient of xy3 when we expand (x+ y)4 ? What is the
coefficient of y2 ? Hint: see the command Coefficient.

9. Find the exact value of the number
√
3 +
√
8−
√
2.

10. Compare TrigExpand, TrigReduce, and TrigFactor on the expression sin2 x+ tan2 x.

11. Find the quotient and remainder of the polynomial division
x2 + x+ 1

2x+ 1
.

Hint: see PolynomialQuotient and PolynomialRemainder.
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8 Solving Equations

Many commands are available for equation solving, from solving over specific do-
mains to returning general solutions to finding roots of equations. For new users,
becoming familiar with just a few of the most common commands is sufficient to
solve many different types of problems.

8.1 Equations and Their Solutions

Solving equations and finding roots for different types of equations and relations are
one of the main endeavors of mathematics. For polynomials with one variable of the
form anx

n + an−1x
n−1 + · · ·+ a1x+ a0, it has been proved that there is no formula

for finding the roots when n ≥ 5 (in fact, when n = 3 or n = 4, the formulas are
not that pretty!). This forces us to find numerical ways to estimate the roots of the
equations.

Using Wolfram Mathematica we have several commands at our disposal. There
are different kinds of equations and they require different commands to find the
roots.

The Solve Command for an Equation Mathematica’s Solve command will
solve an equation for an unknown variable. You use it in the form:

Solve[ an equation , variable(s) to solve for ]

For example,

Solve[2 x + 5 == 9, x]

{{x→ 2}}

Notice that:

• Equations in Mathematica are written using the double-equal sign “==”.

• The output of Solve will always have an outer layer of curly braces { }.

• Inside the outer layer of curly braces, you’ll see substitution rules with the
familiar “→” syntax.

You can check that x=2 is the correct solution to the above equation:

2 x + 5 == 9 /. {x -> 2}
True

This means that after the substitution x=2, it is True that the left-hand side of the
equation equals the right-hand side.

It may be useful to start by counting the number of roots before calculating
these roots, if any. The command CountRoots[poly, x] gives the number of real
roots of the polynomial poly in x.
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CountRoots[6 x^3 + 36 x^2 - 78 x - 252, x]

3

To count complex roots of a polynomial you have to specify a rectangular interval
for the polynomial. For example,

CountRoots[x^2 + 5, {x, -3 I, 3 I}]
2

Here are a few more examples involving the Solve command.

Example 8.1. Equations can have more than one solution. We can see numerical
approximations of the solutions using the N command.

Solve[x^2 - 3 x + 1 == 0, x]{{
x→ 1

2
(3−

√
5)

}
,

{
x→ 1

2
(3+

√
5))

}}
N@Solve[x^2 - 3 x + 1 == 0, x]

{{x→ 0.381966}, {x→ 2.61803}}

Example 8.2. Here, two of the solutions are complex, with i standing for the
familiar

√
−1.

Solve[x^3 + x^2 == -3 x, x]{
{x→ 0} ,

{
x→ 1

2
(−1− i

√
11)

}
,

{
x→ 1

2
(−1+ i

√
11)

}}

Example 8.3. If the equation involves other variables, Mathematica will treat them
as constants (or parameters, depending on your use).

Solve[y^2 - a*y == 2 a, y]{{
y→ 1

2
(a−

√
a
√
8+ a)

}
,

{
y→ 1

2
(a+

√
a
√
8+ a)

}}

Note The Solve command works very well for equations involving polynomials.
However, it doesn’t have much success with trigonometric, exponential, logarithmic,
or hyperbolic functions.
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The Solve Command for a System of Equations Solve can also be used to
solve a system of equations. In general, it is used in this form:

Solve[{ eqn 1, eqn 2, ...} , { var 1, var 2, ...}]

Example 8.4. Solve the system

{
3x+ 8y = 5

5x+ 2y = 7
.

Solve[{3 x + 8 y == 5, 5 x + 2 y == 7}, {x, y}]{{
x→ 23

17
, y→ 2

17

}}

Example 8.5. Solve the system

{
2xy + y2 = −4
x+ y = 2

.

Solve[{2 x y + y^2 == -4, x + y == 2}, {x, y}]{
{x→ 2

√
2, y→ 2(1−

√
2)}, {x→ −2

√
2, y→ 2(1+

√
2)}
}

Two sets of solutions are obtained.

Example 8.6. Solve the system

{
x+ y = 0

x+ y = 1

Solve[{x + y == 0, x + y == 1}, {x, y}]
{}

There are no solutions to this system of equations.

Example 8.7. Solve the system

{
2x− y + z = 2

x+ y + z = 3

Solve[{2 x - y + z == 2, x + y + z == 3}, {x, y, z}]{{
y→ 1

2
+

x

2
, z→ 5

2
− 3x

2

}}
The above command produced the warning message Solve::svars: Equations

may not give solutions for all solve variables. >> It alerts you to the
fact that you supplied only two equations, so one of the three variables (here, it’s
x) will be treated as a constant (or parameter) in the solution.
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Equations and Numerical Solutions There are some equations, however, for
which it is mathematically impossible to find explicit formulas for the solutions.
The Wolfram Language uses Root objects to represent the solutions in this case.

Solve[2 - 4 x + x^5 == 0, x]

{{x→ Root[2− 4#1+ #15&, 1]} , {x→ Root[2− 4#1+ #15&, 2]} ,
{x→ Root[2− 4#1+ #15&, 3]} , {x→ Root[2− 4#1+ #15&, 4]} ,
{x→ Root[2− 4#1+ #15&, 5]}}

Even though you cannot get explicit formulas, you can still evaluate the solutions
numerically.

Solve[2 - 4 x + x^5 == 0, x] // N

{{x→ −1.51851}, {x→ 0.508499}, {x→ 1.2436},
{x→ −0.116792− 1.43845I}, {x→ −0.116792+ 1.43845I}}

Or, you can use NSolve. The NSolve command uses efficient numerical techniques
to approximate roots of polynomials and a few other simple functions. It has the
same syntax as Solve.

NSolve[2 - 4 x + x^5 == 0, x]

{{x→ −1.51851}, {x→ 0.508499}, {x→ 1.2436},
{x→ −0.116792− 1.43845I}, {x→ −0.116792+ 1.43845I}}

NSolve doesn’t work at all with exponential, logarithmic, trigonometric, or hyper-
bolic functions. You should solve these types of equations using FindRoot, and
giving a starting value for x. FindRoot has the form:

FindRoot[equation , {variable , estimation of a sol.}]

The estimate of a solution is just that a value that you think is close to or somehow
near the point where you expect to find a solution. FindRoot then iteratively
searches for a solution starting from that estimate.

Example 8.8. Find a root of ex + sinx near x = 0.

FindRoot[Sin[x] + Exp[x], {x, 0}]{
x→ −0.588533

}
Note that FindRoot[lhs == rhs,{x,x0,x1}] searches for a solution using x0 and
x1 as the first two values of x, avoiding the use of derivatives. If you specify only
one starting value of x, FindRoot searches for a solution using Newton methods.
If you specify two starting values, FindRoot uses a variant of the secant method.

Example 8.9. Find the positive root of cosx = x2 using both Newton and Secant
methods.

FindRoot[Cos[x] == x^2, {x, 3}]{
x→ 0.824132

}
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FindRoot[Cos[x] == x^2, {x, 3, 5}]{
x→ 0.824132

}
Also, FindRoot[lhs == rhs,{x,xstart,xmin,xmax}] searches for a solution, stop-
ping the search if x ever gets outside the range xmin to xmax.

Example 8.10. The equation tan x = 8− 17x2 has two real roots in the interval[
− 1, 1

]
. Find these two roots.

FindRoot[Tan[x] == 8 - 17 x^2, {x, 0.5, -1, 1}]{
x→ 0.652415

}
FindRoot[Tan[x] == 8 - 17 x^2, {x, -0.75, -1, 1}]{
x→ −0.722824

}
To solve a system of two or more equations in the unknowns x, y, etc., we use
x = x0, y = y0, · · · as initial estimates of a solution.

Example 8.11. Solve the system

{
− x3 + y2 = 5

3 cos x− x+ y = 4

The above equations have a simultaneous solution that’s close to x = 1 and y = 2.
We can pinpoint it with:

FindRoot[{y^2-x^3==5, y-x+3Cos[x]==4}, {x, 1}, {y, 1}]
{x→ 0.663687, y→ 2.30051}

The Command Reduce In addition to being able to solve purely algebraic equa-
tions, Mathematica can also solve some equations involving other functions like
sin x = a. It is important to realize that an equation such as sin x = a actually has
an infinite number of possible solutions, in this case differing by multiples of 2π.
However, Solve by default returns just one solution, but prints a message telling
you that other solutions may exist. You can use Reduce to get more information.

Reduce[expr, vars ]

reduces the statement expr by solving equations or

inequalities for vars and eliminating quantifiers

For example,

Reduce[a x + b == 0, x]

(b == 0 && a == 0) ||

(
a! = 0 && x == −b

a

)
Reduce[Sin[x] == 1, x]

C[1] ∈ Integers && x ==
π

2
+ 2πC[1]

Reduce[x^4 - 1 == 0, x]

x == −1 || x == −I || x == I || x == 1
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8.2 Inequalities

Just as the equation x2 + 3x = 2 asserts that x2 + 3x is equal to 2, so also the
inequality x2 + 3x > 2 asserts that x2 + 3x is greater than 2. In Mathematica,
Reduce works not only on equations, but also on inequalities. For example, the
following pair of inequalities reduces to a single inequality.

Reduce[{0 < x < 2, 1 < x < 4}, x]

1 < x < 2

These inequalities can never simultaneously be satisfied.

Reduce[{x < 1, x > 3}, x]

False

This inequality yields three distinct intervals.

Reduce[(x - 1) (x - 2) (x - 3) (x - 4) > 0, x]

x < 1 || 2 < x < 3 || x > 4

The ends of the intervals are at roots and poles.

Reduce[1 < (x^2 + 3 x)/(x + 1) < 2, x]

−1−
√
2 < x < −2 || − 1+

√
2 < x < 1

The following inequality allows only finitely many intervals.

Reduce[{Sin[x] > 0, 0 <= x <= 2 Pi}, x]

0 < x < π

This defines a triangular region in the plane.

Reduce[{x > 0, y > 0, x + y < 1}, {x, y}]
0 < x < 1 && 0 < y < 1− x

This defines upper-half of a circular region in the plane.

Reduce[{x^2 + y^2 <= 1, y > 0}, {x, y}]
−1 < x < 1 && 0 < y <=

√
1− x2

Exercises for Chapter 8

1. Solve each of the following.

(a) x2 − 3x+ 1 = 0

(b) x5 − 3x+ 1 = 0
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(c) x+ y+ z = 3 , 2x2 + 3y2 − 6z2 = −1 and 3z2 = 9x2 − 6y3

(d) tan3 x+ e2x = 10 over the interval
[
1, 5
]

(e) x2 ≥ 1

2. (a) Solve the equation
∣∣x− 1

∣∣ = 3 over real numbers.

(b) Find integer solution(s) for the equation (x2 − 3x+ 1)
x+1

= 1.

3. Solve the equation sin2 x− 3 sinx+ 2 = 0 for sinx

4. The Taxicab Number. The famous number theorist G. H. Hardy (1887-
1947) was visiting S. Ramanujan (1887-1920) when Ramanujan was ill in a
hospital. Hardy said that the number of his taxicab is 1729, seemed to him
to be a dull number. Ramanujan responded that, on the contrary, 1729 is the
sum of two cubes in two ways. Prove Ramanujan claim. Use the command
Solve then use the new function PowersRepresentations.

5. The built-in function FindInstance[expr, vars] finds an instance of vars
that makes the statement expr be True. Use Mathematica’s help to read
more about this function, and then use it to solve exercise [4].

6. For what truth values of the statements a, b, c, and d will the following
proposition is true: (!a || b)&&(c && !d).
Hint: again, you may use FindInstance.
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9 Single Variable Calculus

Two important machineries in calculus are differentiation and integration, and both
use the concept of limit. We assume the reader is familiar with calculus as all the
material in these notes.

9.1 Function Domain and Range

The command FunctionDomain[f, x] finds the largest domain of definition of

the real function f of the variable x. For example, the domain of f(x) =
ex

x
is

R−
{
0
}
FunctionDomain[Exp[x]/x, x]

x < 0 || x > 0

The FunctionRange[f,x,y] command finds the range of the real function f of
the variable x returning the result in terms of y. For example, the function range
of f(x) = sin x is

[
− 1, 1

]
.

FunctionRange[Sin[x], x, y]

−1 ≤ y ≤ 1

Also, the domain and range of f(x) =
ln(x+ 2)√

x− 1
are

FunctionDomain[Log[x + 2]/(Sqrt[x] - 1), x]

0 ≤ x < 1 || x > 1

FunctionRange[Log[x + 2]/(Sqrt[x] - 1), x, y]

y ≤ −Log[2] || y > 0

9.2 Limits

Mathematica provides the command Limit for exploring the limit of a function. If f
is a function of a single variable, Mathematica evaluates lim

x→a
f(x) with the following

syntax:

Limit[ function , variable -> a ]

For example, lim
x→0

sin x

x
= 1 as shown below.

Limit[Sin[x]/x, x -> 0]

1

The limit of the function
|x|
x

when x→ 0 does not exist.

Limit[RealAbs[x]/x, x -> 0]

Indeterminate
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Be careful! The function
|x|
x

has a different limiting value at x = 0, depending

on whether you approach from above or below. We know that the right-hand limit

lim
x→0+

|x|
x

= 1 and the left-hand limit lim
x→0−

|x|
x

= −1. Therefore lim
x→0

|x|
x

does not

exist. To calculate a left-hand lim
x→a−

f(x), you have to specify the Direction option

in the Limit command. To find lim
x→0−

|x|
x

, you use:

Limit[RealAbs[x]/x, x -> 0, Direction -> "FromBelow"]

−1

Similarly, to find the right-hand limit lim
x→0+

|x|
x

, you can use:

Limit[RealAbs[x]/x, x -> 0, Direction -> "FromAbove"]

1

Note: To evaluate the limit from both real directions we use Direction → Reals

or Direction → "TwoSided".

The following examples show some sample limit computations. Mathematica
can compute most limits, even those that involve infinite limits, or limits at infinity:

1. lim
x→0

ex − x− 1

x

Limit[(Exp[x] - x - 1)/x, x -> 0]

0

2. lim
x→3

1− x

(x− 3)2

Limit[(1 - x)/(x - 3)^2, x -> 3]

−∞

3. lim
x→∞

x√
x2 + 1

Limit[x/Sqrt[x^2 + 1], x -> Infinity]

1

4. lim
x→−∞

x√
x2 + 1

Limit[x/Sqrt[x^2 + 1], x -> -Infinity]

−1

5. lim
x→0

3x− sin(3x)

4x− tan(4x)

Limit[(3 x - Sin[3 x])/(4 x - Tan[4 x]), x -> 0]

− 27

128
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6. lim
x→∞

sin x

Limit[Sin[x], x -> Infinity]

Indeterminate

7. lim
x→1

ln x

1− x

Limit[Log[x]/(1 - x), x -> 1]

−1

9.3 Differentiation

If f is a function of a single variable, Mathematica will understand the symbol f′

as the derivative of f, where the prime is entered using the single-quote character.
For example,

f[x ] := x^4

f′[x]

4x3

Higher-order derivatives follow with the usual notation:

f′′[x]

12x2

f′′′[a]

24a

Also, you can use the differential operator D for computing derivatives.

D[ function , variable]

For example,

f[x ] := x^4

D[f[x],x]

4x3

To calculate a second derivative, you can use D twice via composition.

D[D[f[x],x],x]

12x2

Or you can use either of these short-hand formats:

D[f[x],x,x]

12x2
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D[f[x],{x,2}]
12x2

Similarly, the third derivative of f can be given either as :

D[f[x],x,x,x]

24x

or

D[f[x],{x,3}]
24x

Example 9.1. If g(t) = t2 + t3 + ln t, find g′′(1).

g[t ] := t^2+t^3+Log[t]

g′′[1]

7

D[g[t],{t,2}] /. {t -> 1}
7

Example 9.2. Find the equation of the tangent line for the function g(t), given in
the previous example, at t = 1. Remember that the equation of tangent is given
by y = g(1) + g′(1)(t− 1). So,

Simplify[g[1] + g′[1] (t - 1)]

−4+ 6t

Example 9.3. Evaluate
d

dx

[
x sin (3πex)

]∣∣∣
x=ln 2

.

D[x Sin[3 Pi Exp[x]], x] /. x -> Log[2]

6πLog[2]

Example 9.4. Find all number(s) c that satisfy the conclusion of the Mean-Value

Theorem for f(x) = x2 − 3x on

[
0,

7

2

]
. Note that f is continuous on

[
0,

7

2

]
and

differentiable on

(
0,

7

2

)
since it is a polynomial. So, c ∈

(
0,

7

2

)
exists and satisfies

f′(c) =
f
(
7
2

)
− f(0)

7
2
− 0

.

f[x ] := x^2 - 3 x

Solve[{f′[c]==(f[7/2]-f[0])/(7/2-0) && 0 < c < 7/2}, c]{{
c→ 7

4

}}
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9.4 Implicit Differentiation

When you find the derivative of some expression f with respect to x, you are
effectively finding out how fast f changes as you vary x. Often f will depend not
only on x, but also on other variables, say y and z. The results that you get then
depend on how you assume that y and z vary as you change x.

There are two common cases. Either y and z are assumed to stay fixed when x

changes, or they are allowed to vary with x. In a standard partial derivative
∂f

∂x
, all

variables other than x are assumed fixed. On the other hand, in the total derivative
df

dx
, all variables are allowed to change with x.

In the Mathematica system, D[f,x] gives a partial derivative, with all other
variables assumed independent of x. Dt[f,x] gives a total derivative, in which all
variables are assumed to depend on x. In both cases, you can add an argument to
give more information on dependencies.

This gives the partial derivative
∂

∂x
(x2 + y2). Here y is assumed to be inde-

pendent of x.

D[x^2 + y^2, x]

2x

This gives the total derivative
d

dx
(x2 + y2). Now y is assumed to depend on x.

Dt[x^2 + y^2, x]

2x+ 2yDt[y, x]

Example 9.5. Find y′ if x+ y = sin−1 y.

Solve[Dt[x+y == ArcSin[y], x], Dt[y, x]]{{
Dt[y, x]→ −

√
1− y2

−1+
√
1− y2

}}

To find the higher-order implicit derivative
dny

dxn
, one may use Dt[expr, {x,n}].

The result may contain some or all of the previous derivatives
dy

dx
, · · · , d

n−1y

dxn−1
.

Example 9.6. Find y′′ if x2 + y2 = 25.

FirstD = Solve[Dt[x^2 + y^2 == 25, x], Dt[y, x]]{{
Dt[y, x]→ −x

y

}}
SecondD = Solve[Dt[x^2 + y^2 == 25, {x, 2}] /.

{Dt[y, x] -> Part[FirstD, 1, 1, 2]}, Dt[y, {x, 2}]]{{
Dt[y, {x, 2}]→ −x

2 − y2

y3

}}
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9.5 Maximum and Minimum

In Mathematica, Maximize[f,x] maximizes f with respect to x. While Minimize[f,x]
minimizes f with respect to x.

Maximize[-2 x^2 - 3 x + 5, x]{
49

8
,

{
x→ −3

4

}}
Maximize[{Sin[x], 0 <= x <= 2 Pi}, x]{
1,
{
x→ π

2

}}
Minimize[{Sin[x], 0 <= x <= 2 Pi}, x]{
−1,

{
x→ 3π

2

}}

9.6 Integration

F(x) is an antiderivative of f(x) if F′(x) = f(x). The symbol

∫
f(x)dx means “find

all antiderivatives of f(x).” Because all antiderivatives of a given function differ by

a constant, we usually write

∫
f(x)dx = F(x) + C where C represents an arbitrary

constant. You can use the Integrate command to compute

∫
f(x)dx. It has the

form:

Integrate[f[x], x]

You specify a function or an expression to integrate, as well as the variable in which

the integration is to take place. For example, to compute

∫
x3 dx, use this syntax:

Integrate[x^3, x]
x4

4

Mathematica can integrate almost every integral that can be done using standard
integration methods (e.g., substitution, integration by parts, partial fractions). Here
are some typical integrations:

1.

∫
x ln x dx

Integrate[x Log[x], x]

−x
2

4
+

1

2
x2Log[x]

2.

∫
1

1− x2
dx

Integrate[1/(1 - x^2), x]

−1
2
Log[1− x] +

1

2
Log[1+ x]
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3.

∫
e
√
x

√
x
dx

Integrate[Exp[Sqrt[x]]/Sqrt[x], x]

2e
√
x

4.

∫ √
4− 9x2 dx

Integrate[Sqrt[4 - 9 x^2], x]
1

2
x
√
4− 9x2 +

2

3
sin−1

(
3x

2

)
5.

∫
x

1+ x4
dx

Integrate[x/(1 + x^4), x]
tan−1 (x2)

2

6.

∫
xex

(1+ x)2
dx

Integrate[x Exp[x]/(1 + x)^2, x]
ex

1+ x

7.

∫
cos
(
sin
(
y2
))

dy

Integrate[Cos[Sin[y^2]], y]∫
cos
(
sin
(
y2
))

dy

As you see in the last of the examples above, the integrand has no closed-form
anti-derivative. So, Mathematica will return your input unevaluated whenever it
can’t handle an integral. This can mean either that it’s not possible to find an
antiderivative in closed form or that Mathematica hasn’t yet been programmed to
do the integral.

Definite Integral A definite integral

∫ b

a

f(x)dx is computed in Mathematica with

this form of the Integrate command:

Integrate[f[x], {x,a,b}]

Mathematica will try to find an antiderivative first, then evaluate it at the endpoints
and subtract (according to the Fundamental Theorem of Calculus). Here are some
examples:

1.

∫ 2

−1
x2 dx

Integrate[x^2, {x, -1, 2}]
3
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2.

∫ ∞
0

1

4+ y2
dy

Integrate[1/(4 + y^2), {y, 0, Infinity}]
π

4

3.

∫ 1

0

√
sin (t2) dt

Integrate[Sqrt[Sin[t^2]], {t, 0, 1}]∫ 1

0

√
sin (t2)dt

In the last example, Mathematica can’t evaluate an antiderivative at the endpoints.
The NIntegrate command finds a numerical approximation for a definite integral∫ b

a

f(x)dx with the following syntax:

NIntegrate[f[x], {x,a,b}]

Notice that its syntax is the same as the Integrate command. For example,

NIntegrate[x^2, {x, -1, 2}]
3

NIntegrate[Sqrt[Sin[t^2]], {t, 0, 1}]
0.486177

The NIntegrate command doesn’t attempt to find a symbolic antiderivative, so

it’s quick and it works with almost all integrands, including

∫ 1

0

√
sin (t2)dt for

which Integrate failed (as you saw above).

Exercises for Chapter 9

1. Evaluate each of the following limits:

(a) lim
x→3

x2 − 9

x− 3
.

(b) lim
x→∞

3x− sin(3x)

4x− tan(4x)
.

(c) lim
x→∞

tan−1 x

ex
.

(d) lim
x→1

1− x∣∣x2 + x− 2
∣∣ .

(e) lim
x→∞

xa. Hint: The answer depends on a.
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(f) lim
x→∞

(
1+

a

x

)bx
2. Find the domain and range of each of the following functions.

(a) f(x) =
1

x− x2
.

(b)
√∣∣x∣∣.

(c) f(x) = 2 ln x and g(x) = ln (x2).

3. Let f(x) =

{
2x2 x < 1

−3x+ 5 x ≥ 1
. Find: f′(2) and f′(1).

4. Let f(x) = x3 + ex + sin x. Find: f′(x) and f′′(0).

5. Find
d87

dx87

[
x sin x

]
at x =

π

2
.

6. Find y′′ if x2 + 3xy+ y3 = 5.

7. Find the critical numbers for f(x) = 1− 2x− x2 + 2x3 + x4.

8. Find the absolute min / max value(s) if any for

(a) f(x) = x2 − 3x+ 6

(b) f(x) = x4 − 3x2 − x

(c) f(x) = x2 on
[
− 1, 3

]
9. Evaluate each of the following integrals:

(a)

∫
x2
√
1+ x2 dx

(b)

∫
x+ 1

x2 − 9
dx

(c)

∫
e1/x

x2
dx

(d)

∫
x2 cos x dx

(e)

∫ 4

1

x2 + 1√
x

dx

(f)

∫ ∞
0

e−x
2

dx

(g)

∫ π/2

0

√
sin x dx

10. Find equations of the tangent line and normal line to the graph of x2y− y3 = 8

at the point (−3, 1).
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11. Find the values of A such that lim
x→A

(
1

x− 3
− 6

x2 − 9

)
= lim
x→A

x2 − x− 12

36x− 144
.

12. Assume n ≥ 1, find a formula for the nth order derivative of each of the
following functions.

(a) f(x) = xex.

(b) g(x) = sinx

(c) h(x) = x cosx
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10 Sums and Products

10.1 Sequences

A sequence is a function whose domain is the set of positive integers. The terms
of the sequence

{
an
}

are a1, a2, a3, · · ·. The term an is called the general term

of the sequence. For example, the sequence
1

2
,
2

3
,
3

4
,
4

5
,
5

6
,
6

7
, · · · has the general

term an =
n

n+ 1
. In Mathematica, we attempt to find a simple function that yields

the sequence
{
an
}

when given successive integer arguments by using the command
FindSequenceFunction.

FindSequenceFunction[{1/2, 2/3, 3/4, 4/5}, n]
n

n+ 1

A sequence
{
an
}

is said to converge to the limit ` if lim
n→∞

an = `. A sequence

that does not converge to some finite limit is said to diverge. The command
DiscreteLimit gives the limit lim

n→∞
fn for the sequence fn as n tends to infinity

over the integers.

Example 10.1. Determine whether the sequence
1

2
,
3

4
,
5

6
,
7

8
, · · · converges or di-

verges.

DiscreteLimit[FindSequenceFunction[{1/2,3/4,5/6,7/8}, n],

n->Infinity]

1

Sequences Defined Recursively Some sequences do not arise from a formula
for the general term, but rather from a formula or set of formulas that specify how
to generate each term in the sequence from terms that precede it; such sequences
are said to be defined recursively, and the defining formulas are called recursion
formulas. A good example is the mechanic’s rule for approximating square roots.
It can be shown that

a1 = 1, an+1 =
1

2

(
an +

3

an

)
; ∀n ≥ 1

describes the sequence produced by Newton’s Method to approximate
√
3 as a zero

of the function f(x) = x2 − 3. The command RSolveValue solves the recurrence
equation for a[n].

RSolveValue[{a[n+1]==(a[n]+3/a[n])/2, a[1]==1},a[Infinity],n]√
3

You can easily calculate the first five terms in an application of the mechanic’s rule
above to approximate

√
3 by using the command RecurrenceTable as follows.

RecurrenceTable[{a[n+1]==(a[n]+3/a[n])/2, a[1]==1},a,{n,1,5}]//N
{1., 2., 1.75, 1.73214, 1.73205}
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10.2 The Sum Command

You can use the Sum command to add up a finite number of terms of an indexed

expression. To find
b∑

n=a

for an expression, you type:

Sum[ expression , {n,a,b}]

For example, the value of
20∑
n=1

n2 is

Sum[ n^2 , {n,1,20}]
2870

The Sum command has moderate success even with certain symbolic summations.

For example,
k∑

n=0

rn is a partial sum for a geometric series:

Sum[ r^n , {n,0,k}]
−1+ r1+k

−1+ r

Example 10.2. Show that 1+ 2+ 3+ · · ·+ k =
k(k+ 1)

2
.

Sum[ n , {n,1,k}]
1

2
k(k+ 1)

If you want an approximate value for a summation, use NSum instead. It has the
same syntax as Sum. For example,

NSum[Sin[n], {n, 0, 500}]
1.4903

Both the Sum and NSum commands allow you to specify an infinite range, providing
the ability to evaluate certain infinite series. Each is also pretty good at recognizing
series that do not converge. In particular, Sum can symbolically reproduce almost
all standard series computations found in Calculus books and tables. For example,

1.
∞∑
n=0

(arn)

Sum[a r^n, {n, 0, Infinity}] (* Geometric Series *)
a

1− r

2.
∞∑
n=1

1

n
Sum[1/n, {n, 1, Infinity}] (* Divergent Series *)

Sum::div: Sum does not converge.
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3.
∞∑
n=1

(−1)n

n
Sum[(-1)^n/n, {n, 1, Infinity}] (* Alternating Series *)

−Log[2]

4.
∞∑
n=1

1

n2

Sum[1/n^2, {n, 1, Infinity}] (* Convergent p-Series *)
π2

6

5.
∞∑
n=0

2n

n!
Sum[2^n/n!, {n, 0, Infinity}] (* Taylor Series of ex *)

e2

6.
∞∑
n=0

sin (e−n)

Sum[Sin[Exp[-n]], {n, 0, Infinity}] (* Unevaluated *)
∞∑
n=0

sin (e−n)

Notice that Sum returns its input unevaluated if it doesn’t have a known simplifica-
tion or result for it, or if it is known to not converge (see the last example above).
If you do not receive an error message telling you that a series does not converge
then you can investigate using NSum.

NSum[Sin[Exp[-n]], {n, 0, Infinity}]
1.41477

Example 10.3. Find the sum
1

1
+

1

1+ 2
+

1

1+ 2+ 3
+ · · ·+ 1

1+ 2+ 3+ · · ·+ 99
.

Sum[1/Sum[j, {j, 1, i}], {i, 1, 99}]
99

50

The command SumConvergence gives conditions for the sum
∞∑
n

fn to be conver-

gent. For example, the p−series
∞∑
n

1

np
converges for all real numbers p > 1.

Assuming[Element[p, Reals], SumConvergence[1/n^p, n]]

p > 1

Example 10.4. Find the interval of convergence for the real power series
∞∑
n

xn

n 3n
.

SumConvergence[(x^n)/(n 3^n), n, Assumptions->Element[x,Reals]]

−3 ≤ x < 3
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10.3 Taylor Polynomials

Recall that if a function f satisfies certain reasonable conditions, then it can be
approximated by a polynomial pn(x) of degree n near a point x = a defined by:

pn(x) = f(a) +
f′(a)

1!
(x− a) +

f′′(a)

2!
(x− a)2 + · · ·+ f(n)(a)

n!
(x− a)n

A composition of the Normal and Series commands as follows will more easily
produce the Taylor polynomial of degree n for a function about a point x=a:

Normal[Series[ function, {x, a, n}]]

For example,

Normal[Series[Exp[x], {x, 0, 6}]]

1+ x+
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720

The following command will give an approximate value of e3 using the Taylor poly-
nomial of degree 6 for ex about x = 0:

Normal[Series[Exp[x], {x, 0, 6}]] /. {x -> 3} // N

19.4125

The Series command by itself actually gives a Taylor polynomial together with a
remainder term which shows its order using the notation O[x].

Series[Exp[x], {x, 0, 6}]

1+ x+
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720
+ O[x]7

Applying Normal to this result removes the remainder term and give the Taylor
polynomial.

10.4 The Product Command

The command Product is very similar to Sum, but here instead of a sum we have

a series involving products. To find
b∏

n=a

for an expression, you type:

Product[ expression , {n,a,b}]

For example, the value of
20∏
n=1

n2 is

Product[ n^2 , {n,1,20}]
5919012181389927685417441689600000000

71



Feras Awad @2019 10 SUMS AND PRODUCTS

Example 10.5. Show that
1× 3

2× 2
× 3× 5

4× 4
× 5× 7

6× 6
· · · tends to

2

π
.

Product[(2n-1)(2n+1)/(2n)^2, {n, 1, Infinity}]
2

π

Example 10.6. Find the product of the first 16 prime numbers.

Product[Prime[n], {n, 1, 16}]
32589158477190044730

Exercises for Chapter 10

1. Show that (1+ 2+ · · ·+ n)2 = 13 + 23 + · · ·+ n3.

2. Evaluate the following:

(a)
∞∑
n=0

(−1)n

(b)
∞∑
n=0

(−1)n x2n

(2n)!

(c)
∞∏
n=0

(
1

2

)n

(d)
k∏

n=1

n

(e)
∞∏
n=0

(
1+

1

22
n

)
3. Find the product of the first:

(a) 15 primes.

(b) 10 Fibonacci numbers.

(c) 23 even integers.

4. Find Taylor polynomial of degree 10 for f(x) =
√
x about x = 1 and use it

to approximate the value of
√
1.5.

5. Determine whether the series converges or diverges.

(a) 1+
1

2
+

1

3
− 1

4
− 1

5
− 1

6
+

1

7
+

1

8
+

1

9
− · · ·

(b)
1√
2
+

1√
3+ 5

+
1√

7+ 11+ 13
+

1√
17+ 19+ 23+ 29

+ · · ·
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6. Find
∞∑
n=0

1

F2n
where Fm is the mth term of Fibonacci sequence.

7. Let

ak =
k

3
√
(k − 1)4 +

3
√
k4 + 3

√
(k + 1)4

.

Prove that a1 + a2 + · · ·+ a999 < 50.

8. Find the interval of convergence of the power series
∞∑
n

(x− 3)n√
n

.

9. Find the general term of each of the following sequences.

(a) −1
2
,
1

8
,− 1

24
,
1

64
,− 1

160
,

1

384
, · · ·

(b) 2, 3, 5, 7, 11, 13, · · ·
(c) 1, 0,−1, 0, 1, 0,−1, 0, · · ·

10. Determine whether the sequence −1
5
,
1

25
,− 1

125
,

1

625
, · · · converges or di-

verges.

11. Consider the sequence

a1 =
√
6

a2 =

√
6+
√
6

a3 =

√
6+

√
6+
√
6

...

The recursion formula of this sequence is

a1 =
√
6 , an+1 =

√
6+ an ; ∀n ≥ 1

Assuming that the sequence converges, find its limit.
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11 Vectors and Matrices

Mathematica includes and uses highly efficient libraries for linear algebra and can
work with both numeric and symbolic vectors and matrices. Since both vectors and
matrices are represented as lists in Mathematica, the same suite of data-filtering
commands can be used on either vectors or matrices. All standard linear algebra
operations are supported for both symbolic and numerical work, and there is no
need for a user to keep track of row vectors differently than column vectors, as is
the case in some other software.

11.1 Vectors

Vectors in Mathematica are represented by lists. There is no need to specify if a
particular vector is a row vector or column vector; this makes things easier for the
user and keeps the focus on the result instead of mathematical bookkeeping.

Vectors can be constructed explicitly or programmatically. To define a vector
manually, just create a list. For example, the vectors v = (2, 3) and u = (−1, 1, 2)
are entered as

v = {2, 3}
{2, 3}

u = {-1, 1, 2}
{−1, 1, 2}

To define a vector programmatically, use Table.

Table[i^2, {i, 1, 10}]
{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

There is also a function, Array, that constructs a vector from a function. Table

can do this as well, but it requires specification for the iterator, while Array assumes
the iterator and only requires its bound. For example,

f[x ] := x^2;

Array[f, 10]

{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

or, you may use the pure function as follows.

Array[#^2 &, 10]

{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

Note Vectors can contain a mixture of different elements, like exact numbers,
approximate numbers, and symbols. To test whether an object is a vector, the
testing function VectorQ can be used. All the vectors defined above pass this test.

VectorQ[{2, 3}]
True
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VectorQ[{1, 2, {3, 4}, 5}]
False

Mathematical operations like addition +, subtraction -, multiplication *, division /,
and exponentiation ^ can operate on vectors of the same length. The operations
are applied element-wise, so the operation is performed on the first two elements
of the vector, then the operation is performed on the second two elements of the
vector, and so on.

{2, 3, 7} + {7, 1, 5}
{9, 4, 12}

5 {2, 3, 7} - 2 {7, 1, 5}
{−4, 13, 25}

{2, 3, 7} * {7, 1, 5}
{14, 3, 35}

{2, 3, 7} / {7, 1, 5}{
2

7
, 3,

7

5

}
{2, 3, 7} ^ {7, 1, 5}
{128, 3, 16807}

The Dot Product You compute the dot product of two vectors using the Dot

command:

Dot[{1, 2, 3},{-4, 7, 0}]
10

{1, 2, 3}.{-4, 7, 0}
10

Sometimes new users expect the multiplication of two vectors to give the dot product
instead of performing element-wise multiplication.

The Cross Product To compute a cross product of two vectors in R3 (also known
as the vector product), you use the Cross command.

Cross[{1, 2, 3},{-4, 7, 0}]
{−21,−12, 15}

Length and Angle of Vectors The length, or the norm, of the vector u = (a1, a2, · · · , an)
is

‖u‖ =
√
a21 + a22 + · · ·+ a2n

In Mathematica, we use the command Norm to find the vector length. For example,
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Norm[{1, 2, 1}]√
6

Also the angle between two vectors u and v can be found using the command
VectorAngle. For example,

VectorAngle[{1, 1}, {1, 0}]
π

4

VectorAngle[{1, 1, 0}, {1, 0, 2}]

cos−1
(

1√
10

)
VectorAngle[Cross[{1, 2, 3}, {3, 4, 5}], {1, 2, 3}]
π

2

11.2 Matrices

Like vectors, matrices can be comprised of any sort of expression: symbols, numbers,
strings, and images, and even mixtures thereof. Matrices are constructed by creating
nested lists. Small matrices can be manually entered by typing, and the simplest
method is to create a nested list in one-dimensional format using list notation by
entering each row as a list, beginning with the first row. That is, a matrix is entered
in the form:

{ list of row 1 , list of row 2 , ... }

For example, the matrix

[
3 −4 7
−1 0 5

]
is entered in Mathematica as follows:

{{3,−4, 7}, {−1, 0, 5}}

We can use MatrixForm to display the result in two-dimensional format.

{{3, -4, 7}, {-1, 0, 5}} // MatrixForm(
3 −4 7
−1 0 5

)
Matrices can also be entered with palettes like the Basic Math Assistant. The
Basic Commands section of the palette has a tab for matrix commands, including a
button that will paste an empty 2× 2 matrix into a notebook. There are buttons to
add rows and columns to newly created matrices, providing users with an interactive
way to construct a template for a larger matrix. For example, clicking the matrix
button to create a 2× 2 matrix template and then clicking the Add Row and Add

Column buttons once each will create a blank 3× 3 matrix template as seen in the
following example.
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Programmatic creation of matrices can be accomplished using functions like Table

and Array as shown in the following examples.

Example 11.1. Define a 3× 4 matrix
(
aij
)

where aij = i+ j.

Table[i + j, {i, 3}, {j, 4}] // MatrixForm 2 3 4 5
3 4 5 6
4 5 6 7


Array[#1 + #2 &, {3, 4}] // MatrixForm 2 3 4 5

3 4 5 6
4 5 6 7



Example 11.2. Write a code that generates the matrix


1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

.

Table[j + 5 (i - 1), {i, 1, 5}, {j, 1, 5}]

Array[#2 + 5 (#1 - 1) &, {5, 5}]

Partition[Range[25], 5]

The command Partition[list, n] partitions a list into nonoverlapping
sublists of length n.

11.3 The Conditional Function If

The Wolfram Language has conditional functions that control the flow of a program.
The conditional functions specify a test, and additional arguments control what
should happen as a result of the test. The following is the basic syntax for If,
which is one of these conditional commands.
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If[condition, t, f]

gives t if condition evaluates to True, and f if it evaluates to False.

The condition is a Boolean expression, i.e., has the value of True or False, will
execute t if the condition value is True and f otherwise. That means, in either
case, one of the statements t or f will be performed, but not both. So this gives us
the ability to make a decision about which part one wants to perform. For example

If[2^30 > 3^20, "Yes", "No"]

No

myAbs[x ] := If[x > 0, x, -x];

myAbs /@ {-2, 0, 3/2, -1}{
2, 0,

3

2
, 1

}

Example 11.3. Construct the 4× 5 matrix
(
aij
)

whose elements aij are given by

the rule aij =


ij : i > j

1 : i = j

i+ j : i < j

.

Table[If[i > j, i j, If[i < j, i + j, 1]], {i, 4}, {j, 5}] //

MatrixForm
1 3 4 5 6
2 1 5 6 7
3 6 1 7 8
4 8 12 1 9


11.4 Special Types of Matrices

There are special commands in Mathematica for matrices with special structures
like identity matrices, constant matrices, and the triangular matrices (upper, lower,
and diagonal).

1. The command ConstantArray[c, n] generates a list (vector) of n copies
of the element c. While ConstantArray[c, {m, n}] generates an m× n array
of nested lists containing copies of the element c. For example,

ConstantArray[3, 10]

{3, 3, 3, 3, 3, 3, 3, 3, 3, 3}

ConstantArray[10, {2, 3}] // MatrixForm(
10 10 10
10 10 10

)
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2. The identity matrix, or a unit matrix, of size n is the n× n square matrix with
ones on the main diagonal and zeros elsewhere. IdentityMatrix[n] gives
the n× n identity matrix. For example,

IdentityMatrix[2] // MatrixForm(
1 0
0 1

)
3. A diagonal matrix is a matrix (usually a square matrix) in which the off-

diagonal elements are all zero. The main diagonal entries themselves may or
may not be zero. The command DiagonalMatrix[list] gives a matrix with
the elements of list on the leading diagonal, and 0 elsewhere. For example,
the diagonal matrix of the first 4 primes is

DiagonalMatrix[Prime[Range[4]]] // MatrixForm
2 0 0 0
0 3 0 0
0 0 5 0
0 0 0 7


4. A triangular matrix is a special kind of square matrix. A square matrix is called

lower triangular if all the entries above the main diagonal are zero. Similarly,
a square matrix is called upper triangular if all the entries below the main
diagonal are zero. A triangular matrix is one that is either lower triangular or
upper triangular. A matrix that is both upper and lower triangular is called a
diagonal matrix.

Example 11.4. Construct the 3× 3 upper triangular matrix whose elements

follow the rule aij =

{
2i− j : i ≤ j

0 : i > j
.

Table[If[i>j, 0, 2i-j], {i, 3}, {j, 3}] // MatrixForm 1 0 −1
0 2 1
0 0 3


To generate the lower triangular matrix, just change the inequality sings in
aij.

Table[If[i<j, 0, 2i-j], {i, 3}, {j, 3}] // MatrixForm 1 0 0
3 2 0
5 4 3


11.5 Basic Matrix Operations

Mathematica can do addition, subtraction, scalar multiplication, and matrix mul-
tiplication with the operators +, -, *, and ., respectively, in addition to many
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other matrix computations like the determinant, the transpose, and the inverse.

To see how Mathematica operates with these computations, let A =

[
1 2
3 4

]
,

B =

[
5 6
7 8

]
, F =

 1 2
3 4
5 6

, and G =

 1 2 3
4 5 6
7 8 9

, and define them in Math-

ematica as a two-dimensional lists as follows.

A = {{1, 2}, {3, 6}};
B = {{5, 6}, {7, 8}};
F = {{1, 2}, {3, 4}, {5, 6}};
G = {{1, 2, 3}, {4, 5, 6}}, {7, 8, 9}};

Then,

1. A + B(
6 8
10 14

)
Addition, here, is defined since A and B have the same size. If we add the
matrix A to G then the result is undefined since they are different in size.

A + G

Objects of unequal length and cannot be combined

2. 3 B - 2 A(
13 14
15 12

)
3. A B // MatrixForm(

5 12
21 48

)
Be careful ! This command evaluates the product as element by element
product, not the ordinary (dot) product you have learned in Linear Algebra
class. To perform the ordinary product, we use the command Dot as follows.

Dot[A, B] // MatrixForm(
19 22
57 66

)
Note that the dot product above is defined since the number of columns
of the first matrix A equals the number of rows in the second matrix B. This
case is not satisfied when try to evaluate A · F for example.

Dot[A, F] // MatrixForm

{{1,2},{3,6}} and {{1,2},{3,4},{5,6}} have incompatible shapes.

What if you like to find A5? If we use the command A^5, this will rise each
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element of A to the power 5 as follows.

A^5(
1 32
243 7776

)
The command MatrixPower[A,n] gives the nth matrix power of the ma-
trix A by the mean of ordinary product.

MatrixPower[A, 5](
2401 4802
7203 14406

)
The last command is simpler than using Dot[A, Dot[A, Dot[A, Dot[A,

A]]]], or even Nest[Dot[A, #] &, A, 4]

4. The transpose of an m× n matrix C is another matrix of size n× m denoted by
CT and created by writing the rows of C as columns of CT in the same order.
For example, GT is

Transpose[G] // MatrixForm 1 4 7
2 5 8
3 6 9


5. The determinant is a useful value that can be computed from the elements of

a square matrix. It can be computed in Mathematica with the function Det.
For example,

Det[A]

0

Det[B]

−2

Det[G]

0

6. An n× n square matrix A is called invertible (also nonsingular) if there exists
an n× n square matrix B such that AB = BA = In where In denotes the n× n

identity matrix and the multiplication used is ordinary matrix multiplication.
If this is the case, then the matrix B is uniquely determined by A and is called
the inverse of A, denoted by A−1. The inverse can be computed in Mathe-
matica with the function Inverse. For example,

Inverse[B] // MatrixForm(
−4 3
7
2 − 5

2

)
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A square matrix that is not invertible is called singular. A square matrix
is singular if and only if its determinant is 0. We have seen that Det[G] = 0,
so that G is singular matrix.

Inverse[G]

Matrix {{1,2,3},{4,5,6},{7,8,9}} is singular

7. One of the fundamental subspaces associated with each matrix is the null
space. Vectors in the null space of a matrix are mapped to zero by the action
of the matrix. In Mathematica, NullSpace[C] gives a list of vectors that
forms a basis for the null space of the matrix C. Note that if C is invertible,
then the null space of C is the empty set.

NullSpace[A]

{{−2, 1}}

NullSpace[G]

{{1,−2, 1}}

NullSpace[B]

{ }

8. The rank of a matrix corresponds to the number of linearly independent rows
or columns in the matrix. The rank of the matrices A, B, F, G are

MatrixRank /@ {A, B, F, G}
{1, 2, 2, 2}

Note that the rank of any matrix equals to the rank of its transpose.

MatrixRank /@ (Transpose /@ {A, B, F, G})
{1, 2, 2, 2}

9. The trace of an n× n square matrix A is defined to be the sum of the el-
ements on the main diagonal. The command Tr[C] finds the trace of the
square matrix C.

Tr /@ {A, B, G}
{7, 13, 15}

10. The solution of the eigenvalue problem is one of the major areas for ma-
trix computations. For an n× n matrix C, the eigenvalues are the n roots
of its characteristic polynomial p(λ) = det (λIn − C). For each eigenvalue λ
there exists at least one corresponding vector x that satisfies Cx = λx and
it is called an eigenvector. Mathematica has various functions for computing
eigenvalues and eigenvectors.
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The command Eigenvalues[C] gives a list of the eigenvalues of the square
matrix C. Also, the command Eigenvectors[C] gives a list of the eigenvec-
tors of the square matrix C. You can find a list of the eigenvalues and eigen-
vectors of the square matrix C in one command, which is Eigensystem[C].
The characteristic polynomial for the matrix C with respect to the variable
x can be found using CharacteristicPolynomial[C, x]. Note that the
characteristic polynomial has the determinant and the trace of the matrix as
coefficients.

Eigenvalues[B]{
1

2

(√
177+ 13

)
,
1

2

(
13−

√
177
)}

Eigenvectors[B](
1
14

(√
177− 3

)
1

1
14

(
−
√
177− 3

)
1

)
Eigensystem[B](

1
2

(√
177 + 13

)
1
2

(
13−

√
177
){

1
14

(√
177− 3

)
, 1
} {

1
14

(
−
√
177− 3

)
, 1
} )

CharacteristicPolynomial[B, x]

x2 − 13x− 2

11.6 Solving Linear Systems

One of the most important uses of matrices is to represent and solve linear systems.
This section discusses how to solve linear systems with Mathematica. It makes
strong use of LinearSolve, the main function provided for this purpose. Note
that we have previously seen a function that can solve linear systems of equations,
the command Solve in chapter 8.

Solving a linear system involves solving a matrix equation AX = B. Because A is an
m× n matrix this is a set of m linear equations in n unknowns.

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn



x1
x2
...
xn

 =


b1
b2
...
bm


When m = n the system is said to be square, and the solution may or may not
exist. If m > n there are more equations than unknowns and the system is overde-
termined, and solutions may or may not exist. If m < n there are fewer equations
than unknowns and the system is underdetermined, and either no solutions or in-
finitely many solutions exist. When the system has at least one solution, we call it
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consistent, otherwise it is called inconsistent.

Note that even though you could solve the matrix equation by computing the inverse
via X = A−1B, this is not a recommended method. You should use a function that
is designed to solve linear systems directly and in Mathematica this is provided by
LinearSolve[A,B] which gives a vector X that solves AX = B.

Example 11.5. Solve the linear system


x+ y + z = 1

x+ 2y + 3z = 2

x+ 4y + 9z = 3

.

We can convert linear equations to arrays suitable for LinearSolve using the com-
mands Normal and CoefficientArrays as follows.

{B, A} = Normal@CoefficientArrays[{x + y + z == 1, x + 2y + 3z

== 2, x + 4y + 9z == 3}, {x, y, z}]
{ {−1,−2,−3}︸ ︷︷ ︸
−1×constant terms

, {{1, 1, 1}, {1, 2, 3}, {1, 4, 9}}︸ ︷︷ ︸
the coefficients matrix A

}

So, the solution of the system is

LinearSolve[A, -B]{
−1
2
, 2,−1

2

}

Gaussian Elimination In linear algebra, Gaussian elimination (also known as row
reduction) is an algorithm for solving systems of linear equations. It is usually
understood as a sequence of operations performed on the corresponding matrix
of coefficients. To perform row reduction on a matrix, one uses a sequence of
elementary row operations to modify the matrix until the lower left-hand corner
of the matrix is filled with zeros, as much as possible. There are three types of
elementary row operations

1. Swapping two rows,

2. Multiplying a row by a non-zero number,

3. Adding a multiple of one row to another row.

Once all of the leading coefficients (the left-most non-zero entry in each row) are 1,
and every column containing a leading coefficient has zeros elsewhere, the matrix
is said to be in reduced row echelon form. This final form is unique; in other words,
it is independent of the sequence of row operations used.

To solve a system of linear equations AX = B we start by writing the augmented
matrix of the system. The augmented matrix

[
A
∣∣B] is the matrix derived from the

coefficients and constant terms of a system of linear equations. So, we need to
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join the constant terms vector B to the coefficients matrix A. This can be done in
Mathematica using the command Join. For example, the augmented matrix of the
linear system in example 11.5 is

Transpose[Join[Transpose[A], {-B}]] // MatrixForm 1 1 1 1
1 2 3 2
1 4 9 3


Hence, the row reduce form for the above augmented matrix is

RowReduce[Transpose[Join[Transpose[A], {-B}]]] // MatrixForm 1 0 0 − 1
2

0 1 0 2
0 0 1 − 1

2


and the solution is x = −1

2
, y = 2, z = −1

2
.

Example 11.6. Solve the linear system


a− b+ 2c = 4

a + c = 6

2a− 3b+ 5c = 4

3a+ 2b− c = 1

.

The augmented matrix for this system is

{B, A} = Normal@CoefficientArrays[{a - b + 2 c == 4, a + c ==

6, 2 a - 3 b + 5 c == 4, 3 a + 2 b - c == 1}, {a, b, c}]

Transpose[Join[Transpose[A], {-B}]] // MatrixForm
1 −1 2 4
1 0 1 6
2 −3 5 4
3 2 −1 1


Apply Gaussian elimination to the augmented matrix.

RowReduce[Transpose[Join[Transpose[A], {-B}]]] // MatrixForm
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Note that the last row of this matrix consists of all zeros except for the last entry.
In other words, one of the equations in the linear system is false. This means that
the original system of linear equations has no solution. You can see that this is true
by using LinearSolve.

LinearSolve[A, -B]

Linear equation encountered that has no solution.
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Example 11.7. Solve the system

{
2a+ 4b− 2c = 0

3a+ 5b = 1
.

The augmented matrix of the system of linear equations is

{B, A} = Normal@CoefficientArrays[{2 a + 4 b - 2 c == 0, 3 a +

5 b == 1}, {a, b, c}]

Transpose[Join[Transpose[A], {-B}]] // MatrixForm(
2 4 −2 0
3 5 0 1

)
The reduced row-echelon form of the matrix is

RowReduce[Transpose[Join[Transpose[A], {-B}]]] // MatrixForm(
1 0 5 2
0 1 −3 −1

)

The corresponding system of equations is

{
a + 5c = 2

b− 3c = −1
. Now, using the param-

eter t ∈ R to represent the nonleading variable c, you haveab
c

 =

 2− 5t

−1+ 3t

t

 =

 2

−1
0

+

−53
1

 t ; where t ∈ R.

What will happen if we use LinearSolve to solve this system ? Let us see.

LinearSolve[A, -B]

{2,−1, 0}

The command LinearSolve makes any expected free variable in the solution to

be 0. Do you know what the vector

−53
1

 represents for the system ? Here is the

answer.

NullSpace[A] −53
1


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Exercises for Chapter 11

1. Consider the 5× 5 tridiagonal matrix A =


2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2


(a) Write a code that generates such matrix.

(b) Find the determinant of the matrix A.

(c) Find the matrix A−2

(d) Solve the linear system AX = B where B is the first 5 prime numbers.

(e) A symmetric matrix is a square matrix that is equal to its transpose.
Show that A is symmetric.

2. Construct a 3× 3 matrix whose entries are the first 9 consecutive Fibonacci
numbers, increasing as we go to the right and down. For this matrix, find the
determinant, the null space, and the rank.

3. The Hilbert matrix is a square matrix whose element aij is
1

i+ j− 1
. Con-

struct the Hilbert matrix of order 5.

4. Solve the system AX = B where A =

 1 2 3
2 −1 4
3 −4 6

 and

(a) B =

1412
13


(b) B =

 9
17
28


(c) B =

1022
38



5. Find the general solution of the system


a+ 2b+ 3c+ 3d = 9

2a+ b+ 2c+ 5d = 10

2a+ 2b+ c+ 2d = 7

2a− b− 3c+ d = −1

.

6. Find a unit vector having the same direction as v = (1,−2, 2,−3).
Hint: see the command Normalize.
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7. The vector projection of a vector a on (or onto) a nonzero vector b (also
known as the vector component of a in the direction of b) is the orthogonal
projection of a onto a straight line parallel to b. It is a vector parallel to b,

defined as a · b
|b|

where the operator · denotes a dot product, and |b| is the

length of |b|. Find the projection of the vector a = (1, 2, 3) onto the vector
b = (1,−2, 5).
Hint: see the command Projection.

8. Show that for any 2× 2 matrix A =

[
a b

c d

]
, where a, b, c, d ∈ R, the follow-

ing statement is hold:

pA(x) = x2 − tr(A) + det(A),

where pA(x) is the characteristic polynomial of the matrix A.

9. The Cayley-Hamilton theorem, says that every square matrix satisfies its char-
acteristic equation. Verify the Cayley-Hamilton theorem for the matrix of

A =

[
1 2
3 4

]
.

10. Given an n× n matrix A, if there exists an invertible matrix P such that
A = PDP−1, where D is a diagonal matrix, we say that A is diagonalizable. P

is the matrix whose columns are the eigenvectors of A, and D is the diagonal
matrix whose main diagonal entries are their respective eigenvalues. Consider
the matrix

B =


18 −51 27 −15
8 −24 14 −8
15 −48 28 −15
15 −47 25 −12


(a) Find the eigenvalues and the corresponding eigenvectors of B.

(b) Show that the matrix B is diagonalizable.

(c) show that the sum of the eigenvalues of B is equal to its trace and the
product of its eigenvalues is equal to its determinant.

Note: Not every matrix is diagonalizable. However, it can be shown that if
A has a set of n linearly independent eigenvectors, then A is diagonalizable.
If the eigenvalues are distinct, the corresponding eigenvectors will be linearly
independent.

11. Construct a 5× 5 matrix whose eigenvalues are −2,−1, 0, 1, 2 with corre-
sponding eigenvectors (1, 1, 0, 0, 0), (0, 1, 1, 0, 0), (0, 0, 1, 1, 0), (0, 0, 0, 1, 1),
and (1, 0, 0, 0, 1).
Hinr: see the previous exercise.
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12 Ordinary Differential Equations

An ordinary differential equation (ODE) is a differential equation containing one or
more functions of one independent variable and its derivatives. The term ordinary
is used in contrast with the term partial differential equation which may be with
respect to more than one independent variable.

ODEs that are linear differential equations have exact closed-form solutions that
can be added and multiplied by coefficients. By contrast, ODEs that lack additive
solutions are nonlinear, and solving them is far more intricate, as one can rarely
represent them by elementary functions in closed form: Instead, exact and analytic
solutions of ODEs are in series or integral form. Numerical methods applied by
hand or by computer, may approximate solutions of ODEs and perhaps yield useful
information, often sufficing in the absence of exact, analytic solutions.

12.1 Analytic Solutions of an ODE

The Mathematica command DSolve, can symbolically solve linear and nonlinear
ODEs involving a function y = y(x) and its variable x. This command is used in
the form:

DSolve[ the ODE , y[x], x]

Note The differential equation is entered using the double-equal sign == and y(x)
must appear as y[x]. It is extremely important that the unknown function be rep-
resented y[x], not y, within the differential equation. Similarly, its derivatives must
be represented y′[x], y′′[x], · · ·.

DSolve returns results as lists of rules. This makes it possible to return multiple
solutions to an equation. For a system of equations, possibly multiple solution sets
are grouped together.

Example 12.1. Solve the first order ODE y′ = 3x2y.

DSolve[y′[x] == 3 x^2 y[x], y[x], x]{{
y(x)→ c1e

x3
}}

The solution of a first order differential equation involves an arbitrary constant,
labeled, by default, C[1]. Additional constants (for higher-order equations) are
labeled C[2], C[3], · · ·.

Example 12.2. Solve the 1st order nonlinear ODE y′y = −x.

DSolve[y′[x] y[x] == -x, y[x], x]{{
y(x)→ −

√
2c1 − x2

}
,
{
y(x)→

√
2c1 − x2

}}
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Example 12.3. Solve the 4th order homogeneous ODE with constant coefficients
y(4) − 2y(3) + 2y′′ − 2y′ + y = 0.

DSolve[y′′′′[x]-2y′′′[x]+2y′′[x]-2y′[x]+y[x] == 0, y[x], x]

{{y(x)→ c3e
x + c4e

xx+ c2 sin(x) + c1 cos(x)}}

Example 12.4. Solve the Cauchy-Euler ODE x2y′′ − xy′ + 2y = 2.

DSolve[x^2 y′′[x] - x y′[x] + 2 y[x] == 2, y[x], x]

{{y(x)→ c1x sin(log(x)) + c2x cos(log(x)) + 1}}

Example 12.5. Solve the nonlinear exact equation
dy

dt
=

cos t+ 2tey

1− sin y− t2ey
. The

solution of such equations is given by the implicit function F(t, y) = k where k is a
constant.

DSolve[y′[t]==(Cos[t]+2t Exp[y[t]])/(1-Sin[y[t]]-t^2Exp[y[t]]),

y[t], t]

Solve
[
t2ey(t) − y(t)− cos(y(t)) + sin(t) = c1, y(t)

]
However, there is also a different command, DSolveValue, that can be used to
extract the value from a solution without the need for additional processing. Many
times, this is the appropriate function to use. For example,

DSolveValue[y′′[t]==y[t], y[t], t]

c1e
t + c2e

−t

12.2 Equations with Initial or Boundary Conditions

In the field of differential equations, an initial value problem is an ordinary differential
equation together with a specified value, called the initial condition, of the unknown
function at a given point in the domain of the solution. A boundary value problem
is a differential equation together with a set of additional constraints, called the
boundary conditions. A solution to a boundary value problem is a solution to the
differential equation which also satisfies the boundary conditions. Sometimes we
want to solve a differential equation subject to initial or boundary conditions. In
such a case, the format of the DSolve command is:

DSolve[ {the ODE , IC(s) or BC(s)} , y[x], x]
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Note The initial and boundary conditions above can be entered in any order.

Example 12.6. Solve the boundary value problem y′′ + y = 20 cos x, respect to
the boundary conditions y(0) = 0 and y

(
π
2

)
= 1.

Simplify@DSolve[{y′′[x]+y[x]==20Cos[x], y[0]==0, y[Pi/2]==1}, y[x],

x]

{{y(x)→ (10x− 5π + 1) sin(x)}}

Note that, when an adequate number of initial or boundary conditions is specified,
DSolve returns particular solutions to the given equations.

Example 12.7. Solve the initial value problem y′′ − 2y′ + y = x2, with respect to
the initial conditions y(0) = 1 and y′(0) = 2.

Simplify@DSolve[y′′[x]-2y′[x]+y[x]==x^2, y[0]==0, y′[0]==2, y[x],

x]

{{y(x)→ x2 + 4x+ ex(4x− 6) + 6}}

12.3 Numerical Solutions of ODEs

Although many types of differential equations can be solved analytically in terms
of elementary functions, there are equations that arise in applications still cannot.
Even if unique solutions can be shown to exist, it may only be possible to obtain
numerical approximations. The command NDSolve is designed specifically for this
purpose.

The NDSolve command is used to find a numerical approximation to a solution of
a differential equation over a specified interval a ≤ x ≤ b, subject to given initial
conditions. It works even when DSolve fails.

NDSolve[ {the ODE , IC(s)} , y[x], {x,a,b}]

For example, you can find a numerical approximation for the solution to the equation
y′ = −xy, subject to the initial condition y(0) = l over the interval [0, 2] as follows.

sol = NDSolve[{y′[x] == -x y[x], y[0] == 1}, y[x], {x,0,2}]
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This output looks strange, doesn’t it? Don’t worry! Mathematica reports the answer
as an InterpolatingFunction, which represents an algorithm to approximate the
solution numerically. To work with this InterpolatingFunction, we will name
it f using the following syntax. Note that we use the equal sign = in defining the
function.

f[x ] = y[x] /. sol[[1]]

You can now compute values such as

f@Table[x, {x, 0, 2, 0.5}]
{1., 0.882497, 0.606531, 0.324653, 0.135335}

12.4 Laplace Transform

The Laplace Transform of a function f(t) is defined to be the function

Lt[f(t)](p) =
∞∫
0

f(t)e−ptdt

We can use the LaplaceTransform command to find this directly.

LaplaceTransform[f[t], t, p]

For example, let us find the Laplace transforms of the functions e2t and t2sin(3t)e5t.

LaplaceTransform[Exp[2 t], t, p]
1

p− 2

LaplaceTransform[t^2 Sin[3 t] Exp[5 t], t, p]
18 (p2 − 10p+ 22)

(p2 − 10p+ 34)
3

The InverseLaplaceTransform has a similar format.

InverseLaplaceTransform[g[p], p, t]

We can check our previous calculations with:

InverseLaplaceTransform[1/(p-2), p, t]

e2t

FullSimplify@InverseLaplaceTransform[ 18(22 - 10p + p^2) / (34

- 10p + p^2)^3, p, t]

t2 sin(3t)e5t
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Example 12.8. Use Laplace transform to solve
d2y

dt2
− 3

dy

dt
+ 2y = t2 where y(0) = 2

and y′(0) = 1.
First we compute the Laplace transform of both sides of the equation.

theTransform = LaplaceTransform[y′′[t]-3y′[t]+2y[t]==t^2, t, p]

p2 (Lt[y(t)](p)) + 2 (Lt[y(t)](p))− 3 (p (Lt[y(t)](p))− y(0))− py(0)− y′(0) = 2
p3

Then we solve for the Laplace transform Lt[y(t)](p) satisfying the given initial
conditions.

theLaplace = Solve[theTransform, LaplaceTransform[y[t], t, p]]

/. {y[0] -> 2, y′[0] -> 1}{{
Lt[y(t)](p)→

2p4 − 5p3 + 2

p3 (p2 − 3p+ 2)

}}
Finally, we compute the inverse Laplace transform to get the solution of the equation
after extracting the transform as a function of p.

FullSimplify@InverseLaplaceTransform[theLaplace[[1,1,2]], p, t]
1

4
(et (4− 3et) + 2t(t+ 3) + 7)

Exercises for Chapter 12

1. Solve the following ODEs.

(a) y′′ − 4y′ + 4y = xe2x.

(b) y′′ + (y′)
2
+ 1 = 0.

(c) y′′ + 4y′ + 4y = 0; y(0) = y′(0) = 0.

(d) y′ = xy.

(e) x2y′′ − 3xy′ − 2y = 0.

(f) y′′ + y = sec x.

(g) y′′ + 4π2y = 0; y(0) = y(1) = 0

2. Find the Laplace Transform for the function f(t) = e2t cos
(√

3t
)
.

3. Find the inverse Laplace Transform for the function g(p) =
2p− 1

p2 − 4p+ 6
.

4. Use Laplace transform to solve the initial value problem
dy2

dt2
+

dy

dt
+ y = et

where y(0) = 3 and y′(0) = 2.
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13 Graphics in Mathematica

13.1 Making Graphs

There are many ways that you can plot a two-dimensional picture in Mathematica.
In this chapter, we will concentrate on drawing the graph of a function. You draw
the graph of a function y = f(x) with the Plot command. To see the graph of
f(x) = x2 over the interval [−3, 2], type

Plot[x^2, {x, -3, 2}]

In general, to plot a function of x over an interval x ∈ [a, b], you type:

Plot[f(x), {x, a, b}]

When you use the Plot command, you usually don not need to specify the ver-
tical range of the graph. Mathematica automatically adjusts the vertical range
to show you the full range of (vertical) values covered by the plot. If you wish,
you can explicitly control the horizontal and vertical range by adding a PlotRange

specification in the Plot command. For example:

Plot[x^3, {x, -2, 2}, PlotRange -> {-3, 3}]

Here you see only the portion of the graph with y−values between −3 and 3. Thus,
using Plot with the PlotRange option is similar to setting up a view window on
a graphing calculator. You can specify a range of x−values as well, by using the
option PlotRange-> {{Xmin, Xmax} , {Ymin, Ymax}}.

Proportion and Aspect Ratio When you are working in a Mathematica note-
book, you can resize a picture by first clicking on it and then dragging along one of
its comers or edges with the mouse. By default, no matter how big or small a pic-
ture you create, the aspect ratio of the picture (the ratio of its height to width) will
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remain the same. The default aspect ratio is very close to the relative proportions
of a standard credit card. You can change the aspect ratio for a Plot command
by directly specifying a value for its AspectRatio. For example, the height of the
following picture is about one-fifth its width:

Plot[2 Sin[x], {x, -3, 3}, AspectRatio -> 1/5]

To make the units on the x− and y−axes have the same length, we set AspectRatio
to Automatic.

Plot[2 Sin[x], {x, -3, 3}, AspectRatio -> Automatic]

Plotting Multiple Expressions You can plot several functions in the same picture
by listing all the functions separated by commas, enclosing them in curly braces.
For example:

Plot[{Sin[x], Cos[x]}, {x, -Pi, Pi}]

Several graphics produced independently can be combined into a single picture by
using the Show command. First, name each of the graphics as they are produced.
Then, use the Show command to combine them into a single output.

graph1 = Plot[Cos[x], {x, -3, 1}];

graph2 = Plot[Sin[x], {x, 0, 3}];

graph3 = Plot[0.5, {x, -2, 4}];
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Show[graph1, graph2, graph3]

Notice that the combined graphic above is shown only over the range [−3, 1],
which is the range of the first graphic listed in the Show command. This is a default
behavior of Show, it arranges its output according to the options attached to the
first graphic. We can change this behavior by specifying PlotRange -> All in the
Show command. The result is:

Show[graph1, graph2, graph3, PlotRange -> All]

We can use the GraphicsRow command to ask Mathematica to show several plots
side by side:

Show[GraphicsRow[{graph1, graph2}]]

The GraphicsRow command has several options that can be specified. For example,
one (Alignment)allows for adjusting the alignment of the graphics, while another
(Dividers)specifies whether lines should be drawn between and/or above and below
the graphics. Mathematica also has a GraphicsGrid command that allows you to
arrange graphics in a two-dimensional display.

The PlotStyle Option You can add more properties to a graph by adjusting the
color, thickness, opacity level, and dashing pattern of the plot. This can be done
by specifying one or multiple PlotStyle options for the Plot command. It has the
syntax:

Plot[f[x], {x,a,b}, PlotStyle -> {Option 1, Option 2,...}]
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For example, we will make the sine curve red with a dashed line and the cosine curve
a thick blue. Here is how we define these style features, using the names style1

and style2.

style1 = {Red, Dashing[{0.02, 0.02}]};

style2 = {Blue, Thickness[0.02]};

Plot[{Sin[x],Cos[x]},{x,-Pi,Pi}, PlotStyle->{style1,style2}]

Thickness[0.02] means that lines will be drawn to be about 2% of the width of
the graphic, while Dashing[{0.02,0 .04}] means that the curve will be drawn
solid for about 2% of the width of the graphic, then 2% will be omitted, and so on.

13.2 Plotting Curves

In the previous section you saw how to use Plot to draw curves that are graphs of
functions. But not all curves are the graphs of functions.

Parametric Plots A two-dimensional (2D) parametric curve is usually defined by
an ordered pair of coordinate functions (x(t), y(t)), with the parameter t allowed
to vary over some set. You use the ParametricPlot command to draw such a
curve over a fixed interval [a, b]. The command has the form:

ParametricPlot[{x[t],y[t]}, {t,a,b}]

For example, to see the curve (t2, t+ 1) for t ∈ [−2, 2], we use:

ParametricPlot[{t^2, t + 1}, {t, -2, 2}]
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As with the Plot command, Mathematica will always, by default, show you a
large enough picture to see all values on the curve. If necessary, you can spec-
ify a given PlotRange for ParametricPlot. Also, unlike the Plot command,
ParametricPlot uses the option AspectRatio → Automatic by default. Thus,
curves which are circles will truly appear as circles:

ParametricPlot[{Cos[t], Sin[t]}, {t, 0, 2 Pi}]

However, setting AspectRatio → Automatic is not always the right thing to do,
as you will see in drawing the curve (t, t3) where t ∈ [0, 5] (try it by your self).
You can draw a better picture with the following command

ParametricPlot[{t,t^3}, {t,0,5}, AspectRatio->1/GoldenRatio]

We suggest you redraw the graphic either by setting AspectRatio→l which gives
a square graphic, or by setting AspectRatio→l/GoldenRatio which gives the
standard proportion graphic you see with most other commands.

Multiple Curves The ParametricPlot command lets you plot several curves
together, just like the Plot command. To do this, you include the formulas for the
curves in a list. For example, to draw the horizontal line (t, 1), the vertical line
(2, t), and the curve (cos t, t) for t ∈

[
−π

2
, π
2

]
, we use the command

ParametricPlot[{{t,1}, {2,t}, {Cos[t],t}}, {t,-Pi,Pi}]
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Plotting in Polar Coordinates If a curve is given in polar coordinates (r, θ),
where r is the radius, θ is the angle in radians, and r = f(θ) for θ ∈ [θ1, θ2], then
we can draw it with the PolarPlot command using the syntax:

PolarPlot[f[theta], {theta, θ1,θ2}]

Notice that this form is very similar to that of the Plot command you already know.
For example, to plot the three-leaf rose r = 2 cos(3θ), use:

PolarPlot[2 Cos[3 theta], {theta, 0, 2Pi}]

The default setting for PolarPlot is AspectRatio→Automatic. As we discussed
in the case of ParametricPlot, you may want to directly specify the value of the
option AspectRatio for a PolarPlot command that does not display well.

Just as with the Plot and ParametricPlot commands, you can plot more than
one polar curve at the same time by entering all of them using a list. For example,

you can plot the spirals r =
θ

2π
, r =

(
θ

2π

)2

, and the circle r = 1 all in the same

picture with:
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PolarPlot[{theta/(2Pi), (theta/(2Pi))^2, 1}, {theta, 0, 2Pi}]

Plotting Graphs of Implicit Equations When a curve is defined by an equation in
two variables, you can draw the curve with the ContourPlot,a command whose full
functionality we will discuss more carefully later. For now, we will use ContourPlot
to draw just that portion of the curve defined by an equation in, say, the two variables
x and y, which lies within a rectangle x ∈ [a, b] and y ∈ [c, d] with the syntax:

ContourPlot[ equation of x and y, {x,a,b}, {y,c,d}]

For example, to see the unit circle x2 + y2 = 1 which we know lies within the
rectangle [−1, 1]× [−1, 1], we use:

ContourPlot[x^2+y^2==1, {x,-1,1}, {y,-1,1}]

You can plot several curves defined by equations in a single command. The syntax
is exactly the same as it is for the Plot, ParametricPlot, and PolarPlot com-
mands. For example, we will plot the portions of the curves x2 + 3xy+ y3 = 25,
x2 + 3xy+ y3 = 10, and x2 + 3xy+ y3 = 0 which lie within the rectangle −10 ≤ x

≤ 10 and −7 ≤ y ≤ 4. We will remove the frame, and draw the axes within the
picture itself.

f[x , y ] := x^2 + 3 x y + y^3;
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ContourPlot[{f[x,y]==25, f[x,y]==10, f[x,y]==0}, {x,-10,10},
{y,-7,4}, Frame -> False, Axes -> True]

An interesting feature of the default output from ContourPlot is that if you position
the mouse over any of the three curves shown in the graphic above, you will see the
equation shown as a tool tip on the mouse.

Tick Marks Each of the commands Plot, ParametricPlot, PolarPlot, and
ContourPlot allows you to control the placement of tick marks on each of the axes
using the Ticks option. This is done as we do in the following example. Suppose
we draw the graph of x+ sin(3x), and we wish to have tick marks on the x−axis

at
π

6
,
2π

6
,
3π

6
,
4π

6
,
5π

6
and on the y−axis at 1, 2, 3.

Plot[x+Sin[3x], {x,0,Pi}, Ticks->{Range[5]Pi/6, {1,2,3}}]

You can specify the labels to be shown at given tick marks.

Plot[x+Sin[3x],{x,0,Pi},Ticks->{Range[5]Pi/6,{{1,"A"},{2,"B"},
{3,"C"}}}]

101



Feras Awad @2019 13 GRAPHICS IN MATHEMATICA

Labels The AxesLabel and PlotLabel options allow you to specify labels for
one or both of the axes, or for the output graphic as a whole, respectively.

Plot[Cos[x]+15, {x,0,4Pi}, AxesLabel->{"day","price"},
PlotLabel->"Daily Stock Price"]

If your picture is framed, then you must use the FrameLabel option in place of
AxesLabel.

ContourPlot[x^2/16+y^2/9==1, {x,-4,4}, {y,-3,3}, Axes->True,

AspectRatio->Automatic, FrameLabel->{"x-axis","y-axis"},
PlotLabel->"Ellipse"]

13.3 Making Graphs in Space

The easiest way to sketch a surface in three dimensions (3D) is to use the Plot3D

command. You input an expression that gives the height of a surface above the
xy−plane, in terms of the independent variables x and y. You must also specify
intervals x ∈ [x0, x1] and y ∈ [y0, y1]. The Plot3D command then has the form:

Plot3D[ expression of x and y, {x,x0,x1}, {y,y0,y1}]

For example, The surface whose height is z = 4− x2 − y2 above the xy−plane,
over the rectangle [−2, 2]× [−2, 2], is seen with:

Plot3D[4-x^2-y^2, {x,-2,2}, {y,-2,2}]
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The graph of the function f(x, y) = x2 − y2 looks like a saddle if we take, for
example, x, y ∈ [−3, 3] as shown below.

Plot3D[x^2-y^2, {x,-3,3}, {y,-3,3}]

There are a number of options that you can use to add more character to the graph
of a function z = f(x, y) with Plot3D. For example,

1. AxesLabel : Provides names to label each of the three axes.

2. BoxRatios : Scales the graphic so that it appears within a certain lengths
of a box.

3. PlotRange : Specify the range of one or more of the variables x, y, and z.

4. Mesh→False : Omit the mesh on the graph.

5. PlotStyle→Green : Color the graph green.

For example see how the sombrero looks like using some of Plot3D options. Note

that the sombrero is given by the function f(x, y) =
sin
(√

x2 + y2
)

√
x2 + y2

.

Plot3D[Sin[Sqrt[x^2+y^2]]/Sqrt[x^2+y^2], {x,-7,7},
{y,-7,7}, PlotPoints->50, PlotRange->All, AxesLabel->{"x","y","z"},
Mesh->False, BoxRatios->{1,1,1}]
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Mathematica includes very useful Notebook feature for working with 3D graphics.
As you move over a 3D graphic with the mouse, you will see that the cursor changes.
If you now click and drag with the mouse, you will be able to rotate the graphic
in real time. This lets you view the surface from many different angles. Every
three-dimensional picture drawn in Mathematica will be shown from a specified
ViewPoint. Specifying a ViewPoint is the same as describing how your eye is
located with respect to the graphic being drawn. Let us show you how it is done.
You input the ViewPoint option in the form ViewPoint->{a,b,c}, where the
values a, b, and c describe the position of your eye relative to the object that you
are viewing. Positive values of a, b, and c place you ”in front of”, ”to the right
of”, and ”above” the object, with respect to the direction of the positive x-, y-
and z-coordinate axes, respectively. Negative values place you ”behind”, ”to the
left of”, and ”below” the object. A value of zero for any of these three places you

”at the center”. Let us think of the graph of f(x, y) = (x2 + y2) e−
x2

400
− y2

100 as being
twin mountains. Let us take a ”helicopter ride” around these mountains using three
ViewPoints: {3,1,1}, {3,2,-1}, and {0,100,0}, respectively.

f[x ,y ] := (x^2+y^2) Exp[-x^2/400 - y^2/100];

vp1=Plot3D[f[x, y],{x,-40,40},{y,-40,40},ViewPoint->{3,1,1}];

vp2=Plot3D[f[x, y],{x,-40,40},{y,-40,40},ViewPoint->{3,2,-1}];

vp3=Plot3D[f[x, y],{x,-40,40},{y,-40,40},ViewPoint->{0,100,0}];

GraphicsRow[{vp1, vp2, vp3}, ImageSize -> Full]
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13.4 Surfaces in Cylindrical and Spherical Coordinates

Surfaces are sometimes more easily described in terms of the cylindrical or spherical
coordinate systems. You can draw such a surface easily with the Mathematica
commands RevolutionPlot3D and SphericalPlot3D commands, respectively.
Points in the cylindrical coordinate system are described by quantities r, θ, and z,
where

r is the horizontal radial distance of the point from the z−axis;

θ is the horizontal angle measured from the x−axis; and

z is the z−coordinate in standard rectangular coordinates.

To draw the surface z = f(r, θ) for r ∈ [r0, r1] and θ ∈ [θ0, θ1], you enter:

RevolutionPlot3D[f[r,θ],{r,r1,r2},{θ,θ1,θ2}]

For example, to see the surface z = r2 cos(8θ), for r ∈ [0.5, 1] and θ ∈ [0, 2π]:

RevolutionPlot3D[r^2 Cos[8 theta], {r,0.5,1}, {theta,0,2Pi}]

In Mathematica, points in the spherical coordinate system are described by quanti-
ties ρ, φ, and θ, where

ρ is the radial distance in space of the point from the origin;

θ is the vertical angle measured from the positive z−axis; and

φ is the horizontal angle measured from the x−axis.

Note that Mathematica uses φ and θ for the horizontal and vertical angles, respec-
tively, in spherical coordinates. This is exactly the opposite of the notation used in
almost every Calculus book.

To draw the surface ρ = f(θ, φ), where θ ∈ [θ0, θ1] and φ ∈ [φ0, φ1], you will enter:

SphericalPlot3D[f[θ,φ],{θ,θ1,θ2},{φ,φ1,φ2}]]

For example, to see the surface defined by ρ = cos(θ) cos(4θ), for θ ∈
[
0, π

4

]
, and

φ ∈ [0, 2π], use:
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SphericalPlot3D[Cos[theta]Cos[4theta], {theta,0,Pi/4},
{phi,0,2Pi}]

When you use the SphericalPlot3D command, you must enter the interval for
the vertical angle theta first, then the interval for the horizontal angle phi. If you
do not use this order, the picture will be incorrect.

Plotting Multiple Surfaces The Plot3D command allows you to draw more than
one surface above a rectangle x ∈ [a, b] and y ∈ [c, d] in a single graphic. You use
it in the form

Plot3D[{surface1, surface2, ...},{x,a,b},{y,c,d}]

and you still can attach options just as before. For example, the intersection of the
paraboloid z = x2 + y2 with the plane z = 2x+ 5y is a circle. You can see this
quite easily with

Plot3D[{x^2+y^2, 2x+5y}, {x,-6,6}, {y,-6,6}]

SphericalPlot3D similarly allows you to plot more than one surface, using the
same syntax extension as the Plot3D command uses. For example, we can see a very
nice ”cut-away” image of the 3 spheres r = cos(θ), r = 2 cos(θ), and r = 3 cos(θ)

by restricting the range of φ, to stay between
π

4
and

7π

4
and looking at them from

in front of the x−axis:
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SphericalPlot3D[{Cos[theta], 2Cos[theta], 3Cos[theta]},
{theta,0,Pi/2}, {phi,Pi/4,7Pi/4}, ViewPoint->{2, 0, 0}]

Finally, although RevolutionPlot3D also allows multiple equations in the same
graphic, the syntax is different. You must use one extra layer of curly braces { and
}. For example, in cylindrical coordinates, the equation z = r, for 1 ≤ r ≤ 2 and
0 ≤ θ ≤ 2π, describes a portion of a cone, also the equations z = r± 1 are just
vertical translations of the cone. Put the three together and you have got three
bowls stacked up.

RevolutionPlot3D[{{r}, {r-1}, {r+1}}, {r,0,2}, {theta,0,2Pi}]

13.5 Changing Coordinate Systems

Changing coordinate systems can involve two very different operations. One is
recomputing coordinate values that correspond to the same point. The other is
re-expressing a field in terms of new variables. The Wolfram Language provides
functions to perform both these operations.

Converting Points Two coordinate systems are related by a mapping that takes
coordinate values in the old system and returns coordinate values in the new system.
The function CoordinateTransformData returns information about mappings be-
tween the coordinate systems. For example, the following converts the point (r, θ)
in polar coordinates to the corresponding (x, y) Cartesian coordinates.
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CoordinateTransformData["Polar"->"Cartesian","Mapping",{r,θ}]
{r cos(θ), r sin(θ)}

Conversely, we write

CoordinateTransformData["Cartesian"->"Polar","Mapping",{x,y}]{√
x2 + y2, tan−1

(y
x

)}
To covert a point (ρ, θ, φ) in spherical coordinates to the corresponding (x, y, z)
Cartesian coordinates, and vice versa, we use

CoordinateTransformData["Spherical"->"Cartesian","Mapping",

{ρ, θ, φ}]
{ρ sin(θ) cos(φ), ρ sin(θ) sin(φ), ρ cos(θ)}

CoordinateTransformData["Cartesian"->"Spherical","Mapping",

{x,y,z}]{√
x2 + y2 + z2, tan−1

(√
x2 + y2

z

)
, tan−1

(y
x

)}

Also, we convert a point (r, θ, z) in cylindrical coordinates to the corresponding
(x, y, z) Cartesian coordinates, and vice versa by writing

CoordinateTransformData["Cylindrical"->"Cartesian","Mapping",

{r,θ,z}]
{r cos(θ), r sin(θ), z}

CoordinateTransformData["Cartesian"->"Cylindrical","Mapping",

{x,y,z}]{√
x2 + y2, tan−1

(y
x

)
, z
}

Example 13.1. Convert the point (1, 1, 0) in Cartesian coordinates to the corre-
sponding values in spherical coordinates.

CoordinateTransformData["Cartesian"->"Spherical","Mapping",

{1,1,0}]{√
2,
π

2
,
π

4

}

Example 13.2. Convert the point
(
1,
π

3
,
π

4

)
in spherical coordinates to the corre-

sponding cylindrical coordinates.
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CoordinateTransform["Spherical"->"Cylindrical",{1,Pi/3,Pi/4}]{√
3

2
,
π

4
,
1

2

}

Example 13.3. Convert the points (1, 1), (1,−1), and (0,−2) from Cartesian co-
ordinates to the corresponding polar coordinates.

CoordinateTransform["Cartesian"->"Polar",{{1,1},{1,-1},{0,-2}}]{{√
2,
π

4

}
,
{√

2,−π
4

}
,
{
2,−π

2

}}

Transforming Fields When transforming fields between two coordinate systems,
a field given in terms of variables in the old system is re-expressed in terms of
variables in the new system. In addition to the mapping between the systems, several
additional steps are needed: solving for the old variables in terms of the new, the
substituting in these expressions. All of these steps are performed by the command
TransformedField. For example, this converts the scalar field x2 + y2 + z2 from
Cartesian (x, y, z) to cylindrical (r, θ, ξ) coordinates.

TransformedField["Cartesian"->"Cylindrical", x^2+y^2+z^2, {x,
y,z}->{r,θ,ξ}] // Simplify

ξ2 + r2

The following converts the hyperbola x2 − y2 from Cartesian (x, y) to polar (r, θ)
coordinates.

TransformedField["Cartesian"->"Polar", x^2-y^2, {x,y}->{r,θ}]
// Simplify

r2 cos(2θ)

Example 13.4. In some cases, a surface given in rectangular coordinates will look
better if you draw it using cylindrical or spherical coordinates. For example, the

surface defined by the equation z =
x2 − y2

(x2 + y2)
2 can be plotted with:

Plot3D[(x^2-y^2)/(x^2+y^2)^2,{x,-3,3},{y,-3,3}]]
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The picture is choppy especially near the origin. However, if we use cylindrical
coordinates, the surface becomes

f=TransformedField["Cartesian"->"Cylindrical",

(x^2-y^2)/(x^2+y^2)^2, {x,y,z}->{r,θ,ξ}] // Simplify

cos(2θ)

r2

Now, we will do the plot.

RevolutionPlot3D[f,{r,0.5,3},{θ,0,2Pi}]

13.6 Level Curves and Level Surfaces

In Mathematica, the level curves (contours) of a function f(x,y) are plotted with
the ContourPlot command. To see the level curves inside the rectangle x ∈ [a, b]
and y ∈ [c, d], you use the command with this syntax:

ContourPlot[f[x,y],{x,a,b},{y,c,d}]

For example, here are some level curves of f(x, y) = xye−x
2−y2 near the origin:

ContourPlot[x y Exp[-x^2-y^2], {x,-2,2}, {y,-2,2}]
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By default, Mathematica automatically sketches an appropriate number of level
curves and colors the areas between these curves. Lighter shades represent higher
levels, while darker shades represent lower levels. By moving the mouse over the
graphic above, Mathematica will show you (using a tooltip at the cursor) exactly
what contour levels have been drawn.

Level Surfaces in Space If f(x, y, z) is a function of three variables defined over
a region x ∈ [x0, x1], y ∈ [y0, y1], and z ∈ [z0, z1] then the level surface of f at level
c can be seen with the ContourPlot3D command.

ContourPlot3D[function, {x,x0,x1}, {y,y0,y1}, {z,z0,z1},
Contours->{c}]

You can specify more than one level surface to be shown in the same graphic by
writing Contours→{the levels}, where the levels are separated by commas. For
example, We can see the level surfaces of f(x, y, z) = x3 − y2 + z2 at the levels of
1 and 10 with the following.

ContourPlot3D[x^3-y^2+z^2, {x,-2,3}, {y,-2,2}, {z,-2,3},
Contours->{1,10}]

13.7 Parametric Curves and Surfaces in Space

You use the ParametricPlot3D command to draw a space curve. To see the curve
given parametrically as

(
x(t), y(t), z(t)

)
, for t ∈ [a, b], type:

ParametricPlot3D[{x(t),y(t),z(t)},{t,a,b}]

This format is similar to the ParametricPlot command used for plane curves.
Here, however, the curve is defined with three parametric functions rather than two.
For example, the helix, given parametrically by (t, 3 cos t, 3 sin t), for t ∈ [0, 8π],
is drawn with:

ParametricPlot3D[{t,3Cos[t],3Sin[t]}, {t,0,8Pi}]
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ParametricPlot3D can also be used to draw a surface in space. If a surface is
defined parametrically by

(
x(u, v), y(u, v), z(u, v)

)
for u ∈ [a, b] and v ∈ [c, d], you

enter:

ParametricPlot3D[{x(u,v),y(u,v),z(u,v)},{u,a,b},{v,c,d}]

For example, to see a portion of the one-sheeted hyperboloid given parametrically
by
(
cos u cosh v, sin u cosh v, sinh v

)
, for u ∈ [0, 2π] and v ∈ [−2, 2], write:

ParametricPlot3D[{Cos[u]Cosh[v],Sin[u]Cosh[v],Sinh[v]},
{u,0,2Pi}, {v,-2,2}]

13.8 Visualizing Data

In Mathematica, curly braces are used to represent lists, regardless of the type of
elements in the list. Lists can be created several different ways as we have seen
before in chapter 4.

It is common to store lists in variables; this allows the lists to be easily referenced in
subsequent calculations. For example, by assigning a list to the symbol data, this
variable can be used in other calculations or commands where the list is needed.

data = {8, 2, 5, 1, 4, 7, 6}

{8, 2, 5, 1, 4, 7, 6}

Just as the Wolfram Language has many commands available to visualize all types of
mathematical functions and surfaces, so too does it have many commands available
to visualize lists and datasets. One of the most common commands to visualize
data is ListPlot, which displays the data as individual points.
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ListPlot[data]

When values jump around, it is usually harder to understand if you do not join them
up. ListLinePlot plots a list, joining up values.

ListLinePlot[data]

If you just want to know which numbers appear, you can plot them on a number
line.

NumberLinePlot[data]

Making a bar chart can be useful too:

BarChart[data]

So long as the list is not too long, a pie chart can be useful:

PieChart[data]
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Multiple Datasets While the examples thus far have concentrated on visualizing
a single dataset, the visualization commands can also be used to visualize multiple
datasets. Multiple datasets can be constructed by placing several different lists into
a single ”parent” list that encompasses them all. This larger list can be passed to
a command like ListPlot to visualize each of the sublists as a separate dataset.
The following example shows the use of ListPlot to plot two datasets, which are
automatically given different colors to easily tell them apart.

ListPlot[{{3, 5, 7, 9}, {1, 4, 9, 16, 25}}]

ListLinePlot[{{3, 5, 7, 9}, {1, 4, 9, 16, 25}}]

The following example depicts a use of the Show command to combine a data
visualization from ListPlot and a function visualization from Plot.

Show[Plot[x^2, {x,0,5}], ListPlot[{1,4,9,16,25},PlotStyle->
{Red,PointSize[Large]}]]

Note that we add an option to ListPlot called PlotStyle, which allows us to
color the data points in red and change their size to large, in order to make them
stand out.
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Many measurements are commonly represented as two-dimensional datasets. The
data visualization commands in the Wolfram Language are designed to work with
both one- and multidimensional data. When a command like ListPlot is given a
one-dimensional list, it is assumed that the list contains y values that correspond
to x values 1, 2, and so on. ListPlot also accepts a list of (x,y) pairs instead
of single height values for y coordinates.

ListPlot[Table[{2i,Prime[i]}, {i,8}]]

Visualizing lists or datasets in three dimensions is just as easy as visualizing them
in one or two dimensions. Many of the plotting commands shown thus far have 3D

equivalents, like ListPlot and ListPlot3D. The ListPlot3D command visualizes
a 3D surface based on the values from that dataset, and this 3D surface has the
same interactivity (rotation, panning, zooming) as other objects.

ListPlot3D@Table[Cos[i] Cos[j], {i,2,8},{j,-3,1}]

To visualize only the discrete data points and not a connecting mesh between the
points, ListPointPlot3D can be used.

ListPointPlot3D@Table[Cos[i] Cos[j], {i,2,8},{j,-3,1}]
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Visualize a Matrix Vectors and matrices have special visualization commands.
ArrayPlot draws a representation of an array, coloring squares that represent larger
values with darker colors. The following is the ArrayPlot of the 8× 8 matrix of
the first 64 consecutive prime numbers.

ArrayPlot[Partition[Prime[Range[64]],8]]

MatrixPlot follows a similar logic, where the position of a value in a matrix de-
termines the coloration of that position in the plot, with negative values shown in
cool tones, like blue, and positive values shown in warm tones, like orange. The
higher the magnitude of a value, the more intense its corresponding color is for that
position.

MatrixPlot[{{-10,-5,-1}, {2,4,6}, {20,30,40}}]

Shape Matrices Mathematica provides certain shapes of matrices as follows.

1. DiskMatrix[r] gives a matrix whose elements are 1 in a disk-shaped region
of radius r, and are otherwise 0.

ArrayPlot[DiskMatrix[7], Mesh -> All]
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2. BoxMatrix[r] gives a (2r+ 1)× (2r+ 1) matrix of 1’s.

ArrayPlot[BoxMatrix[7], Mesh -> All]

3. CrossMatrix[r] gives a matrix whose elements are 1 in a centered cross-
shaped region that extends r positions along each index direction, and are 0

otherwise.

ArrayPlot[CrossMatrix[7], Mesh -> All]

4. DiamondMatrix[r] gives a matrix whose elements are 1 in a diamond-shaped
region that extends r index positions to each side, and are 0 otherwise.

ArrayPlot[DiamondMatrix[7], Mesh -> All]

13.9 Advanced Graphics

In addition to using commands such as Plot and ParametricPlot to create 2D

pictures, we can ask Mathematica to directly draw simple objects such as points,
lines, circles, and rectangles. These objects are called graphics primitives, and they
are the lowest-level commands used to produce every 2D Mathematica picture. To
work with graphics primitives, you have to first define them with the Graphics

command:
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Graphics[ graphics primitive ]

or, to group several graphic primitives together, use

Graphics[ {graphics primitive1, graphics primitive2, ...} ]

3D graphics primitives are also available in Mathematica. You use the Graphics3D

command both to define and show them. Some of the graphics primitives we have
used often are the following.

1. Point[p] is a graphics and geometry primitive that represents a point at p.

Graphics[Point[{-2,1}]]

Graphics[Point[Table[{t,Sin[t]}, {t,0,2Pi, 2Pi/10}]]]

pts=Table[{t,Sin[t],Cos[t]},{t,0,2Pi,2Pi/10}];
Graphics3D[Point[pts]]

2. Line[{p1,p2,...}] represents the line segments joining a sequence for
points pi.

Graphics[{Thick, Line[{{1,0}, {2,1}, {3,0}, {4,1}}]}]

line=Line[{{1,1,-1},{2,2,1},{3,3,-1},{4,4,1}}];
Graphics3D[{Thick,Dashed,}]
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3. InfiniteLine[{p1,p2}] represents the infinite straight line passing through
the points p1 and p2.

Graphics[InfiniteLine[{0,0},{1,1}], Frame->True]

Graphics3D[InfiniteLine[{0,0,0},{1,2,3}]]

lines=Table[InfiniteLine[{0,y},{1,1}],{y,5}];
Graphics[lines,PlotRange->{{-6,6},{0,6}}]

Example 13.5. Find the point of intersection for the two lines `1 that
passes through the point (0, 0) in the direction of the vector (1, 1), and
the line `2 that passes through the points (0, 1), (1, 0).
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line1 = InfiniteLine[{0,0},{1,1}];
line2 = InfiniteLine[0, 1, 1, 0];

sol=Solve[Element[{x,y},line1]&& Element[{x,y},line2],
{x,y}]{{

x→ 1

2
, y→ 1

2

}}
Graphics[{{Thick,line1,line2},{PointSize[0.06],Red,
Point[{x,y}/.sol]}},Axes->True,ImageSize->Small]

4. Arrow[{pt1,pt2}] is a graphics primitive that represents an arrow from pt1
to pt2.

Graphics[Arrow[{{1,0},{2,1},{3,0},{4,1}}]]

Plot[Sin[x],{x,0,2Pi},Epilog->{Arrow[{{3Pi/2,1/2},{Pi,0}}],
Text["Zero",{3Pi/2,1/2},{-1,-1}]}]

5. Triangle[{p1,p2,p3}] represents a filled triangle with corner points p1, p2,
and p3.

Graphics[Triangle[]]
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Graphics3D[Triangle[{{0,0,0},{1,0,0},{0,1,1}}]]

Example 13.6. To define an equilateral triangle by side length s, we
use the command SSSTriangle[a,b,c] which returns a filled triangle
with sides of lengths a, b, and c.

EquilateralTriangle[s ] := SSSTriangle[s,s,s]

EquilateralTriangle[2]

Triangle[{{0, 0}, {2, 0}, {1,
√
3}}]

Graphics@EquilateralTriangle[2]

Example 13.7. To define an isosceles triangle by side length s that
adjacent to both equals angles α, we may use either the command
IsoscelesTriangle[a,s,b] which returns a filled triangle with an-
gles a and b and side length c, and c is adjacent to both angles, or
we use the command SASTriangle[s1,a,s2] which returns a filled
triangle with sides of length s1 and s1 and angle a between them.

IsoscelesTriangle[a ,s ,b ] := ASATriangle[a,s,b]

IsoscelesTriangle[Pi/6,3,Pi/6]

Triangle[

{
{0, 0}, {3, 0},

{
3

2
,

√
3

2

}}
]

Graphics@IsoscelesTriangle[Pi/6,3,Pi/6]
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IsoscelesTriangle[s1 ,a ,s2 ] := SASTriangle[s1,a,s2]

Graphics@IsoscelesTriangle[2, Pi/6, 2]

6. Rectangle[{xmin,ymin},{xmax,ymax}] represents an axis-aligned filled rect-
angle from {xmin, ymin} to {xmax, ymax}.

The command Graphics[Rectangle[]] defines a unit square.

Graphics[Rectangle[{2,1},{4,5}],Axes->True,AxesOrigin->
{0,0}]

7. RegularPolygon[n] gives the regular polygon with n vertices equally spaced
around the unit circle. RegularPolygon[n,r] gives the regular polygon of
radius r.

Table[Graphics[RegularPolygon[k]],{k,3,8}]
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8. Circle[{x,y},r] represents a circle of radius r centered at {x,y}. The
command Circle[{x,y},{rx,ry}] gives an axis-aligned ellipse with semi-
axes lengths rx and ry. While Circle[{x,y},...,{θ1,θ2}] gives a circular
or ellipse arc from angle θ1 to θ2.

The command Graphics[Circle[]] represents a unit circle.

Graphics[Circle[{0,0},1,{Pi/6,3Pi/4}]] gives a circular arc.

An ellipse is given by Graphics[Circle[{0,0},{3,4}]]

This represents Graphics[Table[Circle[{i,j},1/2],{i,7},{j,5}]]
a square packing of circles.

9. Disk[{x,y},r] represents a disk of radius r centered at {x,y}.

A unit disk Graphics[Disk[]]
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A disk sector Graphics[{Orange,Disk[{0,0},1,{Pi/4,3Pi/4}]}]

An elliptical disk Graphics[{Gray,Disk[{0,0},{3,4}]}]

10. InfinitePlane[{p1,p2,p3}] represents the plane passing through the points
p1, p2, and p3. InfinitePlane[p,{v1,v2}] represents the plane passing
through the point p in the directions v1 and v2.

Graphics3D[InfinitePlane[{{1,0,0},{1,1,1},{0,0,1}}]] repre-
sents a plane through the points (1,0,0), (1,1,1), and (0,0,1).

Graphics3D[InfinitePlane[{1,0,0},{{0,1,1},{-1,0,1}}]]}] de-
fines the plane passing through the point (1,0,0) in the directions
(0,1,1) and (1,0,1).
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11. Ball[p,r] represents a ball of radius r centered at the point p.

A unit ball at the origin: Graphics3D[Ball[{0,0,0}]].

12. Cylinder[{{x1,y1,z1},{x2,y2,z2}},r] represents a cylinder of radius r

around the line from (x1,y1,z1) to (x2,y2,z2).

Graphics3D[Cylinder[{{0,0,0},{1,1,1}},1/2]] gives a cylinder

from the origin to {1,1,1} with radius
1

2
.

13. Cone[{{x1,y1,z1},{x2,y2,z2}},r] represents a cone with a base of radius
r centered at (x1,y1,z1) and a tip at (x2,y2,z2).

Graphics3D[Cone[{{0,0,0},{1,1,1}},1/2]] gives a cone from the

origin to {1,1,1} with radius
1

2
at its base.
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14. Cuboid[pmin,pmax] represents an axis-aligned filled cuboid with lower corner
pmin and upper corner pmax.

Graphics3D[Cuboid[{-2,0,1},{1,3,3}],Axes->True,AxesOrigin
->{0,0,0}]

13.10 Region Integrals Measures

The Wolfram Language supports a broad range of standard properties and measures
for geometric regions, including integral measures such as length, area, volume, and
centroid.

Arc Length The command ArcLength[reg] gives the length of the one dimen-

sional region reg. For example, the arc length of the function f(x) =
x3

6
− 1

2x
on

the interval [1, 2] is

ArcLength[x^3/6+1/(2x), {x,1,2}]

17

12

The length can be computed using the polar representation of r(θ) = 2− 2 cos θ
on [0, 2π] as follows.

ArcLength[{2-2Cos[theta],theta},{theta,0,2Pi},"Polar"]

16

Length of one revolution of the helix given parametrically is

ArcLength[{Cos[t],Sin[t],t},{t,0,2Pi}]

2
√
2π
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The length of the line connecting the points (0, 0), (1, 1), and (3,−1) is

ArcLength[Line[{{0,0},{1,1},{3,-1}}]]

3
√
2

The length of a circle with radius r is

ArcLength[Circle[{x,y},r]]

2πr

The length of an ellipse is

N@ArcLength[Circle[{0,0},{2,3}]]

15.8654

The arc length of a circle intersected with a triangle:

R1 = Circle[];

R2 = Triangle[{{-3/2,0},{3/2,0},{0,11/10}}];

R3 = RegionIntersection[R1,R2];

ArcLength[R3]

2

(
sin−1

(
3

692

(
121− 5

√
295
))

+ cos−1
(

3

692

(
5
√
295+ 121

)))
The perimeter of the triangle whose two of its angles are

π

6
and

π

3
, and the length

of the side adjacent to both angles is of length 2, is

ArcLength[RegionBoundary[ASATriangle[Pi/6,2,Pi/3]]]

√
3+ 3

where the command RegionBoundary represents the boundary of the region reg.
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Area The command Area[reg] gives the area of the two dimensional region reg.
For example, the area of the disk with radius r is

Area[Disk[{x,y}, r]]

πr2

The surface area of a sphere (ball) with radius r is

Area[RegionBoundary[Ball[{x,y,z},r]]], or simply use

Area[Sphere[{x,y,z},r]]

4πr2

The area of an annulus with inner radius 1 and outer radius 2 equals

Area[{r Sin[theta],r Cos[theta]},{r,1,2},{theta,0,2Pi}]

3π

The area of the triangle whose vertices at the points
(
− 1

2
,−1

)
, (1, 2), and (3, 0) is

Area[Triangle[{{-1/2,-1},{1,2},{3,0}}]]

9

2

The area of a triangle with sides of length a, b, and c is

Area[SSSTriangle[a,b,c]]

1

4

√
|(a+ b− c)(a− b+ c)(−a+ b+ c)(a+ b+ c)|

The area of an ellipse centered at
(
cx, cy

)
is

Area[Disk[{cx,cy},{a,b}]]

abπ
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Volume The command Volume[reg] gives the volume of the three dimensional
region reg. For example, the volume of a ball in 3D of radius r is

Volume[Ball[{a,b,c},r]]

4πr3

3

The volume and the surface area of a cone of height h and radius r of its circular
base are

PowerExpand@Volume[Cone[{{0,0,0},{0,0,h}},r]]

1

3
πhr2

Area[RegionBoundary[Cone[{{0,0,0},{0,0,h}},r]]]

πr
(√

h2 + r2 + r
)

Centroid The centroid or geometric center of a plane figure is the arithmetic mean
(”average”) position of all the points in the shape. RegionCentroid[reg] gives
the centroid of the region reg. For example, the centroid of the disk with center
(a,b) and radius r is

RegionCentroid[Disk[{a,b},r]]

{a, b}

The centroid of the rectangle is

RegionCentroid[Rectangle[{a,b},{c,d}]]{
a+ c

2
,
b+ d

2

}

13.11 Graphs and Networks

A graph is a way of showing connections between things - say, how web pages are
linked, or how people form a social network. Let us start with a very simple graph,
in which 1 connects to 2, 2 to 3, and 3 to 4. Each of the connections is represented
by → (typed as ->).

Graph[{1->2,2->3,3->4}]

Automatically label all the ”vertices”:

Graph[{1->2,2->3,3->4},VertexLabels->All]
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Let us add one more connection: to connect 4 to 1. Now we have a loop.

Graph[{1->2,2->3,3->4,4->1},VertexLabels->All]

Add two more connections, including one connecting 2 right back to 2:

Graph[{1->2,2->3,3->4,4->1,3->1,2->2},VertexLabels->All]

As we add connections, the Wolfram Language chooses to place the vertices or nodes
of the graph differently. All that really matters for the meaning, however, is how the
vertices are connected. And if you do not specify otherwise, the Wolfram Language
will try to lay the graph out so it is as untangled and easy to understand as possible.

You can do computations on the graph, say finding the shortest path that gets from
4 to 2, always following the arrows.

FindShortestPath[Graph[{1->2,2->3,3->4,4->1,3->1,2->2}],4,2]

{4, 1, 2}

Now let us make another graph. This time let us have 3 nodes, and let us have
a connection between every one of them. Start by making an array of all possible
connections between 3 objects:

Table[i->j,{i,3},{j,3}]

{{1→ 1, 1→ 2, 1→ 3}, {2→ 1, 2→ 2, 2→ 3}, {3→ 1, 3→ 2, 3→ 3}}
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The result here is a list of lists. But what Graph needs is just a single list of
connections. We can get that by using Flatten to ”flatten” out the sublists.

Flatten[Table[i->j,{i,3},{j,3}]]

{1→ 1, 1→ 2, 1→ 3, 2→ 1, 2→ 2, 2→ 3, 3→ 1, 3→ 2, 3→ 3}

Now, show the graph of these connections:

Graph[Flatten[Table[i->j,{i,3},{j,3}]],VertexLabels->All]

The following generates the completely connected graph with 6 nodes:

Graph[Flatten[Table[i->j,{i,6},{j,6}]]]

Sometimes the ”direction” of a connection does not matter, so we can drop the
arrows.

UndirectedGraph[Flatten[Table[i->j,{i,6},{j,6}]]]
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Exercises for Chapter 13

1. The standard normal curve used in probability and statistics is defined by the

function f(x) =
1√
2π

e−x
2/2. Sketch the graph of f for x ∈ [−3, 3].

2. The graphs of a function and its inverse are symmetric with respect to the line
y = x. Plot the functions f(x) = x2, x ∈ [0, 2], and its inverse f−1(x) =

√
x,

x ∈ [0, 4], and the line y = x and observe the symmetry.

3. Sketch the graphs of y = x2, y = −x2, and y = x2 sin(10x), x ∈ [−2π, 2π],
on a single set of axes enclosed by a frame.

4. Sketch the parabola y = x2 − 9 and a circle of radius 3 centered at the origin.

5. The curve traced by a point on a circle as the circle rolls along a straight
line is called a cycloid and has parametric equations x = r(θ − sin θ) and
x = r(1− cos θ) where r represents the radius of the circle. Plot the cycloid
formed as a circle of radius 1 makes four complete revolutions.

6. The polar graph r = θ is called the Spiral of Archimedes. Sketch the graph
for θ ∈ [0, 10π].

7. Sketch the graph defined by the equation y2 = x3(2− x) where x ∈ [0, 2] and
y ∈ [−2, 2].

8. Plot the first 50 prime numbers.

9. Make a number line plot of the first 20 elements of the sequence given by the

rule
1

n
.

10. Plot the functions y = x2 and y = 8− x2 and color the region enclosed be-
tween them using the plot option Filling.

11. Plot the graph of the function e−x
2−y2 above the rectangle [−2, 2]× [−2, 2].

12. Graph the paraboloid z = x2 + y2 with the plane z+ y = 12 above the rect-
angle [−5, 5]× [−5, 5]. Do not draw axes or a surrounding box.

13. Sketch the space curve defined by the parametric equations

x(t) = (4+ sin 20t) cos t

y(t) = (4+ sin 20t) sin t

z(t) = cos 20t

where t ∈ [0, 2π]. This curve is called a toroidal spiral since it lies on the
surface of a torus.
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14. Draw the ”ice cream cone” formed by the cone z = 3
√
x2 + y2 and the upper

half of the sphere x2 + y2 + (z− 9)2 = 9. Use cylindrical coordinates.

15. Sketch the graph of the surface ρ = 1+ sin 4θ sinφ given in spherical coor-
dinates where θ ∈ [0, 2π] and φ ∈ [0, π].

16. Draw a contour plot of f(x, y) = sin x+ sin y on the square x, y ∈ [−4π, 4π].

17. Let f(x, y, z) = 5x2 + 2y2 + z2. Draw the level surfaces f(x, y, z) = k for
k=1,4,9,16, and 25. Sketch the surfaces only for y ≥ 0 so that all the
surfaces will be visible.

18. A triangle has angles
π

6
and

π

4
, and a side of length 1 is adjacent to only one

of the angles. Find the perimeter of this triangle, then find its centroid and
display the position of the centroid inside the triangle.

19. Make a graph with 4 nodes in which every node is connected.

20. For the graph {1→ 2, 2→ 3, 3→ 4, 4→ 1, 3→ 1, 2→ 2}, make a grid giv-
ing the shortest paths between every pair of nodes, with the start node as row
and end node as column.
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14 Partial Differentiation and Multiple Integration

Mathematica is useful in investigating functions involving more than one variable. In
particular, the graphical analysis of functions that depend on two (or more) variables
is enhanced with the help of Mathematica’s graphics capabilities.

14.1 Limits of Functions of Two Variables

Mathematica’s graphics and numerical capabilities are helpful in investigating limits
of functions of two variables.

Example 14.1. Show that lim
(x,y)→(0,0)

x2 − y2

x2 + y2
does not exist.

From the graph of the level curves of f(x, y) =
x2 − y2

x2 + y2
we suspect that the limit

does not exist because when you slide the cursor over the contours in the contour
plot, the contour values are displayed, and we see that near (0, 0), the function f
attains many different values.

If we find two different smooth curves along which this limit has different values,
then the limit does not exist, as follows.

Along the path y = x and x→ 0:

Limit[(x^2-y^2)/(x^2+y^2) /. y->x, x->0]

0

Along the path x = y2 and y→ 0:

Limit[(x^2-y^2)/(x^2+y^2) /. x->y^2, y->0]

−1

In some cases, you can establish that a limit does not exist by converting to polar

coordinates. For example, in polar coordinates, f(x, y) =
x2 − y2

x2 + y2
becomes
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Simplify@TransformedField["Cartesian"->"Polar",

(x^2-y^2)/(x^2+y^2),{x,y}->{r,θ}]

cos(2θ)

Limit[Cos[2θ], r->0]

cos(2θ) that depends on θ, and hence the limit does not exist.

14.2 Partial Derivatives

The D command we used in Chapter 9 is actually a partial differentiation opera-
tor. It differentiates an expression with respect to a specified variable, treating all
other symbols as constants. For example, if f(x, y) = 3xy2 − 5y sin x, its partial

derivatives fx =
∂f

∂x
and fy =

∂f

∂y
are computed with

f[x ,y ] := 3 x y^2 - 5 y Sin[x]

D[f[x, y], x]

3y2 − 5y cos(x)

D[f[x, y], y]

6xy− 5 sin(x)

You find higher-order derivatives by listing the variables in the order of differentia-

tion. For example,
∂3f

∂y∂x2
taking the partial derivative ”first by x, then by x, then

by y.” You compute this with

D[f[x, y], x,x,y] or D[f[x, y], {x,2},y]

5 sin(x)

Gradient ∇ The gradient, Grad in Mathematica, is a generalization of the usual
concept of derivative to functions of several variables. If f (x1, · · · , xn) is a differ-
entiable real-valued function of several variables, its gradient is the vector whose
components are the n partial derivatives of f. For example, ∇f(x, y) =

(
fx, fy

)
.

Thus ∇ is a vector-valued function.

Example 14.2. Let f(x, y) = 6x2y− 3x4 − 2y3, then ∇f, the gradient of f is

Grad[6x^2y-3x^4-2y^3, {x,y}]

{12xy− 12x3, 6x2 − 6y2}
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Directional Derivative If the function f is differentiable at the vector (x1, · · · , xn),
then the directional derivative exists along any vector v, and one has Dvf = ∇f · v
where the ∇ on the right denotes the gradient and · is the dot product.

Example 14.3. Let f(x, y) = 6x2y− 3x4 − 2y3. Find Duf where u is the unit
vector in the same direction of the vector (3, 4).

Simplify@Dot[Grad[6x^2y-3x^4-2y^3,{x,y}],Normalize[{3,4}]]

−12
5

(3x3 − 2x2 − 3xy+ 2y2)

14.3 Optimization

There are numerous methods for finding extreme values of multivariate functions.
It is certainly possible to mimic the basic techniques presented in a standard calcu-
lus course, with Mathematica doing the heavy lifting when the algebra gets tough.
There are also the built-in commands Maximize and Minimize that we have seen
in Chapter 9, but which also have inherent limitations. We will begin with these
built-in commands, and then discuss the traditional approach using critical points
and second derivatives.

The commands Maximize and Minimize use the same syntax, and in the most
simple setting where your function is not overly complicated and happens to have
a single extremum in its largest natural domain, these commands make light work
of optimization:

Maximize[-85+4(4x-y+10z)-4(x^2+y^2+z^2),{x,y,z}]{
32,

{
x→ 2, y→ −1

2
, z→ 5

}}
If an extreme value does not exist, you can expect to see this sort of thing:

Minimize[-85+4(4x-y+10z)-4(x^2+y^2+z^2),{x,y,z}]

The minimum is not attained at any point satisfying the given

constraints.

These commands attempt to find absolute (global) extrema. They can be adapted
to hunt for relative (local) extrema by adding constraints. Simply use a list as the
first argument, where the second member of the list is an equation or inequality (or
any logical combination of these). The function 12y3 + 4x2 − 10xy has no absolute
extremum, but it has local extremum over the square [−1, 1]× [−1, 1]:

Minimize[{12y^3+4x^2-10x y, -1<=x<=1 && -1<=y<= 1}, {x,y}]]
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{−18, {x→ −1, y→ −1}}

Maximize[{12y^3+4x^2-10x y, -1<=x<=1 && -1<=y<= 1}, {x,y}]]

{26, {x→ −1, y→ 1}}

Now, we search for a local minimum value of the same function 12y3 + 4x2 − 10xy

but over the disk x2 + y2 ≤ 1. Unfortunately, Minimize is unable to give us an
exact numerical solution. Rather, it presents the three numbers in the output as
roots of sixth degree polynomials. In such situations, NMinimize will do the job.

Minimize[{12y^3+4x^2-10x y, x^2+y^2<=1}, {x,y}]]

{−13.0925, {x→ −0.215258, y→ −0.976557}}

Example 14.4. Find the maximal area among rectangles with a 5 units perimeter.

Maximize[{x y, 2x+2y==5 && x>0 && y>0}, {x,y}]{
25

16
,

{
x→ 5

4
, y→ 5

4

}}

Example 14.5. Find the disk of minimum radius that contains the three points
(0,0), (0,1), and (1,0).

Minimize[{r,Element[{{0,0},{1,0},{0,1}},Disk[{a,b},r]]},{a,b,r}]{
1√
2
,

{
a→ 1

2
, b→ 1

2
, r→ 1√

2

}}

14.4 Double and Triple Integrals

Mathematica can do an iterated double integral with the Integrate command.

The iterated double integral

b∫
a

g2(x)∫
g1(x)

f(x, y) dydx is evaluated in the form:

Integrate[ f[x,y], {x,a,b}, {y,g1[x],g2[x]}]

Similarly, the iterated integral

d∫
c

h2(y)∫
h1(y)

f(x, y) dxdy is computed with:

Integrate[ f[x,y], {y,c,d}, {x,h1[y],h2[y]}]
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The limits of the outer integral are written first. This is the order in which they
appear from left to right in the integral expression, and not the order in which do the

integrations by hand. For example, the double integral

2∫
0

2x∫
0

(
3x2 + (y− 2)2

)
dydx

is computed with:

Integrate[3x^2+(y-2)^2,{x,0,2},{y,0,2x}]

88

3

And to evaluate

4∫
0

2∫
y/2

(x+ 2y) dxdy, enter:

Integrate[x+2y,{y,0,4},{x,y/2,2}]

16

When the region over which the integration takes place is nonrectangular, this can
be a subtle and challenging enterprise in itself. However, if the region in question
is defined by one or more inequalities, the command CylindricalDecomposition

will do this work for you.

Example 14.6. Find

∫∫
D

(
3x2 − 2y2

)
dA where D is the region inside the circle

x2 + y2 = 1.

The bounds of integration of the region D are

CylindricalDecomposition[x^2+y^2<1,{x,y}]

−1 < x < 1 ∧ −
√
1− x2 < y <

√
1− x2

Therefore, our integral equals

Integrate[3x^2-2y^2,{x,-1,1},{y,-Sqrt[1-x^2],Sqrt[1-x^2]}]
π

4

What about the following easier command?

Integrate[3x^2-2y^2,Element[{x,y},Disk[]]]
π

4
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Iterated Triple Integrals An iterated triple integral

b∫
a

g2(x)∫
g1(x)

h2(x,y)∫
h1(x,y)

f(x, y, z) dzdydx

is evaluated using this extended form of the Integrate command:

Integrate[f[x,y,z],{x,a,b},{y,g1[x],g2[x]},{z,h1[x,y],h2[x,y]}]

Other variations in the order of integration can be written with appropriate changes
in the order of specifying the variables. For example, to evaluate

3∫
−3

√
9−x2∫

−
√
9−x2

3+y∫
x+y

z2 dzdydx

write:

Integrate[z^2,{x,-3,3},{y,-Sqrt[9-x^2],Sqrt[9-x^2]},{z,x+y,3+y}]

567π

4

We can reevaluate

3∫
−3

√
9−x2∫

−
√
9−x2

3+y∫
x+y

z2 dzdydx using the idea of example 14.6 as fol-

lows.

Integrate[z^2,Element[{x,y},Disk[{0,0},3]],{z,x+y,3+y}]

567π

4

Numerical Multiple Integration If you want to find a numeric approximation
for a double or triple integral, you should use NIntegrate. It has the same format
as the Integrate command. As you may expect, NIntegrate will give you an
answer quickly in most cases, and it can be used even when Integrate fails. For

example, try to evaluate

1∫
0

1∫
0

1∫
0

1√
x+ y2 + z3

dzdydx.

NIntegrate[1/Sqrt[x+y^2+z^3],{x,0,1},{y,0,1},{z,0,1}]

1.0885

NIntegrate[1/Sqrt[x+y^2+z^3],Element[{x,y,z},Cuboid[]]]

1.0885
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14.5 Line and Surface Integrals

Recall that a parameterized curve is a vector-valued function of one variable. That
is, it is a function taking R→R2 or R→R3. A vector field is a vector-valued function
of two or more variables. It is a function taking R2→R2 or R3→R3.

The divergence, Div in Mathematica, of a three-dimensional vector field f(x, y, z) =
(f1, f2, f3), where f1, f2, and f3 are functions of x, y, z, is the real-valued function

div f(x, y, z) = ∂xf1 + ∂yf2 + ∂zf3

The curl of f, Curl in Mathematica, is the three-dimensional vector field

curl f(x, y, z) =
(
∂yf3 − ∂zf2, ∂zf1 − ∂xf3, ∂xf2 − ∂yf1

)
For example, if f(x, y, z) = (x2y, z, xyz), then

Div[{x^2 y, z, x y z}, {x,y,z}]]

3xy

Curl[{x^2 y, z, x y z}, {x,y,z}]]

{xz− 1,−yz,−x2}

Engineers and physicists are often interested in integrating a vector field F either
along a curve r(t) defined on a parametric interval t ∈ [a, b], or over a surface
s(u, v) defined for a parametric rectangle u ∈ [u0, u1], v ∈ [v0, v1]. These are de-
fined as:

• Line Integral =

b∫
a

F(r(t)) · r′(t) dt

• Surface Integral = ±
u1∫

u0

v1∫
v0

F(s(u, v)) ·
(
∂s

∂u
× ∂s

∂v

)
dvdu where the choice of

± sign depends on how the normal for the surface is defined.

These integrals are easily computed using the Integrate command, as shown in
the following examples.

Example 14.7. Let F be the vector field F(x, y) = (x+ y,−y) and r(t) the para-
metric curve r(t) = (1− t, t2) for t ∈ [0, 1]. The line integral of F over this curve
is computed as:

F[{x ,y }]:={x+y,-y};

r[t ]:={1-t,t^2};
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Integrate[Dot[F[r[t]],r’[t]],{t,0,1}]

−4
3

Note that our choice of syntax is important! We defined r[t ] to produce a 2D

vector, and then F[{x , y }] to accept as its argument a 2D vector field, as well as
produce a 2D vector field. This lets us compute F[r[t]] directly.

Example 14.8. Suppose the surface integral of F(x, y, z) = (x+ xz, y, 0) over the
surface s is given by

−
4∫

1

2π∫
0

F(s(u, v)) ·
(
∂s

∂u
× ∂s

∂v

)
dvdu

where s is parameterized by s(u, v) = (u cos v, u sin v, u). We can evaluate this
integral as follows:

F[{x ,y ,z }]:={x+x z,y,0};

s[u ,v ]:={u Cos[v], u Sin[v], u};

Integrate[-Dot[F[s[u,v]],Simplify@Cross[D[s[u,v],u],D[s[u,v],

v]]],{u,1,4},{v,0,2Pi}]

423π

4

14.6 Solving Partial Differential Equations

The DSolve command that we use for ordinary differential equations in Chapter
12 can also be used to solve partial differential equations symbolically. To find a
function u = u(x, t) that is a solution to a given partial differential equation, you
use the DSolve command in the form:

DSolve[PDE, u[x,t], {x,t}]

More generally, to find a solution u = u (x1, · · · , xn) to a partial differential equation
in more than two variables, you use:

DSolve[PDE, u[x1,x2,..], {x1,x2,..}]

Example 14.9. Solve the partial differential equation ut − 2xux = u.

pde = D[u[x,t],t] - 2 x D[u[x,t],x] == u[x,t];
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DSolve[pde, u[x,t], {x,t}]{{
u(x, t)→

c1
(
1
2
(2t+ log(x))

)
√
x

}}
Notice that the term c1 that appears in the output represents an arbitrary function.
In this case, the general solution to the given partial differential equation will be

u(x, t) =
1√
x
f

(
1

2
(2t+ log(x))

)
where f is an arbitrary function.

Example 14.10. Solve the wave equation utt − c2uxx = 0.

pde = D[u[x,t],{t,2}]-c^2 D[u[x,t],{x,2}]==0;

PowerExpand@DSolve[pde, u[x,t], {x,t}]{{
u(x, t)→ c1

(
t− x

c

)
+ c2

(x
c
+ t
)}}

Again, the expressions c1 and c2 in the output stand for arbitrary functions. There-

fore, the general solution to the wave equation is u(x, t) = f
(
t− x

c

)
+ g

(x
c
+ t
)

for arbitrary functions f and g.

Initial and Boundary Conditions The DSolve command can include any sensible
mix of initial or boundary conditions. The extended syntax for this to find a solution
u = u (x1, x2, · · · ) is:

DSolve[{PDE, Condition(s)}, u[x1,x2,..], {x1,x2,..}]

Notice that the differential equation and all included conditions are contained within
curly braces { and } and separated by commas. Initial conditions and boundary
conditions can appear in any order.

Example 14.11. Solve the partial differential equation ut − 2ux = u with the initial

condition u(x, 0) =
1

1+ 2x2
.

pde = D[u[x,t],t] - 2D[u[x,t],x] == u[x, t];

IC = u[x,0] == 1/(1+2x^2);

DSolve[{pde, IC}, u[x,t], {x,t}]{{
u(x, t)→ et

8t2 + 8tx+ 2x2 + 1

}}
Note The heat equation is not considered here because it has a nonvanishing
non-principal part, and the algorithm used by DSolve is not applicable in this case.
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Exercises for Chapter 14

1. Let z = exy. Find
∂3z

∂x∂y∂x

2. A function f(x, y, z) is said to be harmonic if it satisfies Laplace’s equation

fxx + fyy + fzz = 0. Show that the function f(x, y, z) =
1√

x2 + y2 + z2
is

harmonic.

3. Find

1∫
0

1∫
0

ex
2y2 dxdy.

4. Solve the partial differential equation ut + 2ux = sin x with the initial condi-
tion u(0, t) = cos t.

5. Solve the heat equation ut = uxx with the initial condition u(x, 0) = e−x
2

.

6. Find the maximal area among triangles with a unit perimeter.

7. Use Mathematica to verify that the divergence of the curl of any vector field
is zero.

8. Consider the vector field F(x, y) =
(
−y
√
x2 + y2, x

√
x2 + y2

)
. Let r(t) =

(t, t3 − t2 − t). Evaluate the line integral

∫
F · dr for 0 ≤ t ≤ 2.
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15 Basic Statistics

A set of numerical data can be presented graphically by using a scatter diagram,
a pie chart, or a bar chart. You do this with one of the commands ListPlot,
PieChart, and BarChart,respectively, as we have seen before in Chapter 13.

15.1 Numerical Measures

Descriptive statistics are used to describe the properties of data; that is, how their
values are distributed. One class of descriptors is concerned with the location of
where the data tends to aggregate as typically described by the mean or median. A
second class of descriptors is concerned with the amount of dispersion of the data
as typically described by the variance (or standard deviation) or by its quartiles.

Measures of Central Tendency Standard statistical measures of data distribu-
tion are available in Mathematica. Let us consider the following data:

data = {22,147,75,191,189,213,132,191,41,103}

We can find the mean and median directly with the following commands.

Mean[data] // N

130.4

Median[data] // N

139.5

Other measures of central tendency are available such as the HarmonicMean and
GeometricMean and these work in same manner.

Measures of Variation Mathematica also includes commands for computing the
best-known measures of data variability, such as the variance, standard deviation,
and mean deviation as follows.

Variance[data] // N

4604.71

StandardDeviation[data] // N

67.858

MeanDeviation[data] // N

56.12
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15.2 Probability Distributions

Mathematica knows about many common probability distributions. These include
the following, along with their usual parameter specifications:

• NormalDistribution[µ, σ]

• UniformDistribution[a, b]

• BinomialDistribution[n, p]

• StudentTDistribution[n]

• PoissonDistribution[λ]

• BetaDistribution[α, β]

• ExponentialDistribution[λ]

• ChiDistribution[n]

• ChiSquareDistribution[n]

Cumulative Distribution and Probability Density Functions You can work
with the cumulative distribution function and the probability density function of
each of these distributions using the commands:

CDF[ distribution, x] for cumulative distribution function.

PDF[ distribution, x] for probability density function.

For example, consider the random variable X that follows a normal distribution with
mean 10 and deviation 3.

X = NormalDistribution[10,3];

Then, the probability that X ≤ 15.0 is

CDF[X, 15.0]

0.95221

Probability[x<=15.0,Distributed[x,X]]

0.95221

Note that

InverseCDF[X, 0.95221]

15.0

Also, the probability of X = 15.0 is
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PDF[X, 15.0]

0.033159

Example 15.1. What is the expected value of the random variable Y that follows
an exponential distribution with parameter a.

Expectation[Y,Distributed[Y,ExponentialDistribution[a]]]

1

a

Example 15.2. Let X be a random variable follows binomial distribution with param-

eters with n = 8 and p =
1

2
. Evaluate the conditional probability p

(
X < 5 | X ≥ 2

)
.

Probability[Conditioned[x<5,x>=2],

Distributed[x,BinomialDistribution[8,1/2]]]

154

247

15.3 Regression and Interpolation

Given a list of data, you may want to find the line that ”best” fits this data set.
This process is called linear regression. We can use the following form of the Fit

command to do this.

Fit[ data, {1,x}, x]

For example, consider the following data:

data = {{70.0,77.5},{75.5,81.5},{43.0,43.0},{72.5,74.2},

{59.8,63.2},{68.1,75.8},{76.5,82.4},{64.7,65.9},{65.7,69.0}};

The line that best fits the data is

Fit[ data, {1,x}, x]

1.17452x− 7.47512

We can see how well the line fits the data with:

Show[Plot[Evaluate[Fit[data,{1,x},x]],{x,55,80}],

ListPlot[data]]
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Note that we apply the command Evaluate on Fit to force the fitted line to be
evaluated before Mathematica start to plot. Under this model, say, if x = 65, then
its corresponding value is estimated to be:

Fit[data,{1,x},x]/.{x->65}

68.8684

The Fit command can be used with functions other than just 1 and x to provide
different types of least-square fits to data. Given functions f1(x), f2(x), · · · , fn(x),
you can find a function of the form a1f1(x) + a2f2(x) + · · ·+ anfn(x) that best
fits a given set of data with:

Fit[data,{f1[x],f2[x],..,fn[x]},x]

For example, using the previous data:

Fit[data,{1,x,x^2},x]

−0.000606481x2 + 1.24713x− 9.56812

Fit[data,{1,x,x^2,x^3},x]

−0.000368533x3 + 0.0667388x2 − 2.76008x+ 67.5991

Fit[data,{1,x,Exp[x]},x]

−7.37104+ 6.56767× 10−35ex + 1.17269x

The last answer suggests that using an exponential term to fit the given data is not
a good idea in this case. Indeed, the coefficient of the exponential term is essentially
zero.

Interpolation Given n points (x1, y1) , (x2, y2) , · · · , (xn, yn) in the plane, you can
find a polynomial of degree n− 1 that perfectly matches all these values. This can
be done in Mathematica using the command InterpolatingPolynomial with the
syntax:

InterpolatingPolynomial[data,x]
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For example, given the following data, we can find a polynomial g(x) that passes
through each of the points:

data={{0,0},{1,16},{2,-10},{3,28},{4,-30},{5,-12},{6,-12}};

g = Expand@InterpolatingPolynomial[data,x]

−299x
6

180
+

299x5

10
− 1819x4

9
+

1897x3

3
− 162041x2

180
+

13733x

30

You can see that the graph of g(x) passes through all the given points with:

Show[Plot[g,{x,0,6}],ListPlot[data,PlotStyle->

{Red,PointSize[0.03]}]]

Exercises for Chapter 15

1. Consider the following data:

data = {13,15,15,8,16,20,28,19,18,15,21,23,30,17,10,16,15,16,20,15}

Find the: Mean, Median, Variance, and StandardDeviation.

2. Consider the following data: data={{3,4},{6,6},{-1,4},{2,9},{4,0},{1,3}}.

(a) Find a polynomial of degree 3 that best fits the data.

(b) Find a polynomial of degree 5 that interpolates the data.

(c) Display the data and its fitted and interpolating polynomials on the
same graph.
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16 Advanced Programming

16.1 Changing Heads

Mathematica considers expressions in a unified manner. Any expression consists of
a head and its arguments. For example {a,b,c} is considered as List[a,b,c]

with the function List as the head and a,b,c as its arguments. Mathematica en-
ables us to replace the head of an expression with another expression. For example,
replacing the head of {a,b,c} with Plus gives Plus[a,b,c] which is a+b+c. This
simple idea provides a powerful method to approach solving problems.

Any expression in Mathematica has the following presentation head[arg1,arg2,..,

argn] where head and arg could be expressions themselves. For example,

FullForm[{a,b,c}]

List[a,b,c]

FullForm[a b c]

Times[a,b,c]

FullForm[a+b-c]

Plus[a,b,Times[-1,c]]

One can see from the FullForm that the only difference between a+b+c and
{a,b,c} is their heads. We can get the head of any expression:

Head[{a,b,c}]

List

Head[a+b+c]

Plus

Mathematica gives us the ability to replace the head of an expression with another
head. The consequence of this is simply mind-blowing. This can be done with the
command Apply. The shorthand for Apply is @@. For example,

Apply[Plus,{a,b,c}]

a+b+c

Plus @@ {a,b,c}

a+b+c
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Times @@ {{a,b,c},{d,e,f}}

{a d, b e, c f}

Times @@@ {{a,b,c},{d,e,f}}

{a b c, d e f}

Note that the additional @ in Times @@@ {{a,b,c},{d,e,f}} acts like Map.

Example 16.1. Find the sum of the first 100 primes.

Total@Prime[Range[100]]

24133

Plus@@Prime[Range[100]]

24133

Example 16.2. Show that the only n less than 1000 such that

3n + 4n + · · ·+ (n+ 2)n = (n+ 3)n

are the numbers 2 and 3.

Select[Range[1000],Total@(Range[3,#+2]^#)==(#+3)^# &]

{2, 3}

Select[Range[1000],Plus@@(Range[3,#+2]^#)==(#+3)^# &]

{2, 3}

Example 16.3. Find all the numbers up to 100 which have the following property:
if n = pk11 p

k2
2 · · · pkmm is the prime decomposition of n then

n = (p1 + k1) (p2 + k2) · · · (pm + km)

Select[Range[100],Times@@(Plus@@@FactorInteger[#])==# &]

{4, 90}
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16.2 Nested Loops

Let f(x) be a function defined on a variable x. There are times when one needs to
apply the function f to itself several times, i.e., f

(
· · · f(f(x)) · · ·

)
. Mathematica

provides a command to do exactly this:

Nest[f, expr, n]

gives an expression with f applied n times to expr.

For example,

Nest[f, x, 4]

f(f(f(f(x))))

If one wants to keep track of each step, the command NestList is available

NestList[f, x, 4]

{x, f(x), f(f(x)), f(f(f(x))), f(f(f(f(x))))}

Here are more nice examples:

NestList[1/(1 + #) &, x, 4]x,
1

x+ 1
,

1
1

x+1
+ 1

,
1

1
1

x+1
+1

+ 1
,

1
1

1
1

x+1
+1

+1
+ 1


NestList[Sqrt[6 + #] &, Sqrt[6], 3]√6,

√√
6+ 6,

√√√
6+ 6+ 6,

√√√√
6+ 6+ 6+ 6


Sometimes we want to start with expr, then repeatedly applies a function f un-
til applying test to the result no longer yields True. This is can be done using
NestWhile or NestWhileList. For example, we want to keep dividing an integer
by 2 until the result is no longer an even number:

NestWhile[#/2 &, 123456, EvenQ]

1929

NestWhileList[#/2 &, 123456, EvenQ]

{123456, 61728, 30864, 15432, 7716, 3858, 1929}
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Example 16.4. A happy number is a number such that if one squares its digits and
adds them together, and then takes the result and squares its digits and adds them
together again and keeps doing this process, one comes down to the number 1. A
sad number, is an unhappy number that comes down to the number 4. Find all the
2-digits happy numbers.

Select[Range[10,99],NestWhile[Total@(IntegerDigits[#]^2)&,#,

#!=4 && #>1 &] == 1&]

{10, 13, 19, 23, 28, 31, 32, 44, 49, 68, 70, 79, 82, 86, 91, 94, 97}

16.3 Pattern Matching

Everything in Mathematica is an expression and each expression has a pattern. One
can search for a specific pattern and change it to another pattern. This is called
pattern matching programming. For example, consider the expression x2. This
expression is precisely of the following form or pattern, ”x raised to the power of
two”.

MatchQ[x^2,x^2]

True

But x2 will be matched also by the following loose description, ”something” or ”an
expression”

MatchQ[x^2, ]

True

Here stands (or rather sits) for an expression ( is called a blank here). Also x2

will match ”x to the power of something”

MatchQ[x^2,x^ ]

True

Before we go further, we need to mention that one can give a name to a blank
expression as follows n . Here the expression is labeled n as we have already seen
in defining a function in Chapter 3. In fact, when defining a function, we label an
expression that we plug into the function. One can also restrict the expression by
limiting its head! Namely, head matches an expression with the head head. Look:

Head[x^2]

Power
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MatchQ[x^2, Power]

True

MatchQ[x*x, Power]

True

MatchQ[Sqrt[x], Power]

True

MatchQ[x/2, Power]

False

One can put a condition on a pattern, i.e., we can test whether an expression
satisfies a certain condition. Here is an example:

MatchQ[5, Integer?(# > 3 &)]

True

MatchQ[2, Integer?(# > 3 &)]

False

The pattern Integer?(#>3&) stands for an expression which has Integer as its
head, i.e., an integer, and is greater than three. Now, consider the following two
commands carefully!

{{x1,x2},{y1,y2}} /. {x ,y }->y

{y1, y2}

{{x1,x2},{y1,y2},{z1,z2}} /. {x ,y }->y

{x2, y2, z2}

In the first command x is matched by {x1,x2} and y by {y1,y2} and this is the
reason the answer is {y1,y2}. However, in the second command, as there are three
elements in the list, the only way Mathematica can match the pattern {x ,y } to
the list is to assign each of {x1,x2}, {y1,y2} and {z1,z2} to {x ,y }. Note that,
in the first code, if we need {x ,y } to match each of the lists inside, we can do
this by describing the pattern more precisely as follows.

{{x1,x2},{y1,y2}} /. {x Symbol,y }->y

{x2, y2}

So far we have been dealing with one expression. What if, instead of one expression,
we have to deal with a bunch of them?
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MatchQ[{x^2},{ }]

True

MatchQ[{x^2,x^3,x^5},{ }]

False

MatchQ[{x^2,x^3,x^5},{ }]

True

As one can see from the above example, stands for a sequence of data whereas
stands for just one expression. In fact is for a sequence of nonempty expressions,
and is for a sequence of empty or more data. The following examples show this
clearly.

MatchQ[{},{ }]

False

MatchQ[{},{ }]

False

MatchQ[{},{ }]

True

Here is one more example which illustrates the difference between and .

MatchQ[{3,5,2,2,stuff,7},{ ,3, }]

False

MatchQ[{3,5,2,2,stuff,7},{ ,3, }]

True

MatchQ[{3,5,2,2,7,us},{ ,2,2, }]

True

Example 16.5. In the first 15000 prime numbers, find those that have 1980

embedded in them (e.g., 119809 is prime and 1980 is sitting in it).

Select[Prime[Range[15000]],MatchQ[IntegerDigits[#],

{ ,1,9,8,0, }]&]

{19801, 119809}
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16.4 Functions with Multiple Definitions

In this section we will talk about the ability of Mathematica to handle a function
with multiple definitions. We can easily restrict the sort of data we want to send
into a function, by simply describing the sort of pattern we desire. For example, if
in the function f(x) = x2 + 1 we would like the function only to take on positive
integers, then

f[x Integer?Positive] := x^2 + 1

f[2]

5

f[-2]

f(−2)

Here is another example:

g[x Integer?(0<#<5&)] := Sqrt[5-x]

g[2]

√
3

g[-6]

g(−6)

Example 16.6. Define the function f(x) =

{√
x : x ≥ 0
√
−x : x < 0

, and plot the graph

of the function for −1 ≤ x ≤ 1.

f[x ?NonNegative] := Sqrt[x]

f[x ?Negative] := Sqrt[-x]

Plot[f[x],{x,-1,1}]
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Example 16.7. Define the Collatz function f(x) =

{x

2
: x is even

3x+ 1 : x is odd
. Find

out how many times one needs to apply f to the number 130 to get 1.

f[x Integer?EvenQ] := x/2

f[x Integer?OddQ] := 3 x + 1

Length@NestWhileList[f,130,# != 1 &]

29

16.5 Functions with Conditions

Consider the following code.

f[n ] := Sqrt[n] /; n > 0

f[9]

3

f[-4]

f(−4)

Here /; is a shorthand for If, but the one which is defined by If would return
Null if the argument does not satisfy the condition. We have seen that we can
restrict the pattern of the data we pass into a function. The almost equivalent ways
to define the above function are

g[n ?Positive] := Sqrt[n]

h[n ] := If[n>0,Sqrt[n]]

As another example, the following code replaces all elements which satisfy the
condition of being negative by w:

{6,-7,3,2,-1,-2} /. x /; x<0->w

{6, w, 3, 2, w, w}
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Functions with Default Values One can define functions with predefined (de-
fault) values by using the short hand symbol : of the command Default[function]

to give a predefined value to a given variable. Here we define the function f(x) =
√
x

so that if we do not pass any value to f, it will return 1.

f[x : 1] := Sqrt[x]

f[9]

3

f[]

1

Here we define a function with two variables, one is supposed to get a symbol with
the default value of x and the other an integer with the default value 6. If we do
not specify the pattern, we run into problems. The following code shows how we
should approach this.

g[x Symbol: x, n Integer: 6]:=Table[Subscript[x,i],{i,n}]

g[a, 4]

{a1, a2, a3, a4}

g[4]

{x1, x2, x3, x4}

g[c]

{c1, c2, c3, c4, c5, c6}

16.6 Recursive Functions

A recursive function is a function which calls itself in its definition. The classic
example is the factorial function which can be defined recursively as follows.

f[0] = 1;

f[1] = 1;

f[n ] := n f[n-1]

f /@ Range[10]

{1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800}
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Now let us calculate f[3000] using the last function:

f[3000]

Recursion depth of 1024 exceeded ...

This says Mathematica has a limitation on the number of recursive evaluations. By
default this is 1024 (Mathematica would circle around herself up to 1024 times!).
If we need to have more iterations, we can change this using RecursionLimit. We
will change this to 6000 and then calculate f[3000]. Notice how Block has been
used to change the limit of recursion locally for only this computation.

Block[{$RecursionLimit = 6000}, f[3000]]

41493596034 · · · 000000000

Let us back to happy numbers defined in example 16.4. We may define a function
recursively to find all 2−digits happy numbers as follows.

f[1] = 1;

f[4] = 4;

f[n ] := f[Total@(IntegerDigits[n]^2)]

Select[Range[10, 99], f[#] == 1 &]

{10, 13, 19, 23, 28, 31, 32, 44, 49, 68, 70, 79, 82, 86, 91, 94, 97}

Exercises for Chapter 16

1. Find all the numbers up to one million which have the following property: if
n = d1d2 · · · dk then n = d1! + d2! + · · ·+ dk!. For example, 145=1!+4!+5!.

2. Find the roots of the equation x = 1+
1

1+ 1
1+ 1

1+··· 1
1+x

where there are 10division

lines in the expression on the right.

3. Starting with a number, consider the sum of all the proper divisors of the
number. Now consider the sum of all the proper divisors of this new number
and repeat this process. If one eventually obtains the number which one
started with, then this number is called a social number. Write a program to
show that 1264460 is a social number.
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4. Define a function f(x) in Mathematica which satisfies

f(xy)=f(x) + f(y),

f(xn)=nf(x) where n is positive integr,

f(n)=0 for any positive integer n.

Show that f

(
20∏
i=1

(xi)
i

)
=

20∑
i=1

i f (xi).

5. Define the Fibonacci sequence recursively, and use your definition to find the
25th element in the sequence.
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Answers

DON’T EVEN DARE PEEK AT THE SOLUTIONS TO AN EXERCISE UNTIL
YOU’VE GENUINELY TRIED TO SOLVE THE EXERCISE !! ALMOST ALL THE
EXERCISES HAVE MANY POSSIBLE CORRECT ANSWERS; WHAT IS LISTED
HERE ARE MERELY SAMPLE CORRECT ANSWERS.

Chapter 2

1. N[E, 20]

2.7182818284590452354

2. (a) Abs[(Log2[128] + Surd[16777216, 6])/(Cos[ArcSin[1/2]])]
46√
3

(b) Tan[Pi/5]√
5− 2

√
5

3. Log10[2^5]
Log[32]

Log[10]

N[Log10[2^5]]

1.50515

4. Infinity - Infinity

Indeterminate

5. Yes, it can. It is a long integer: 29941 − 1 = 34608 · · · 63551

6. Sqrt[Surd[64, 3] (2^2 + (1/2)^2) - 1]

4

7. (4 - 2)*(3 + 4)

14

8. 1/0

ComplexInfinity

9. N[Sin[Pi/5]^2]

0.345492

10. FunctionExpand[Sin[24 Degree]]

−1
8

√
3
(
−
√
5− 1

)
− 1

4

√
1

2

(
5−
√
5
)

160

feras.a.mahmoud@gmail.com
Highlight



Chapter 3

1. L[a , b ] := Sqrt[b^2 + 16 a^2] / 2 + b^2 Log[(4 a + Sqrt[b^2 +

16 a^2]) / b] / (8a);

L[11, 9]√
2017

2
+

81

88
log

(
1

9

(√
2017+ 44

))
L[11, 9] // N

24.5637

2. (a) f[x ] := x^2 - 1; g[x ] := x^3;

f[g[x]]

x6 − 1

g[2 f[3] - 13]

27

f[f[f[0.5]]]

−0.808594
(b) The same job of the last function from part(a)

3. (a) Sqrt[a^2+b^2-2 a b Cos[gamma]] /. {a->5.3, b->6, gamma->32

Degree}
3.18656

(b) alpha = 180 ArcCos[(b^2+c^2-a^2)/(2b c)]/Pi /. {a->5.3, b->6,

c->3.18656}
61.8095◦

beta = 180 ArcCos[(a^2+c^2-b^2)/(2a c)]/Pi /. {a->5.3, b->6,

c->3.18656}
86.1905◦

Chapter 4

1. (a) 1/Range[12]^2

Table[1/i^2, {i, 12}]
Array[1/#^2 &, 12]{
1,

1

4
,
1

9
,
1

16
,
1

25
,
1

36
,
1

49
,
1

64
,
1

81
,

1

100
,

1

121
,

1

144

}
(b) Table[{n, n^2, n^3}, {n, 6}]

Array[{#, #^2, #^3} &, 6]

{{1, 1, 1}, {2, 4, 8}, {3, 9, 27}, {4, 16, 64}, {5, 25, 125}, {6, 36, 216}
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2. Reverse@(1/Range[12]^2){
1

144
,

1

121
,

1

100
,
1

81
,
1

64
,
1

49
,
1

36
,
1

25
,
1

16
,
1

9
,
1

4
, 1

}
1/Range[12, 1, -1]^2{

1

144
,

1

121
,

1

100
,
1

81
,
1

64
,
1

49
,
1

36
,
1

25
,
1

16
,
1

9
,
1

4
, 1

}
3. N[Total@(1/Range[12]^2), 50]

1.5649766384209024901665594306286946979587672228365

4. Sin[Pi/Range[6]]0, 1,

√
3

2
,
1√
2
,

√
5

8
−
√
5

8
,
1

2


5. (a) Reverse@{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}

{{9, 10}, {7, 8}, {5, 6}, {3, 4}, {1, 2}}
(b) Reverse/@{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}
{{2, 1}, {4, 3}, {6, 5}, {8, 7}, {10, 9}}

(c) Reverse /@ (Reverse@{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}})
{{10, 9}, {8, 7}, {6, 5}, {4, 3}, {2, 1}}

6. Length@Range[100, 999]

900

7. Range[Range[5]]

{{1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}}
Table[i, {j, 5}, {i, j}]
{{1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}}

Chapter 5

1. BooleanTable[{p, q, r, p || (q && r)}, {p, q, r}] /. {True ->

"T", False -> "F"} // TableForm

T T T T

T T F T

T F T T

T F F T

F T T T

F T F F

F F T F

F F F F

2. TautologyQ[(p && q) || (! p || ! q), {p, q}]
True
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3. BooleanTable[{p, q, Equivalent[(p && ! q), Implies[p, q]]}, {p,
q}] /. {True -> "T", False -> "F"} // TableForm

T T F

T F F

F T F

F F F

4. FullSimplify@ForAll[x, Element[x, Integers], Exists[y, Element[y,

Integers], x == 3 y || x == 3 y + 1 || x == 3 y + 2]]

True

5. U = {1, 2, 3, 4, 5, 6, 7}; A = {2, 5, 7}; B = {3, 4, 6, 7};

(a) Intersection[A, Complement[U, B]]

{2, 5}
So, A and the complement of B are not disjoint.

(b) Union[A, B]

{2, 3, 4, 5, 6, 7}

Intersection[B, A]

{7}

Intersection[Subsets[A], Subsets[B]]

{{}, {7}}
(c) SubsetQ[Union[A, B], A]

True

SubsetQ[A, Intersection[A, B]]

True

6. FullSimplify@ForAll[x, Element[x, Reals], ForAll[y, Element[y,

Reals], Abs[((x + y) (1 - x y))/((1 + x^2) (1 + y^2))] <= 1/2]]

True

Chapter 6

1. PrimeQ[2^5 - 1]

True

2. Prime[12]

37

3. NextPrime[1000]

1009

NextPrime[1000,5]
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1031

NextPrime[1000,-5]

971

4. PrimePi[1000]

168

5. PrimePi[10^6] - PrimePi[10^5]

68906

Length@Select[Range[100000, 999999], PrimeQ]

68906

6. FactorInteger[12345]

{{3, 1}, {5, 1}, {823, 1}}

7. Divisors[12345]

{1, 3, 5, 15, 823, 2469, 4115, 12345}

Length@Divisors[12345]

8

8. Round@Table[n, {n, 0.5, 5.5}]
{0,2,2,4,4,6}

9. Round[Sqrt[1590], 12]

36

10. Floor[(Pi + E)^3]

201

Ceiling[(Pi + E)^3]

202

11. LCM[16, 24, 524]

6288

GCD[16, 24, 524]

4

12. QuotientRemainder[13!, 2256]

{2760204, 576}

13. Total@Prime[Range[100]]

24133

14. Total@IntegerDigits[22!]

72
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15. Total@(2 Range[123])

15252

16. Length@Intersection[Divisors[1545], Divisors[1230]]

4

17. Length@Select[Fibonacci[Range[500]], PrimeQ]

18

18. Select[Range[1000], PrimeQ[2^# + 1] &]

{1, 2, 4, 8, 16}

19. Select[Prime[Range[PrimePi[1000]]],PrimeQ[IntegerReverse[#]]&]

{2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 101, 107, 113, 131, 149, 151,
157, 167, 179, 181, 191, 199, 311, 313, 337, 347, 353, 359, 373, 383, 389,
701, 709, 727, 733, 739, 743, 751, 757, 761, 769, 787, 797, 907, 919, 929,
937, 941, 953, 967, 971, 983, 991}

20. Select[Fibonacci[Range[10]], CompositeQ]

{8, 21, 34, 55}

21. Select[Range[100, 999], PrimeQ[Total@Divisors[#]]&]

{289, 729}

22. Select[Range[1000], IntegerQ@Sqrt[#!+(#+1)!]&]

{4}

23. Complement[Range[0,9], Union[Mod[Fibonacci[Range[12]], 10]]]

{0, 6, 7}

Complement[Range[0,9], Union[Last/@IntegerDigits@Fibonacci[Range[12]]]]

{0, 6, 7}

24. Select[Range[100000, 999999], Length@Union[Sort/@IntegerDigits/@

(#Range[6])]==1&]

{142857}

25. b[n ] := Total@Table[Binomial[n, i], {i, 0, 3}];
Divisible[2^2016, b[23]]

True

26. Max@Table[Length@Select[Range[n+1, 2n-1], PrimeQ], {n, 30}]
7

Max[Length@Select[Range[#+1, 2#-1], PrimeQ]&/@ Range[30]]

7

27. (a) Select[Range[500], PrimeQ@FromDigits[Table[1, #]] &]

{2, 19, 23, 317}
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(b) Select[Range[100], Divisible[FromDigits@Table[1, #], 19] &,

1]

{18}

28. Select[Range[5432], LCM[#, 5432 - #] == 223020 &]

{1652, 3780}

29. Select[99999 Range[10^5], Count[IntegerDigits[#], 9] == 0 &, 1]

{1111188888}

30. FullSimplify[ForAll[n, n > 2, ! PrimeQ[2^(2^n - 2) + 1]], Integers]

True

31. Total@IntegerDigits[Total@IntegerDigits[Total@IntegerDigits[4444^4444]]]

7

Nest[Total@IntegerDigits[#] &, 4444^4444, 3]

7

32. Select[Range[10000, 99999], # == (Total@IntegerDigits[#])^3 &]

{17576, 19683}

33. (a) Select[Range[10000], PerfectNumberQ]

{6, 28, 496, 8128}
(b) PerfectNumber[Range[7]]

{6, 28, 496, 8128, 33550336, 8589869056, 137438691328}

34. (a) IntegerPartitions[5]

{{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1}}
(b) IntegerPartitions[5, 3]

{{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}}
(c) IntegerPartitions[5, {3}]
{{3, 1, 1}, {2, 2, 1}}

(d) IntegerPartitions[5, All, {1, 3}]
{{3, 1, 1}, {1, 1, 1, 1}}

(e) Length@IntegerPartitions[156, All, {1, 5, 10, 20, 50}]
1280

35. goldbach[n ] := IntegerPartitions[n, {2}, Prime[Range[PrimePi[n]]]]

goldbach[430]

{{419, 11}, {401, 29}, {389, 41}, {383, 47}, {359, 71}, {347, 83}, {317, 113}, {293, 137},
{281, 149}, {263, 167}, {257, 173}, {251, 179}, {239, 191}, {233, 197}}

36. DigitCount[16837^1921, 10, {0, 5, 9}]
{822, 790, 821}

37. Length@Select[Table[{Prime[p], Prime[p]+2}, {p, PrimePi[429]}],
AllTrue@PrimeQ]

{22}
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38. (a) Select[Prime[Range[100]], PalindromeQ] // Length

{14}
(b) AllTrue[Select[Range[1000, 9999], PalindromeQ], CompositeQ]

True

(c) AllTrue[Select[Range[1000, 9999], PalindromeQ], Divisible[#,

11] &]

True

39. (a) Select[Range[10000], MersennePrimeExponentQ]

{2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217,
4253, 4423, 9689, 9941}

(b) MersennePrimeExponent[40]

20996011

IntegerLength[2^MersennePrimeExponent[40] - 1]

6320430

Chapter 7

1. Expand[(1 + x)^2 (1 - x)^3]

−x5 + x4 + 2x3 − 2x2 − x+ 1

2. Factor[(1 + x)^3 + (1 - x)^3]

2 (3x2 + 1)

Factor[x^2 + 5, Extension -> {I, Sqrt[5]}](√
5− ix

) (√
5+ ix

)
3. Together[1/(x - 1) + x/(x^2 + 1)]

2x2 − x+ 1

(x− 1) (x2 + 1)

4. Apart[x/(x^2 + 6 x + 5)]
5

4(x+ 5)
− 1

4(x+ 1)

5. FullSimplify[((1 + Sqrt[5])^10 - (1 - Sqrt[5])^10)/(1024 Sqrt[5])]

55

6. FullSimplify@TrigExpand[Tan[3 Pi/11] + 4 Sin[2 Pi/11]]√
11

7. CoefficientList[(2 + 3 x)^10, x]

{1024, 15360, 103680, 414720, 1088640, 1959552, 2449440, 2099520, 1180980, 393660, 59049}

8. Coefficient[(x + y)^4, x y^3]

4
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Coefficient[(x + y)^4, y, 2]

6x2

9. FullSimplify[Sqrt[3 + Sqrt[8]] - Sqrt[2]]

1

10. TrigExpand[Sin[x]^2 + Tan[x]^2]
3Sin[x]2

4
− 1

8
Cos[x]2 +

Tan[x]2

2
+

5Sec[x]2

8
− 1

8
Sin[x]2Tan[x]2 − 1

2
TrigFactor[Sin[x]^2 + Tan[x]^2]
1

2
(Cos[2x] + 3)Tan[x]2

TrigReduce[Sin[x]^2 + Tan[x]^2]
1

8

(
5Sec[x]2 − 4Cos[2x]Sec[x]2 − Cos[4x]Sec[x]2

)
11. PolynomialQuotient[x^2 + x + 1, 2 x + 1, x]

x

2
+

1

4
PolynomialRemainder[x^2 + x + 1, 2 x + 1, x]
3

4

Chapter 8

1. (a) Solve[x^2 - 3 x + 1 == 0, x]{{
x→ 1

2

(
3−
√
5
)}

,

{
x→ 1

2

(√
5+ 3

)}}
(b) NSolve[x^5 - 3 x + 1 == 0, x]

{{x→ −1.38879}, {x→ −0.0802951− 1.32836i},
{x→ −0.0802951+ 1.32836i}, {x→ 0.334734}, {x→ 1.21465}}

(c) NSolve[{x+y+z==3, 2x^2+3y^2-6z^2==-1, 3z^2==9x^2-6y^3}, {x,
y, z}]
{{x→ −4.18941+ 10.4715i, y→ 3.79989 − 3.94564i, z→ 3.38952 − 6.52589i},
{x→ −4.18941− 10.4715i, y→ 3.79989 + 3.94564i, z→ 3.38952 + 6.52589i},
{x→ 3.19103, y→ 2.30024, z→ −2.49128},
{x→ 2.46889 + 0.851904i, y→ −0.700007− 1.98599i, z→ 1.23111 + 1.13409i},
{x→ 2.46889 − 0.851904i, y→ −0.700007+ 1.98599i, z→ 1.23111 − 1.13409i},
{x→ 1., y→ 1., z→ 1.}}

(d) FindRoot[Tan[x]^3 == 10 - Exp[2 x], {x, 3, 1, 5}]
{x→ 1.87452}

(e) Reduce[x^2 >= 1, x]

x ≤ −1 ∨ x ≥ 1

2. (a) Reduce[Abs[x - 1] == 3, x, Reals]

x = −2 ∨ x = 4
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(b) Reduce[(x^2 - 3 x + 1)^(x + 1) == 1, x, Integers]

x = −1 ∨ x = 0 ∨ x = 1 ∨ x = 3

3. Solve[Sin[x]^2 - 3 Sin[x] + 2 == 0, Sin[x]]

{{sin(x)→ 1}, {sin(x)→ 2}}

4. Solve[a^3 + b^3 == 1729, {a, b}, Integers]

{{a→ 1, b→ 12}, {a→ 9, b→ 10}, {a→ 10, b→ 9}, {a→ 12, b→ 1}}
PowersRepresentations[1729, 2, 3]

{{1, 12}, {9, 10}}

5. FindInstance[a^3 + b^3 == 1729, {a, b}, Integers, 2]

{{a→ 10, b→ 9}, {a→ 12, b→ 1}}

6. FindInstance[(! a || b) && (c && ! d), {a, b, c, d}, Booleans,

2^4] // TableForm

a→ True b→ True c→ True d→ False

a→ False b→ True c→ True d→ False

a→ False b→ False c→ True d→ False

Chapter 9

1. (a) Limit[(x^2 - 9)/(x - 3), x -> 3]

6

(b) Limit[(3 x - Sin[3 x])/(4 x - Tan[4 x]), x -> Infinity]
3

4

(c) Limit[ArcTan[x]/Exp[x], x -> Infinity]

0

(d) Limit[(1 - x)/Abs[x^2 + x - 2], x -> 1]

Indeterminate

(e) Limit[x^a, x -> Infinity, Assumptions -> a > 0]

∞

Limit[x^a, x -> Infinity, Assumptions -> a < 0]

0

Limit[x^a, x -> Infinity, Assumptions -> a == 0]

1

(f) Limit[(1 + a/x)^(b x), x -> Infinity]

eab

2. (a) FunctionDomain[1/(x - x^2), x]

x < 0 ∨ 0 < x < 1 ∨ x > 1
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FunctionRange[1/(x - x^2), x, y]

y < 0 ∨ y ≥ 4

(b) FunctionDomain[Sqrt[Abs[x]], x]

True

FunctionRange[Sqrt[Abs[x]], x, y]

y ≥ 0

(c) FunctionDomain[2 Log[x], x]

x > 0

FunctionDomain[Log[x^2], x]

x < 0 ∨ x > 0

FunctionRange[2 Log[x], x, y]

True

FunctionRange[Log[x^2], x, y]

True

3. f[x ] := Piecewise[{{2 x^2, x < 1}, {-3 x + 5, x >= 1}}];

f′[2]
−3

f′[1]
Indeterminate

4. f[x ] := x^3 + Exp[x] + Sin[x];

f′[x]
3x2 + ex + cos(x)

f′′[0]
1

5. D[x Sin[x], {x, 87}] /. {x -> Pi/2}
−87

6. Simplify@Solve[Dt[x^2 + 3 x y + y^3 == 5, {x, 2}] /. {Dt[y, x]

-> Part[Solve[Dt[x^2 + 3 x y + y^3 == 5, x], Dt[y, x]], 1, 1,

2]}, Dt[y, {x, 2}]]{{
d2y

dx2
→ x2(6− 8y)− 6x(4y− 3)y− 6y4

9 (x+ y2)
3

}}
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7. Reduce[D[1 - 2 x - x^2 + 2 x^3 + x^4, x] == 0, x]

x = −1
2
∨ x =

1

2

(
−
√
5− 1

)
∨ x =

1

2

(√
5− 1

)
8. (a) Maximize[x^2 - 3 x + 6, x]

{∞, {x→ −∞}}

Minimize[x^2 - 3 x + 6, x]{
15

4
,

{
x→ 3

2

}}
(b) Maximize[x^4 - 3 x^2 - x, x]

{∞, {x→ −∞}}

N@Minimize[x^4 - 3 x^2 - x, x]

{−3.51391, {x→ 1.30084}}
(c) Maximize[{x^2, -1 <= x <= 3}, x]

{9, {x→ 3}}

Minimize[{x^2, -1 <= x <= 3}, x]

{0, {x→ 0}}

9. (a) Integrate[x^2 Sqrt[1 + x^2], x]
1

8

(√
x2 + 1

(
2x3 + x

)
− sinh−1(x)

)
(b) Integrate[(x + 1)/(x^2 - 9), x]

2

3
log(3− x) +

1

3
log(x+ 3)

(c) Integrate[Exp[1/x]/x^2, x]

−e1/x

(d) Integrate[x^2 Cos[x], x](
x2 − 2

)
sin(x) + 2x cos(x)

(e) Integrate[(x^2 + 1)/Sqrt[x], {x, 1, 4}]
72

5

(f) Integrate[Exp[-x^2], {x, 0, Infinity}]√
π

2

(g) NIntegrate[Sqrt[Sin[x]], {x, 0, Pi/2}]
1.19814

10. Solve[D[x^2 y[x] - y[x]^3 == 8, x], y’[x]]{{
y′(x)→ − 2xy(x)

x2 − 3y(x)2

}}
m = Part[Solve[D[x^2 y[x] - y[x]^3 == 8, x], y’[x]], 1, 1, 2]

//. {x -> -3, y[-3] -> 1}
1
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y[-3] + m (x - (-3)) /. {y[-3] -> 1} // Simplify

x+ 4

11. Solve[Limit[1/(x-3) - 6/(x^2-9), x->A] == Limit[(x^2-x-12)/(36x-144),

x->A], A]

{{A→ −9}, {A→ 3}}

12. (a) Assuming[n >= 1, FullSimplify@D[x Exp[x], {x, n}]]
ex(n+ x)

(b) Assuming[n >= 1, FullSimplify@D[Sin[x], {x, n}]]
sin
(
πn
2
+ x
)

(c) Assuming[n >= 1, FullSimplify@D[x Cos[x], {x, n}]]
n sin

(
πn
2
+ x
)
+ x cos

(
πn
2
+ x
)

Chapter 10

1. Sum[k, {k, 1, n}]^2 == Sum[k^3, {k, 1, n}]
True

2. (a) Sum[(-1)^n, {n, 0, Infinity}]
Sum does not converge

(b) Sum[(-1)^n x^(2 n)/(2 n)!, {n, 0, Infinity}]
cos(x)

(c) Product[(1/2)^n, {n, 0, Infinity}]
0

(d) Product[n, {n, 1, k}]
k!

(e) Product[1 + 1/2^(2^n), {n, 0, Infinity}]
2

3. (a) Product[Prime[n], {n, 1, 15}]
614889782588491410

(b) Product[Fibonacci[n], {n, 1, 15}]
84138564904377984000

(c) Product[2 n, {n, 1, 23}]
216862434431944426122117120000

4. Normal[Series[Sqrt[x], {x, 1, 10}]] /. {x -> 1.5}
1.22474

5. (a) Sum[(-1)^i (1/(i + 1) + 1/(i + 2) + 1/(i + 3)), {i, 0, Infinity,

3}]
1

9

(
2π
√
3+ log(8)

)
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(b) Table[N[Sum[1/Sqrt[Sum[Prime[j + i (i - 1)/2], {j, 1, i}]],
{i, 10^k}]], {k, 4}] // TableForm

1.58431
1.81518
1.87164
1.88662

6. Sum[1/Fibonacci[2^n], {n, 0, Infinity}]
1

2

(
7−
√
5
)

7. a[k ] := k/(CubeRoot[(k - 1)^4] + CubeRoot[k^4] + CubeRoot[(k +

1)^4]);

Sum[a[k], {k, 1, 999}] < 50

True

8. SumConvergence[(x-3)^n/Sqrt[n], n, Assumptions->Element[x, Reals]]

2 ≤ x < 4

9. (a) FindSequenceFunction[{-1/2, 1/8, -1/24, 1/64, -1/160, 1/384},
n]
(−1)n

n 2n

(b) FindSequenceFunction[{2, 3, 5, 7, 11, 13}, n]

Prime[n]

(c) ExpToTrig@FindSequenceFunction[{1, 0, -1, 0, 1, 0}, n]

sin
(πn
2

)
10. DiscreteLimit[FindSequenceFunction[{-1/5,1/25,-1/125,1/625}, n],

n->Infinity]

1

11. RSolveValue[{a[n+1]==Sqrt[6+a[n]], a[1]==Sqrt[6]},a[Infinity],n]
3

Chapter 11

1. (a) A = Table[If[i==j, 2, If[i-j==1, 1, If[i-j==-1, 1, 0]]], {i,5},
{j,5}]

2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2


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(b) Det[A]

6

(c) MatrixPower[Inverse[A], 2] // MatrixForm
55
36 − 20

9
9
4 − 16

9
35
36

− 20
9

34
9 −4 29

9 − 16
9

9
4 −4 19

4 −4 9
4

− 16
9

29
9 −4 34

9 − 20
9

35
36 − 16

9
9
4 − 20

9
55
36


(d) B = Prime[Range[5]];

LinearSolve[A, B]{
5

3
,−4

3
, 4,−5

3
,
19

3

}
(e) Transpose[A] == A

True

2. F = Partition[Fibonacci[Range[9]], 3] 1 1 2
3 5 8
13 21 34


Det[F]

0

NullSpace[F](
−1 −1 1

)
MatrixRank[F]

2

3. H = Array[1/(#1 + #2 - 1) &, {5, 5}] // MatrixForm
1 1

2
1
3

1
4

1
5

1
2

1
3

1
4

1
5

1
6

1
3

1
4

1
5

1
6

1
7

1
4

1
5

1
6

1
7

1
8

1
5

1
6

1
7

1
8

1
9


4. A = {{1, 2, 3}, {2, -1, 4}, {3, -4, 6}};

B = {{14, 9, 10}, {12, 17, 22}, {13, 28, 38}};
LinearSolve[A, B] // MatrixForm 1 2 2

2 −1 −2
3 3 4


5. {B, A} = Normal@CoefficientArrays[{a + 2 b + 3 c + 3 d == 9, 2

a + b + 2 c + 5 d == 10, 2 a + 2 b + c + 2 d == 7, 2 a - b - 3

c + d == -1}, {a, b, c, d}];
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sol = LinearSolve[A, -B] + t * NullSpace[A][[1]]{
20

7
− 13t, 11t− 4

7
,
17

7
− 10t, 7t

}
6. Normalize[{1, -2, 2, -3}]{

1

3
√
2
,−
√
2

3
,

√
2

3
,− 1√

2

}
7. Projection[{1, 2, 3}, {1, -2, 5}]{

2

5
,−4

5
, 2

}
8. A = {{a, b}, {c, d}};

FullSimplify@ForAll[{a, b, c, d, x}, Element[{a, b, c, d, x}, Reals],

CharacteristicPolynomial[A, x] == x^2 - Tr[A] x + Det[A]]

True

9. A = {{1, 2}, {3, 4}};

Total@Table[CoefficientList[CharacteristicPolynomial[A, x], x][[i

+ 1]] MatrixPower[A, i], {i, 0, Dimensions[A][[1]]}] // MatrixForm(
0 0
0 0

)
10. B = {{18, -51, 27, -15}, {8, -24, 14, -8}, {15, -48, 28, -15},
{15, -47, 25, -12}};

(a) {d, p} = Eigensystem[B]

{{4, 3, 2, 1}, {{3, 1, 2, 3}, {1, 0, 0, 1}, {0, 1, 3, 2}, {3, 2, 3, 2}}}
(b) B == Dot[Transpose[p], DiagonalMatrix[d], Inverse[Transpose[p]]]

True

DiagonalizableMatrixQ[B]

True

(c) {Tr[B], Det[B]} == {Total@d, Product[d[[i]], {i, 1, Length[d]}]}
True

11. d = {-2, -1, 0, 1, 2};
p = {{1, 1, 0, 0, 0}, {0, 1, 1, 0, 0}, {0, 0, 1, 1, 0}, {0, 0,

0, 1, 1}, {1, 0, 0, 0, 1}};
A = Dot[Transpose[p], DiagonalMatrix[d], Inverse[Transpose[p]]]

//MatrixForm
0 −2 2 −2 2
− 1

2 − 3
2

1
2 − 1

2
1
2

1
2 − 1

2 − 1
2

1
2 − 1

2
− 1

2
1
2 − 1

2
1
2

1
2

1
2 − 1

2
1
2 − 1

2
3
2


175



Chapter 12

1. (a) Simplify@DSolveValue[y′′[x]-4y′[x]+4y[x]==x Exp[2x],y[x],x]
1

6
e2x
(
6c2x+ 6c1 + x3

)
(b) Simplify@DSolveValue[y′′[t]+y′[t]^2+1==0,y[t],t]

log (cos (t− c1)) + c2

(c) Simplify@DSolveValue[{y′′[t]+4y′[t]+4==0,y[0]==0,y′[0]==0},y[t],t]

−t− e−4t

4
+

1

4

(d) Simplify@DSolveValue[y′[x]== x y[x],y[x],x]

c1e
x2

2

(e) Simplify@DSolveValue[x^2y′′[x]-3x y′[x]-2y[x]==0, y[x], x]

x2−
√
6
(
c1x

2
√
6 + c2

)
(f) Simplify@DSolveValue[y′′[x]+y[x]==Sec[x],y[x],x]

(c2 + x) sin(x) + cos(x) (c1 + log(cos(x)))

(g) Simplify@DSolveValue[{y′′[t]+4Pi^2y[t]==0,y[0]==0,y[1]==0},y[t],t]
c1 sin(2πt)

2. LaplaceTransform[Exp[2 t] Cos[Sqrt[3] t], t, p]
p− 2

(p− 2)2 + 3

3. FullSimplify@InverseLaplaceTransform[(2p-1)/(p^2-4p+6), p, t]
1

2
e2t
(
3
√
2 sin

(√
2t
)
+ 4 cos

(√
2t
))

4. Step 1: theTransform = LaplaceTransform[y′′[t]+y′[t]+y[t]==Exp[t],t,p]

p2 (Lt[y(t)](p)) + p (Lt[y(t)](p)) + Lt[y(t)](p)− py(0)− y′(0)− y(0) =
1

p− 1

Step 2: theLaplace = Solve[theTransform, LaplaceTransform[y[t],

t, p]] /. {y[0]->3, y′[0]->2}{{
Lt[y(t)](p)→

3p2 + 2p− 4

(p− 1) (p2 + p+ 1)

}}
Step 3: FullSimplify@InverseLaplaceTransform[theLaplace[[1,1,2]],p,t]

1

3
e−t/2

(
e3t/2 + 6

√
3 sin

(√
3t

2

)
+ 8 cos

(√
3t

2

))

176



Chapter 13

1. Plot[Exp[-x^2/2]/Sqrt[2Pi],{x,-3,3}]

2. g1 = Plot[x^2,{x,0,2}];
g2 = Plot[Sqrt[x],{x,0,4}];
g3 = Plot[x,{x,0,4}];
Show[g1,g2,g3,PlotRange->{0,4},AspectRatio->Automatic]

3. Plot[{x^2,-x^2,x^2 Sin[10x]},{x,-2Pi,2Pi},Frame->True]

4. g1 = Plot[x^2-9,{x,-3.5,3.5}];
g2 = Graphics[Circle[{0,0},3]];
Show[g1,g2,AspectRatio->Automatic]
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5. ParametricPlot[{t-Sin[t],1-Cos[t]},{t,0,8Pi}]

6. PolarPlot[θ, {θ,0,10Pi}]

7. ContourPlot[y^2==x^3(2-x),{x,0,2},{y,-2,2},Frame->False,Axes->True]

8. ListPlot[Prime[Range[50]]]

9. NumberLinePlot[1/Range[20]]

10. Plot[{x^2,8-x^2},{x,-3,3},Filling->{1->{{2},{Yellow,Green}}}]

11. Plot3D[Exp[-(x^2+y^2)],{x,-2,2},{y,-2,2}]
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12. Plot3D[{x^2+y^2,12-y},{x,-5,5},{y,-5,5},BoxRatios->1,
Boxed->False,Axes->False,PlotRange->{0,20}]

13. ParametricPlot3D[{(4+Sin[20t])Cos[t],(4+Sin[20t])Sin[t],Cos[20t]},
t, 0, 2 Pi]

14. In cylindrical coordinates the cone has the equation

c = PowerExpand@Simplify@TransformedField["Cartesian"->"Cylindrical",

3 Sqrt[x^2+y^2],{x,y,z}->{r,θ,rho}]
3r

Also, the hemisphere has the equation

hs = Simplify@ TransformedField["Cartesian" -> "Cylindrical",

9+Sqrt[9-x^2-y^2],{x,y,z}->{r,θ,ρ}]
√
9− r2 + 9

g1 = RevolutionPlot3D[c,{r,0,3},BoxRatios->1];
g2 = RevolutionPlot3D[hs,{r,0,3}];
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Show[g1,g2,PlotRange->All]

15. SphericalPlot3D[1+Sin[4θ]Sin[φ],{φ,0,Pi},{θ,0,2Pi}]

16. ContourPlot[Sin[x]+Sin[y],{x,-4Pi,4Pi},{y,-4Pi,4Pi}]

17. ContourPlot3D[5x^2+2y^2+z^2,{x,-5,5},{y,0,5},{z,-5,5},
Contours->{1,4,9,16,25}]

18. triangle = AASTriangle[Pi/6, Pi/4, 1];

ArcLength[RegionBoundary[triangle]]
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1

2

(
3
√
2+
√
6+ 2

)
centroid = RegionCentroid[triangle]{
1

6

(√
2+ 2

√
6
)
,

1

3
√
2

}
Graphics[{triangle,Red,PointSize[0.025],Point[centroid]}]

19. Graph[Flatten@Table[i->j,{i,4},{j,4}]]

20. Grid[Table[FindShortestPath[Graph[{1->2,2->3,3->4,4->1,
3->1,2->2}],i,j],{i,4},{j,4}]]
{1} {1, 2} {1, 2, 3} {1, 2, 3, 4}
{2, 3, 1} {2} {2, 3} {2, 3, 4}
{3, 1} {3, 1, 2} {3} {3, 4}
{4, 1} {4, 1, 2} {4, 1, 2, 3} {4}

Chapter 14

1. D[Exp[x y], x,y,x]

xy2exy + 2yexy

2. Simplify@Total@Diagonal[D[1/Sqrt[x^2+y^2+z^2],{{x,y,z},2}]]
0

3. NIntegrate[Exp[(x y)^2],{x,0,1},{y,0,1}]
1.1351

4. pde = D[u[x,t],t] + 2D[u[x,t],x] == Sin[x];

IC = u[0,t]==Cos[t];

181



DSolve[{pde,IC}, u[x,t], {x,t}]{{
u(x, t)→ 1

2

(
2 cos

(
1

2
(2t− x)

)
− cos(x) + 1

)}}
5. pde = D[u[x,t],t] == D[u[x,t], {x,2}];

ic = u[x,0]==Exp[-x^2];

DSolve[{pde,ic}, u[x,t], {x,t}]{{
u(x, t)→ e−

x2

4t+1

√
4t+ 1

}}
6. triangle=a>0 && b>0 && c>0 && a+b>c && a+c>b && b+c>a;

s = 1/2 (a+b+c);

Maximize[{Sqrt[s(s-a)(s-b)(s-c)],triangle && a+b+c==1}, {a,b,c}]{
1

12
√
3
,

{
a→ 1

3
, b→ 1

3
, c→ 1

3

}}
7. Div[Curl[{f1[x,y,z],f2[x,y,z],f3[x,y,z]},{x,y,z}],{x,y,z}]

0

8. F[{x ,y }]:={-y/Sqrt[x^2+y^2],x/Sqrt[x^2+y^2]};
r[t ]:={t,t^3-t^2-t};
NIntegrate[Dot[F[r[t]],r’[t]],{t,0,2}]
2.90925

Chapter 15

1. Table[{i,N@i[data]},{i,{Mean,Median,Variance,
StandardDeviation}}]//TableForm
Mean 17.5
Median 16.
Variance 27.8421
StandardDeviation 5.27656

2. f = Fit[data,{1,x,x^2,x^3},x]
0.172879x3 − 1.26836x2 + 1.28146x+ 6.21696

p = Expand@InterpolatingPolynomial[N@data, x]

−0.155952x5 + 2.1869x4 − 9.73214x3 + 12.256x2 + 9.3881x− 10.9429

Show[Plot[{p,f},{x,-2,6}],ListPlot[data,PlotStyle->
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{Red,PointSize[0.02]}]]

Chapter 16

1. Select[Range[10^6],Plus@@(IntegerDigits[#]!)==# &]

{1, 2, 145, 40585}

2. Solve[x==1+Nest[1/(#+1)&,x,10],x]{{
x→ − 12√

55

}
,

{
x→ 12√

55

}}
3. NestWhileList[Total@(Most@Divisors[#])&,1264460,Unequal,All]

{1264460, 1547860, 1727636, 1305184, 1264460}

4. f[x y ] := f[x] + f[y]

f[x ^n Integer?Positive] := n f[x]

f[n Integer?Positive] := 0

f[Product[(x[i])^i,{i,20}]] == Sum[i f[x[i]],{i,20}]
True

5. f[0] = 1;

f[1] = 1;

f[n ] := f[n-1] + f[n-2]

f[24]

75025
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abort evaluation, 7
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analytic solutions of ODEs, 89
angle of vectors, 75
annulus, 128
anonymous functions, 21
antiderivative, 63
arbitrary constant, 63, 89
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area, 126
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arrow, 120
arrow symbol, 20
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augmented matrix, 84

ball, 125
bar chart, 113
base-10 logarithm, 13
base-2 logarithm, 13
basic arithmetic, 10
basic commands, 9
basic math assistant, 8
binomial coefficient, 41
boolean expressions, 29
boundary conditions, 142
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boundary value problem, 90
built-in functions, 11

calculator, 10
calculus, 58
Cartesian coordinates, 107
Cauchy-Euler ODE, 90
Cayley-Hamilton theorem, 88
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centroid, 126
characteristic polynomial, 82
circles, 117
Collatz function, 156
collection of terms, 45
column vector, 74
combined graphic, 96
comment, 13
complement, 31
composite number, 34
conditional function, 77
conditional probability, 146
cone, 107, 125
consistent, 84
constant matrix, 78
contradiction, 33
converge, 68
coordinate systems, 107
coprime, 37
critical numbers, 66
cross product, 75
cross-shaped region, 117
cube root, 12
cumulative distribution function, 145
curl, 140
curly braces, 7
cyclic number, 41
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cylinder, 125
cylindrical coordinates, 105
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delete all output, 7
derivative, 60
descriptive statistics, 144
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diagonal matrix, 78
diagonalizable matrix, 88
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different values, 29
direction, 131
directional derivative, 136
disjoint sets, 32
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disk-shaped region, 116
diverge, 68
divergence of vector field, 140
divergent series, 69
dividend, 36
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divisor, 36
document center, 14
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dot product, 75
double integrals, 137
Dudeney number, 42
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eigenvalue problem, 82
eigenvalues, 82
eigenvectors, 82
elementary row operations, 84
ellipse, 123
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equation solving, 51
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Euclidean division, 36
evaluation menu, 7
expected value, 146
exponential, 11

factorial, 29
Fibonacci Sequence, 38
finding roots, 51
flatten, 131
framed picture, 102
front end, 5
function domain, 58
function range, 58
functions of several variables, 19
functions producing lists, 23
Fundamental Theorem of Calculus, 64

G. H. Hardy, 57
Gaussian elimination, 84
general term, 68
geometric center, 129
geometric series, 69
Goldbach partition, 43

Goldbach’s conjecture, 43
gradient, 135
graph, 129
graph of a function, 94
graphics primitives, 117
greater than, 29
greatest common divisor, 37

happy number, 152, 158
harmonic function, 143
Harshad number, 40
head of expression, 149
heat equation, 142
helix, 126
help menu, 14
Heron’s formula, 19
higher-level operations, 10
higher-order derivatives, 60, 135
higher-order implicit derivative, 62
highest power, 35
Hilbert matrix, 87
homogeneous ODE, 90
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horizontal radial distance, 105
horizontal range, 94
hyperbolic functions, 11
hyperboloid, 112

ice cream cone, 133
identity matrix, 78
immediate assignment, 16
implicit differentiation, 62
implicit equation plot, 100
inconsistent, 84
inequalities, 56
infinite sum, 69
infinity, 11
infix, 14
initial conditions, 142
initial value problem, 90
input, 6
integer factorization, 35
integer partition, 42
integration, 63
integration by parts, 63
interpolation, 147
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intersection, 31
interval of convergence, 70
inverse hyperbolic, 11
inverse trigonometric, 11
invertible, 81
isosceles triangle, 121
iterated integral, 137
iterated triple integral, 139

kernel, 5

labels, 102
Laplace transform, 92
Laplace’s equation, 143
leading coefficients, 84
least common multiple, 37
least-square fit, 147
left-hand limit, 59
length, 126
less than, 29
level curves, 110
level surfaces, 110
limits, 58, 134
line integrals, 140
linear systems, 53, 83
lines, 117
list, 23
listable functions, 26
logarithm to base a, 11
logic, 29
lower-triangular matrix, 78

mathematica help, 14
mathematical constants, 11
MathLink interface, 6
matrices, 76
matrix power, 81
maximum, 63
mean, 144
Mean-Value Theorem, 61
measures of central tendency, 144
measures of variation, 144
median, 144
Mersenne prime, 43
minimum, 63
modulo operation, 36

modulus, 36
multiple datasets, 114
multiplication, 10
mutually prime, 37

natural logarithm, 11
negation, 29
nested lists, 76
nested loops, 151
networks, 129
Newton’s Method, 68
nonlinear exact ODE, 90
nonlinear ODE, 89
nonsingular, 81
norm, 75
normal line, 66
notebook interface, 5
notebooks, 5
nth root, 13
null space, 82
number of real roots, 51
numerical notations, 13

optimization, 136
ordinary differential equation, 89
outer layer, 51
output, 6
overdetermined, 83

p series, 70
palettes, 8
palettes menu, 8
palindromic number, 43
parabola, 132
paraboloid, 132
parametric curves, 111
parametric plot, 97
parametric surfaces, 111
parantheses, 7
partial derivatives, 135
partial differential equations, 141
partial fraction, 47
particular solution, 91
pattern matching, 152
perfect number, 42
perimeter, 127
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pie chart, 113
piecewise functions, 20
plane, 124
plotting curves, 97
point of intersection, 119
points, 117
polar plot, 99
polynomials expansion, 45
polynomials factoring, 45
postfix, 14
power, 10
power set, 31
precedence, 10
prefix, 14
prime factorization, 35
prime number, 34
prime palindromic, 41
probability density function, 145
probability distributions, 145
product, 71
proportion, 94
pure functions, 21

quadratic function, 21
quantifiers, 32
quotient, 36

radial distance in space, 105
radian, 11
rank of a matrix, 82
rational function, 47
reciprocal, 24
rectangles, 117
recursion formulas, 68
recursive function, 157
Recursive Squence, 68
reduced row echelon form, 84
regression, 146
regular polygon, 122
relatively prime, 37
remainder, 36
replace, 149
repunits, 42
right-hand limit, 59
row reduction, 84
row vector, 74

S. Ramanujan, 57
saddle, 103
scientific notations, 13
Sequences, 68
sets, 31
shortest path, 130
singular matrix, 82
smooth curves, 134
social number, 158
sombrero, 103
spherical coordinates, 105
Spiral of Archimedes, 132
square brackets, 7
square root, 11
standard normal curve, 132
substitution, 63
substitution rule, 20
subtraction, 10
sum, 69
surface integrals, 140
symbol &, 21
symmetric, 132
symmetric matrix, 87

tangent line, 61
tautology, 30
taxicab number, 57
Taylor polynomials, 71
Taylor series, 70
text-based interface, 5
tick marks, 101
toroidal spiral, 132
total derivative, 62
trace, 82
transcendental functions, 47
transforming fields, 109
transpose, 81
triangular matrix, 78
tridiagonal matrix, 87
trigonometric functions, 11
triple integrals, 137
truth tables, 29
twin primes, 43

underdetermined, 83
underscore character, 18
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union, 31
unit ball, 125
unit disk, 123
unit matrix, 79
unit square, 122
unit vector, 87
universal set, 31
upper-triangular matrix, 78

vector field, 140
vector projection, 88
vector-valued function, 140
vectors, 74
vertical angle measured, 105
vertical range, 94
visualize a matrix, 116
volume, 126

wave equation, 142
Wolfram Language, 5
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