



Electric Circuits I

RL Circuits

Dr. Firas Obeidat

The Source Free RL Circuit

- The analysis of circuits containing inductors and/or capacitors is dependent upon the formulation and solution of the integrodifferential equations that characterize the circuits. We will call the special type of equation we obtain a homogeneous linear differential equation.
- They call the solution of a homogeneous linear differential equation a complementary function.
- When we consider independent sources acting on a circuit, part of the response will resemble the nature of the particular source (or forcing function) used; this part of the response, called the *particular solution*, the *steady-state response*, or the *forced response*.
- The source-free response may be called the *natural response*, the *transient response*, the *free response*, or the *complementary function*.

The *complete response* of the circuit will then be given by the sum of the *complementary function* and the *particular solution*.

The *natural response* of a circuit refers to the behavior (in terms of voltages and currents) of the circuit itself, with no external sources of excitation.

The Source Free RL Circuit

- Let us designate the time-varying current as $i(t)$; we will represent the value of $i(t)$ at $t = 0$ as I_0 ; in other words, $i(0) = I_0$. We therefore have.

$$Ri + v_L = Ri + L \frac{di}{dt} = 0$$

$$\frac{di}{dt} + \frac{R}{L}i = 0$$

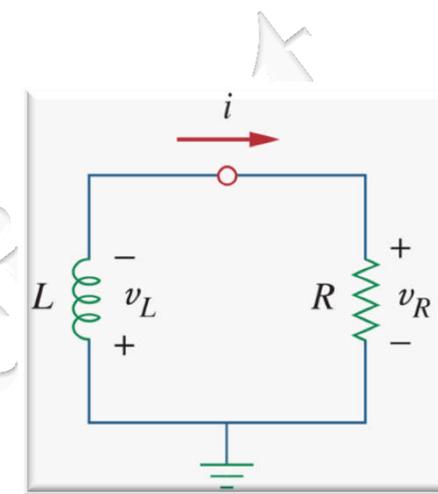
- Our goal is an expression for $i(t)$ which satisfies this equation and also has the value I_0 at $t = 0$.

$$\frac{di}{i} = -\frac{R}{L} dt$$

$$\int_{I_0}^{i(t)} \frac{di'}{i'} = \int_0^t -\frac{R}{L} dt'$$

$$\ln i' \Big|_{I_0}^i = -\frac{R}{L} t' \Big|_0^t$$

$$\ln i - \ln I_0 = -\frac{R}{L}(t - 0)$$



$$i(t) = I_0 e^{-Rt/L}$$

$$\tau = \frac{L}{R}$$

$$i(t) = I_0 e^{-t/\tau}$$

The Source Free RL Circuit

The voltage across the resistor is

$$v_R(t) = iR = I_0 R e^{-t/\tau}$$

power dissipated in the resistor is

$$p = v_R i = I_0^2 R e^{-2t/\tau}$$

The energy absorbed by the resistor is

$$w_R(t) = \int_0^t p(\lambda) d\lambda = \int_0^t I_0^2 e^{-2\lambda/\tau} d\lambda = -\frac{\tau}{2} I_0^2 R e^{-2\lambda/\tau} \Big|_0^t, \quad \tau = \frac{L}{R}$$

$$w_R(t) = \frac{1}{2} L I_0^2 (1 - e^{-2t/\tau})$$

Note that as $t \rightarrow \infty$, $w_R(\infty) \rightarrow \frac{1}{2} L I_0^2$

$$\begin{aligned} w_R &= \int_0^\infty p_R dt = I_0^2 R \int_0^\infty e^{-2Rt/L} dt \\ &= I_0^2 R \left(\frac{-L}{2R} \right) e^{-2Rt/L} \Big|_0^\infty = \frac{1}{2} L I_0^2 \end{aligned}$$

The **time constant** of a circuit is the time required for the response to decay to a factor of 36.8 percent of its initial value

The Source Free RL Circuit

Exampe: If the inductor of shown figure has a current $i_L = 2 A$ at $t = 0$, find an expression for $i_L(t)$ valid for $t > 0$, and its value at $t = 200 \mu s$.

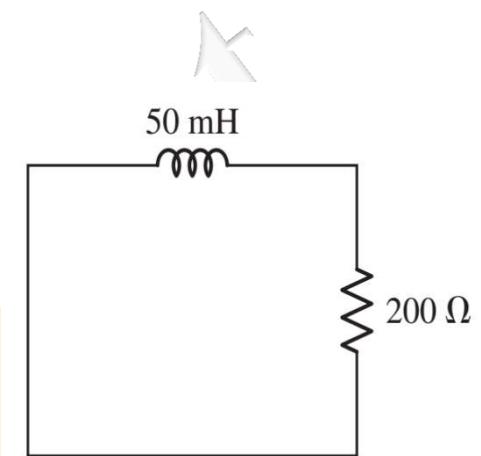
This is the identical type of circuit just considered, so we expect an inductor current of the form

$$i_L = I_0 e^{-Rt/L}$$

where $R = 200 \Omega$, $L = 50 \text{ mH}$ and I_0 is the initial current flowing through the inductor at $t = 0$. Thus,

$$i_L(t) = 2e^{-4000t}$$

Substituting $t = 200 \times 10^{-6} \text{ s}$, we find that $i_L(t) = 898.7 \text{ mA}$, less than half the initial value.



The Source Free RL Circuit

Example: Assuming that $i(0)=10A$, calculate $i(t)$ and $i_x(t)$ in the circuit of shown figure.

Applying KVL to the two loops results in

$$2(i_1 - i_2) + 1 = 0 \Rightarrow i_1 - i_2 = -\frac{1}{2}$$

$$6i_2 - 2i_1 - 3i_1 = 0 \Rightarrow i_2 = \frac{5}{6}i_1$$

$$i_1 = -3 \text{ A}, \quad i_o = -i_1 = 3 \text{ A}$$

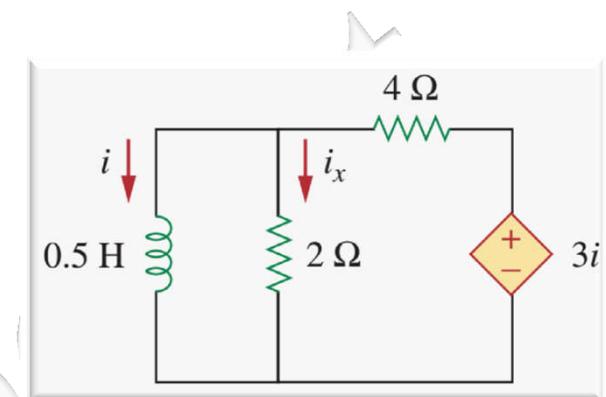
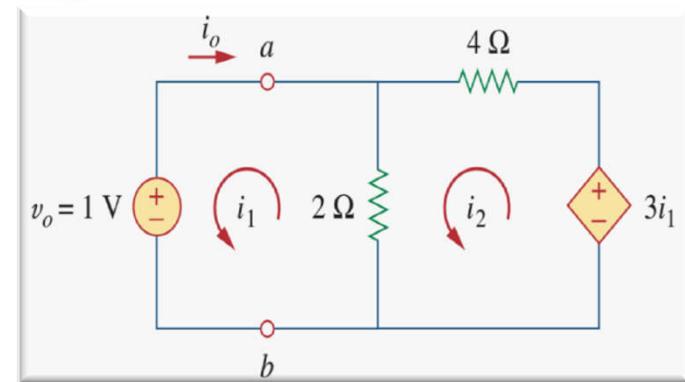
$$R_{\text{eq}} = R_{\text{Th}} = \frac{v_o}{i_o} = \frac{1}{3} \Omega$$

$$\tau = \frac{L}{R_{\text{eq}}} = \frac{\frac{1}{2}}{\frac{1}{3}} = \frac{3}{2} \text{ s}$$

$$i(t) = i(0)e^{-t/\tau} = 10e^{-(2/3)t} \text{ A}, \quad t > 0$$

$$v = L \frac{di}{dt} = 0.5(10) \left(-\frac{2}{3} \right) e^{-(2/3)t} = -\frac{10}{3} e^{-(2/3)t} \text{ V}$$

$$i_x(t) = \frac{v}{2} = -1.6667 e^{-(2/3)t} \text{ A}, \quad t > 0$$



The Source Free RL Circuit

Example: The switch in the circuit of shown figure has been closed for a long time. At $t=0$ the switch is opened. Calculate $i(t)$ for $t>0$.

$$\frac{4 \times 12}{4 + 12} = 3 \Omega$$

$$i_1 = \frac{40}{2 + 3} = 8 \text{ A}$$

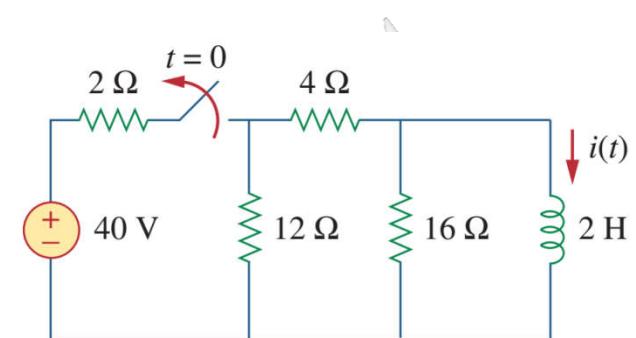
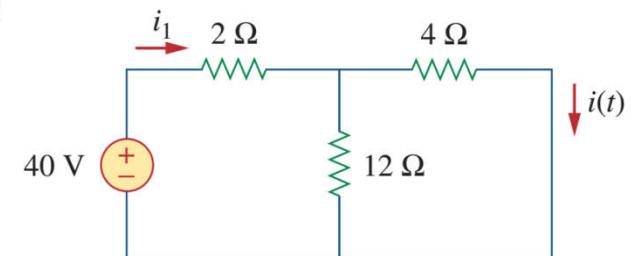
$$i(t) = \frac{12}{12 + 4} i_1 = 6 \text{ A}, \quad t < 0$$

$$i(0) = i(0^-) = 6 \text{ A}$$

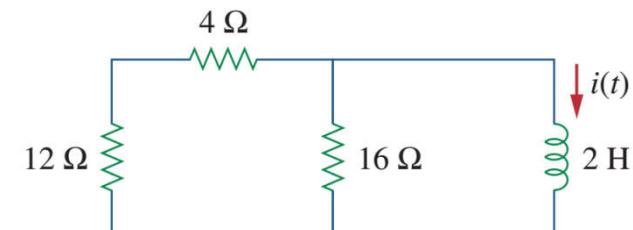
$$R_{\text{eq}} = (12 + 4) \parallel 16 = 8 \Omega$$

$$\tau = \frac{L}{R_{\text{eq}}} = \frac{2}{8} = \frac{1}{4} \text{ s}$$

$$i(t) = i(0)e^{-t/\tau} = 6e^{-4t} \text{ A}$$



(a)



(b)

The Source Free RL Circuit

Example: The switch in the circuit of shown figure has been opened for a long time. At $t=0$ the switch is closed. Calculate $i(t)$ for $t>0$.

$$i(t) = \frac{10}{2 + 3} = 2 \text{ A}, \quad t < 0$$

$$v_o(t) = 3i(t) = 6 \text{ V}, \quad t < 0$$

$$R_{\text{Th}} = 3 \parallel 6 = 2 \Omega$$

$$\tau = \frac{L}{R_{\text{Th}}} = 1 \text{ s}$$

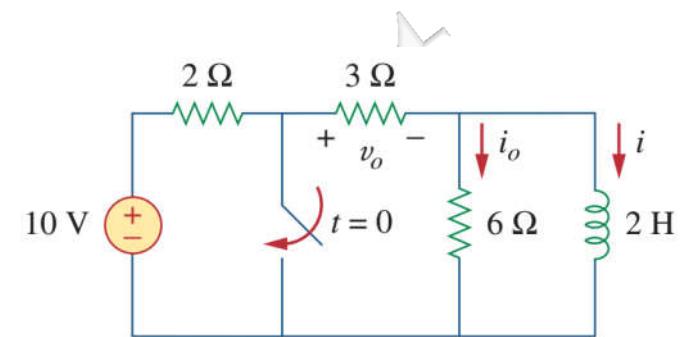
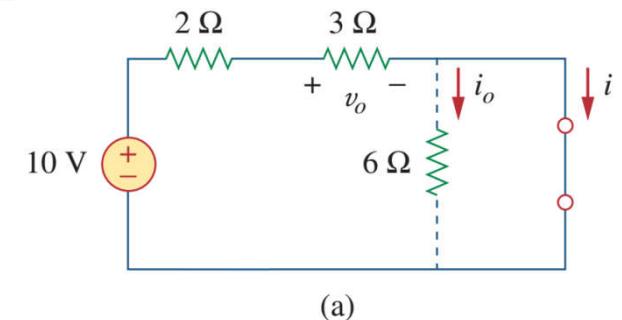
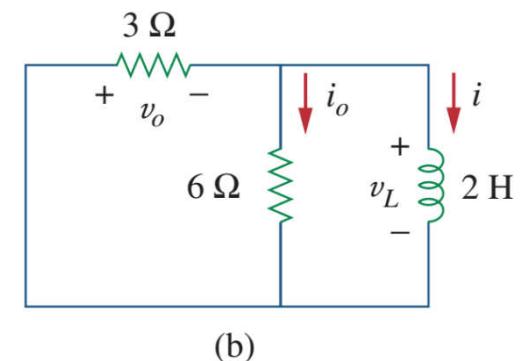
$$i(t) = i(0)e^{-t/\tau} = 2e^{-t} \text{ A}, \quad t > 0$$

$$v_o(t) = -v_L = -L \frac{di}{dt} = -2(-2e^{-t}) = 4e^{-t} \text{ V}, \quad t > 0$$

$$i_o(t) = \frac{v_L}{6} = -\frac{2}{3}e^{-t} \text{ A}, \quad t > 0$$

$$i_o(t) = \begin{cases} 0 \text{ A}, & t < 0 \\ -\frac{2}{3}e^{-t} \text{ A}, & t > 0 \end{cases}, \quad v_o(t) = \begin{cases} 6 \text{ V}, & t < 0 \\ 4e^{-t} \text{ V}, & t > 0 \end{cases}$$

$$i(t) = \begin{cases} 2 \text{ A}, & t < 0 \\ 2e^{-t} \text{ A}, & t \geq 0 \end{cases}$$



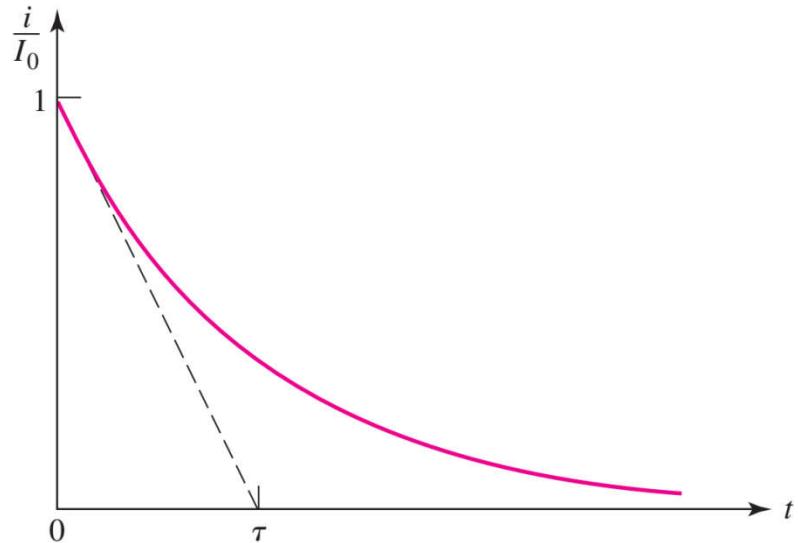
Properties of Exponential Response

At $t=0$, the current has value I_0 , but as time increases, the current decreases and approaches zero.

$$i(t) = I_0 e^{-Rt/L}$$

The initial rate of decay is found by evaluating the derivative at zero time:

$$\frac{d}{dt} \frac{i}{I_0} \Big|_{t=0} = -\frac{R}{L} e^{-Rt/L} \Big|_{t=0} = -\frac{R}{L}$$



We designate the value of time it takes for i/I_0 to drop from unity to zero, assuming a constant rate of decay

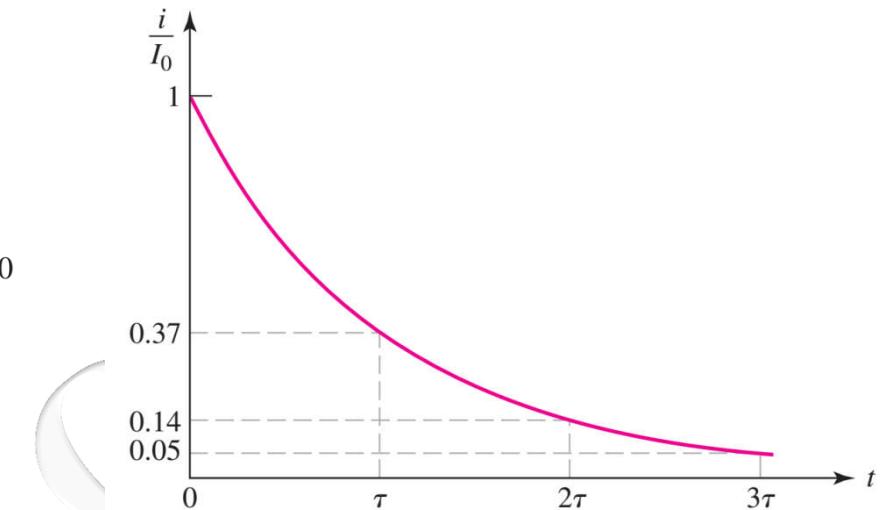
$$\left(\frac{R}{L}\right) \tau = 1 \quad \tau = \frac{L}{R}$$

The time constant of a series RL circuit may be found graphically from the response curve; it is necessary only to draw the tangent to the curve at $t = 0$ and determine the intercept of this tangent line with the time axis.

Properties of Exponential Response

The value of $i(t)/I_0$ at $t = \tau$ is.

$$\frac{i(\tau)}{I_0} = e^{-1} = 0.3679 \quad \text{or} \quad i(\tau) = 0.3679 I_0$$



In one time constant the response has dropped to 36.8 percent of its initial value; the value of τ may also be determined graphically from this fact. It is convenient to measure the decay of the current at intervals of one time constant, and recourse to a hand calculator shows that $i(t)/I_0$ is 0.3679 at $t = \tau$, 0.1353 at $t = 2\tau$, 0.04979 at $t = 3\tau$, 0.01832 at $t = 4\tau$, and 0.006738 at $t = 5\tau$.

Q. How long does it take for the current to decay to zero?

A. About five time constants.

15