

Power Electronics

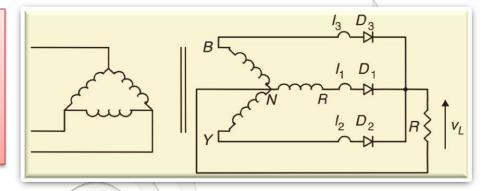
Poly Phase Uncontrolled Rectifiers

Dr. Firas Obeidat

Table of contents

• Three Phase Uncontrolled Half Wave Rectifiers • Three –Phase Full-Wave Uncontrolled Bridge Rectifier • Six-phase Star Rectifier

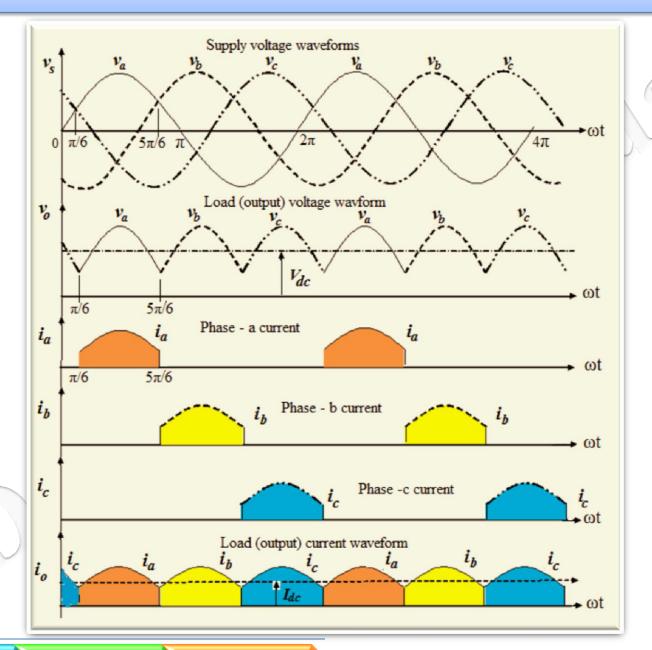
A basic three-phase half-wave rectifier circuit with resistive load is shown in Figure. The rectifier is fed from an ideal 3-phase supply through delta-star 3-phase transformer.



The principle of operation of this convertor can be explained as follows:

- The diode in a particular phase conducts during the period when the voltage on that phase is higher than that on the other two phases. For example: from $\pi/6$ to $5\pi/6$, D_1 has a more positive voltage at its anode, in this period D_2 and D_3 are off. The neutral wire provides a return path to the load current.
- The conduction sequence is: D_1 , D_2 , D_3 .

It is clear that, unlike the single-phase rectifier circuit, the conduction angle of each diode is $2\pi/3$, instead of π .



Variation of voltage across Diode D1

Voltage variation across diode D₁ can be obtained by applying KVL to the loop consisting of diode D₁, Phase 'a' winding and load R.

So,
$$-V_{D1} - V_0 + V_0 = 0$$
 or $V_{D1} = V_0 - V_0$

$$V_{D1} = V_a - V_c$$

When Diode D1 conduct:

$$V_o = V_a$$

Therefore,
$$V_{D1} = V_a - V_a = 0$$

When diode D_2 conduct:

$$V_{o} = V_{b}$$

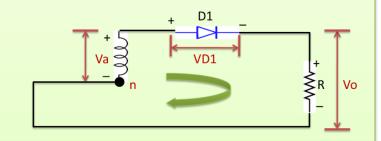
Therefore,
$$V_{D1} = V_a - V_b$$

At
$$\omega t = 180^{\circ}$$
, $V_b = 0.866 V_{mp}$, $V_a = 0$

At
$$\omega t = 210^{\circ}$$
, $V_b = V_{mp}$, $V_a = -0.5V_{mp}$

At
$$\omega t = 240^{\circ}$$
, $V_b = 0.866 V_{mp}$, $V_a = -0.866 V_{mp}$

At
$$\omega t = 270^{\circ}$$
, $V_b = 0.5 V_{mp}$, $V_a = -V_{mp}$



$$V_{D1} = -0.866V_{mp}$$

$$V_{D1} = -1.5V_{mp}$$

$$V_{D1} = -\sqrt{3}V_{mp}$$

$$V_{D1} = -1.5V_{mp}$$

Variation of voltage across Diode D1

When Diode D3 conducts:

$$V_{D1} = V_a - V_c$$

At $\omega t = 360^{\circ}$, $V_a = 0$,

At
$$\omega t = 300^{\circ}$$
, $V_a = -0.866 V_{mp}$, $V_c = 0.866 V_{mp}$

At
$$\omega t = 330^{\circ}$$
, $V_a = -0.5V_{mp}$, $V_c = V_{mp}$

$$vc = v_{mp}$$

$$Vc=0.866V_{mp}$$

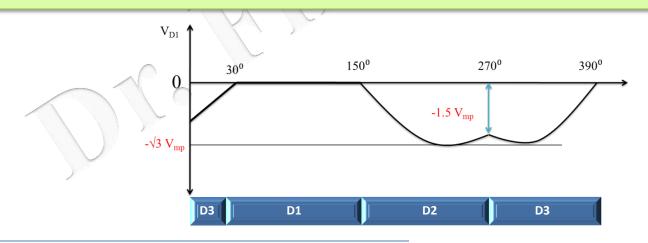
At
$$\omega t = 390^{\circ}$$
, $V_a = 0.5 V_{mp}$, $V_c = 0.5 V_{mp}$

$$V_{D1} = -\sqrt{3}V_{mp}$$

$$V_{D1} = -1.5V_{mp}$$

$$V_{D1} = -0.866 V_{mp}$$

$$V_{D1}=0$$



Let

$$V_{an} = V_m \sin \omega t$$

$$V_{bn} = V_m \sin(\omega t - 2\pi/3)$$

$$V_{an} = V_m \sin \omega t$$
 $V_{bn} = V_m \sin(\omega t - 2\pi/3)$ $V_{bn} = V_m \sin(\omega t - 4\pi/3)$

The dc component of the output voltage is the average value, and load current is the resistor voltage divided by resistance.

$$V_{dc} = \frac{3}{2\pi} \int_{\pi/6}^{5\pi/6} V_m \sin\omega t \ d\omega t = \frac{3\sqrt{3}V_m}{2\pi} = 0.827V_m$$

$$I_{dc} = \frac{3\sqrt{3}V_m}{2\pi R} = \frac{0.827V_m}{R}$$

The rms value of the output voltage and current are

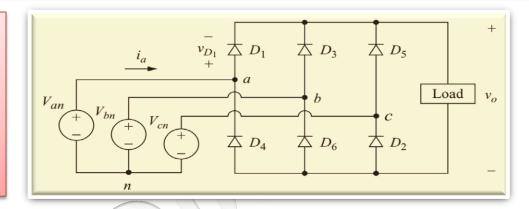
$$V_{rms} = \sqrt{\frac{3}{2\pi} \int_{\pi/6}^{5\pi/6} (V_m \sin\omega t)^2 d\omega t} = 0.84 V_m$$

$$I_{rms} = \frac{0.84V_m}{R}$$

The rms current in each transformer secondary winding can also be found as

$$I_{rms} = \sqrt{\frac{1}{2\pi} \int_{\pi/6}^{5\pi/6} (I_m sin\omega t)^2 d\omega t} = 0.485 I_m$$

Three-phase rectifiers are commonly used in industry to produce a dc voltage and current for large loads. The three-phase voltage source is balanced and has phase sequence a-b-c.



Some basic observations about the circuit are as follows:

- Kirchhoff's voltage law around any path shows that only one diode in the top half of the bridge may conduct at one time $(D_1, D_3, \text{ or } D_5)$. The diode that is conducting will have its anode connected to the phase voltage that is highest at that instant.
- Kirchhoff's voltage law also shows that only one diode in the bottom half of the bridge may conduct at one time $(D_2, D_4, \text{ or } D_6)$. The diode that is conducting will have its cathode connected to the phase voltage that is lowest at that instant.
- D_1 and D_4 cannot conduct at the same time. Similarly, D_3 and D_6 cannot conduct simultaneously, nor can D_5 and D_2 .

Some basic observations about the circuit are as follows:

- The output voltage across the load is one of the line-to-line voltages of the source. For example, when D_1 and D_2 are ON, the output voltage is v_{ac} . Furthermore, the diodes that are ON are determined by which line-to-line voltage is the highest at that instant. For example, when v_{ac} is the highest line-to-line voltage, the output is v_{ac} .
- There are six combinations of line-to-line voltages (three phases taken two at a time). Considering one period of the source to be 360°, a transition of the highest line-to-line voltage must take place every 360°/6=60°. Because of the six transitions that occur for each period of the source voltage, the circuit is called a six-pulse rectifier.
- The fundamental frequency of the output voltage is 6ω , where ω is the frequency of the three-phase source.

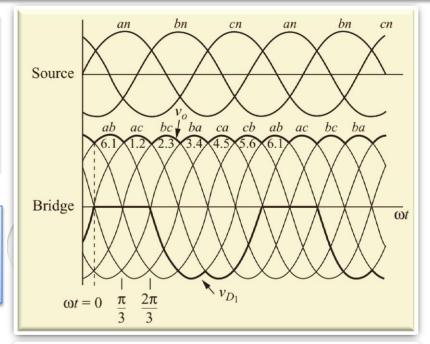
The figures shows the phase voltages and the resulting combinations of line-to-line voltages from a balanced three-phase source and the current in each of the bridge diodes for a resistive load.

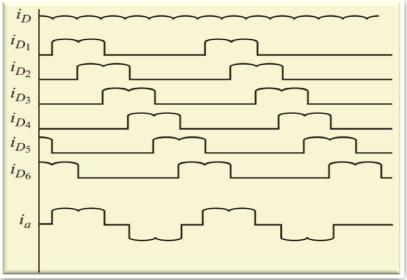
The diodes conduct in pairs (6,1), (1,2), $(2,3), (3,4), (4,5), (5,6), (6,1), \dots$ Diodes turn on in the sequence 1, 2, 3, 4, 5, 6, 1, . . .

The current in a conducting diode is the same as the load current. To determine the current in each phase of the source, Kirchhoff's current law is applied at nodes a, b, and c,

$$i_a = i_{D_1} - i_{D_4}$$

 $i_b = i_{D_3} - i_{D_6}$
 $i_c = i_{D_5} - i_{D_2}$





Let

$$V_{an} = V_m \sin \omega t$$

$$V_{bn} = V_m \sin(\omega t - 2\pi/3)$$

$$V_{bn} = V_m \sin(\omega t - 4\pi/3)$$

$$V_{ab} = V_{an} - V_{bn} = \sqrt{3}V_m \sin(\omega t + \pi/6)$$

$$V_{bc} = V_{bn} - V_{cn} = \sqrt{3}V_m \sin(\omega t - \pi/2)$$

$$V_{ca} = V_{cn} - V_{an} = \sqrt{3}V_m \sin(\omega t - 7\pi/6)$$

The dc component of the output voltage is the average value, and load current is the resistor voltage divided by resistance.

$$V_{dc} = \frac{3}{\pi} \int_{\pi/6}^{\pi/2} \sqrt{3} V_m \sin(\omega t + \pi/6) d\omega t = \frac{3}{\pi} \int_{\pi/6}^{\pi/2} \sqrt{3} V_m (\sin\omega t \cos\pi/6 + \cos\omega t \sin\pi/6) d\omega t$$

$$V_{dc} = \frac{3}{\pi} \int_{\pi/6}^{\pi/2} \sqrt{3} V_m (\frac{\sqrt{3}}{2} \sin\omega t + \frac{1}{2} \cos\omega t) d\omega t = \frac{3\sqrt{3}V_m}{\pi} = 1.654V_m$$

$$I_{dc} = 1.654 \frac{V_m}{R}$$

Dr. Firas Obeidat

The average power is $P_{dc} = V_{dc}I_{dc}$

$$P_{dc} = V_{dc}I_{dc}$$

The rms value of the output voltage is

$$V_{rms} = \sqrt{\frac{3}{\pi}} \int_{\pi/6}^{\pi/2} (\sqrt{3}V_m \sin(\omega t - \pi/6))^2 d\omega t = 1.655V_m$$

The rms current in each phase can also be found as

$$I_{(a,b,c)rms} = 0.78I_m$$

The rms current through a diode is:

$$I_{(D)rms} = 0.552I_m$$

Where

$$I_m = 1.73 V_m / R$$

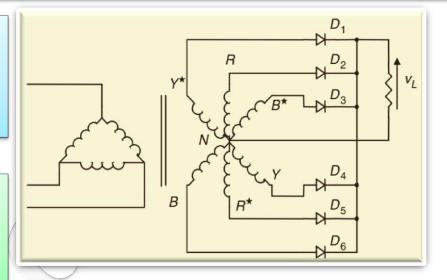
Six-phase Star Rectifier

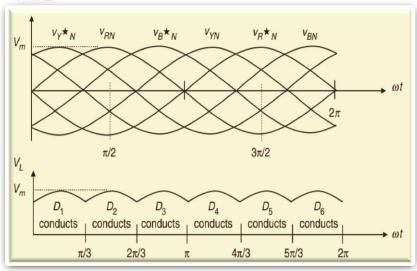
The six-phase voltages on the secondary are obtained by means of a center-tapped arrangement on a star-connected three phase winding.

The diode in a particular phase conducts during the period when the voltage on that phase is higher than that on the other phases. The conduction angle of each diode is $\pi/3$.

Currents flow in only one rectifying element at a time, resulting in a low average current, but a high peak to an average current ratio in the diodes.

Six-phase star circuit is attractive in applications which require a low ripple factor and a common cathode or anode for the rectifiers.





Six-phase Star Rectifier

The average value of the output voltage can be found as

$$V_{dc} = \frac{6}{2\pi} \int_{\pi/3}^{2\pi/3} V_m \sin\theta d\theta = V_m \frac{6}{\pi} \frac{1}{2} = 0.955 V_m$$

The *rms* of the output voltage can be found as

$$V_{rms} = \sqrt{\frac{3}{\pi} \int_{\pi/3}^{2\pi/3} (V_m \sin \omega t)^2 d\omega t} = V_m \sqrt{\frac{3}{\pi} (\frac{\pi}{6} + \frac{\sqrt{3}}{4})} = 0.956 V_m$$

The *rms* current in each transformer secondary winding can also be found as

$$I_{rms} = I_m \sqrt{\frac{1}{2\pi} \left(\frac{\pi}{6} + \frac{\sqrt{3}}{4}\right)} = 0.396 I_m$$

Where
$$I_m = \frac{V_m}{R}$$

