

Basic Definition.

- Boolean algebra like any other deductive mathematical system may be defined with a set of elements, a set of operators, and a number of unproved axioms or postulates.
- Boolean algebra is an algebraic structure defined on a set of elements B together with two binary operators + and • provided the following postulates are satisfied:

- Each postulate of Boolean algebra contains a pair of expressions or equations such that one is transformed into the other and vice-versa by interchanging the operators, $+ \leftrightarrow \cdot$, and identity elements, $0 \leftrightarrow 1$.
- The two expressions are called the duals of ٠ each other.

• Example: duals
A + (BC) = (A+B)(A+C)
$$\longleftrightarrow$$
 A (B+C) = AB + AC

.

Postulates and Theorems of Boolean Algebra										
Post. 2	(a) $x + 0 = x$	(b) $x \cdot 1 = x$								
Post. 5	(a) $x + x' = 1$	(b) $x \cdot x' = 0$								
Theorem 1	(a) $x + x = x$	(b) $x \cdot x = x$								
Theorem 2	(a) $x + 1 = 1$	(b) $x \cdot 0 = 0$								
Theorem 3 involution:	(x')' = x									
Post. 3 commutative:	(a) $x + y = y + x$	(b) $xy = yx$								
Theorem 4 associative:	(a) $x + (y + z) = (x + y) + z$	(b) $x(yz) = (xy) z$								
Post. 4 distributive:	(a) $x(y+z) = xy + xz$	(b) $x + yz = (x + y) (x + z)$								
Theorem 5 De Morgan:	(a) $(x + y)' = x'y'$	(b) $(xy)' = x' + y'$								
Theorem 6 absorption:	(a) $x + xy = x$	(b) $x (x + y) = x$								
		11								

Theorem 6: Absorption

Theorem 5: De Morgan (a) (x + y)' = x'y'(b) (xy)' = x' + y'• The theorems of Boolean algebra can be shown to hold true by means of truth tables. For example, the truth table for the first De Morgan's theorem (x + y)' = x'y' is shown below. (x + y)'y' x' x'y'x + yx y

- Binary operators + and · are associative.
- That is, for any elements a, b and c in K:
 - a + (b + c) = (a + b) + c
 - $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

• C	Consid	er the	follov	ving fu	nctio	าร:	
F	F1=xyz`			F2=x+y`z			
F	F3=x`y`z+x`yz+xy`			F4=xy`+x`z			
The	e Trutł	า table	e is:				
	x	у	z	F ₁	F_2	F ₃	F_4
	0	0	0	0	0	0	0
	0	0	1	0	1	1	1
	0	1	0	0	0	0	0
	0	1	1	0	0	1	1
	1	0	0	0	1	1	1
	1	0	1	0	1	1	1
	1	1	0	1	1	0	0
	1	1	1	0	1	0	0

We can see that F3 = F4
 The question: is it possible to find 2 algebraic expressions that specify the same function? Answer is yes.
 From Table above we find that F₄ is the same as F₃, since both have identical 1's and 0's for each combination of values of the three binary variables. In general, two functions of *n* binary variables are said to be equal if they have the same value for all possible 2ⁿ combinations of the *n* variables.
 Manipulation of Boolean expression is applied to find simpler expressions for the same function

Simpler is better

• From the diagrams it is obvious that the implementation of F_4 requires less gates and less inputs than F_3 . Since F_4 and F_3 are equal Boolean functions, it is more economical to implement the F_4 form than the F_3 form. To find simpler circuits, one must know how to manipulate Boolean functions to obtain equal and simpler expressions. What constitutes the best form of a Boolean function depends on the particular application. In this section, consideration is given to the criterion of equipment minimization.

Algebraic Manipulation

• A literal is a primed or unprimed variable.

• each literal in the function designates an input to a gate, • each term is implemented with a gate.

• The minimization of the number of literals and the number of terms will result in a circuit with less equipment.

The other type of question

```
Show that;

1- ab + ab' = a

2- (a + b)(a + b') = a

1- ab + ab' = a(b+b') = a.1=a

2- (a + b)(a + b') = a.a + a.b' + a.b + b.b'

= a + a.b' + a.b + b.b'

= a + a.b' + a.b + 0

= a + a.(b' + b) + 0

= a + a.1 + 0

= a + a = a
```


Find the complement of the functions:

$$F_1 = x'yz' + x'y'z$$

 $F_2 = x (y'z' + yz).$
 $F'_1 = (x'yz' + x'y'z)'$
 $= (x'yz')' \cdot (x'y'z)'$
 $= (x + y' + z) (x + y + z')$
 $F'_2 = [x(y'z' + yz)]'$
 $= x' + (y'z' + yz)'$
 $= x' + (y'z')' \cdot (yz)'$
 $= x' + (y'z')' \cdot (yz)'$
 $= x' + (y + z) (y' + z')$

- A simpler procedure for deriving the complement of a function

 take the dual of the function.
 complement each literal.

 Find the complement of the function F₁ = x'yz' + x'y'z
 by taking their dual and complementing each literal.
- 1) The dual is: (x' + y + z')(x' + y' + z)
- 2) Complement each literal: $(x + y' + z) (x + y + z') = F'_1$