
Image Processing

Chapter(3)

Part 2:Intensity Transformation and
spatial filters

Prepared by: Hanan Hardan

Hanan Hardan 1

Image Enhancement?

Enhancement :تحسين الصورة is to process an image

so that the result is more suitable than the
original image for a specific application.

 Enhancement techniques are so varied, and use
so many different image processing approaches

 The idea behind enhancement techniques is to
bring out details that are hidden, or simple to
highlight certain features of interest in an image.

Hanan Hardan 2

Image Enhancement?

 If we used 256 intensities of grayscale then:

- In dark image the most of pixels value <128

- In bright image the most of pixels value>128

Let x:old image

 S:new image

S=x+c where c is constant value

>> S=imadd(x,50); -----------------brighter image

S=x-c where c is constant value

>> S=imsubtract(x,50); -------------darker image

 We can add 2 image :

S=x+y (where x and y 2 image have same size)

 255بعد الزيادة ياخذها 255اذا كانت القيمة اكبر من

Hanan Hardan 3

Image Enhancement Methods

 Spatial Domain Methods (Image Plane)

 Techniques are based on direct manipulation of
pixels in an image

 Frequency Domain Methods

 Techniques are based on modifying the Fourier
transform of the image.

 Combination Methods

 There are some enhancement techniques based on
various combinations of methods from the first two
categories

 In this chapter, we are going to discuss spatial

domain techniques
Hanan Hardan 4

Spatial domain

 Spatial domain processes:

1. intensity transformation(Point operation)

 - g depends only on the value of f at(x,y)

1. spatial filter (or mask ,kernel, template or
window)

 Hanan Hardan 5

Intensity (Gray-level)transformations
functions

 Here, T is called intensity transformation function or (mapping,
gray level function)

 g(x,y) = T[f(x,y)]

 s= T(r)

s,r : denote the intensity of g and f at any point (x,y) .

In addition, T can operate on a set of input images

s r

Hanan Hardan 6

Intensity transformations functions

Intensity transformation functions fall into 2 approaches:

1) Basic intensity transformations
•Linear Functions:

- Negative Transformation
- Identity Transformation

•Logarithmic Functions:
- Log Transformation
- Inverse-log Transformation

•Power-Law Functions:
- nth power transformation
- nth root transformation

Hanan Hardan 7

Intensity transformations functions

2) piecewise Linear transformation functions.

a) Contrast stretching, thresholding

b) Gray-level slicing

c) Bit-plane slicing

Hanan Hardan 8

Basic intensity transformations

a) Linear (negative and identity).

b) logarithmic (Log and Inverse Log) .

c) Power(nth power and nth root).

 بالصورة بعد التعديل gray levelsالتدرجات اللونية

 256سيكون هناك bit 8ان كان في البكسل , فمثلا

 (L=256)تدرج

 بالصورة قبل التعديل gray levelsالتدرجات اللونية

Hanan Hardan 9

Identity Function

- Output intensities are identical to input
intensities
- This function doesn’t have an effect on an
image, it was included in the graph only for
completeness
- Its expression:

 s = r

Hanan Hardan 10

Image Negatives (Negative Transformation)

The negative of an image with gray level in the range
[0, L-1], where L = Largest value in an image, is
obtained by using the negative transformation’s
expression:
 s = L – 1 – r
 Which reverses the intensity levels of an input
image , in this manner produces the equivalent of a
photographic negative.

The negative transformation is suitable for enhancing
white or gray detail embedded in dark regions of an
image, especially when the black area are dominant
in size

Hanan Hardan 11

Image Negatives (Negative Transformation)

Input gray level

O
u
tp

u
t

g
ra

y
 l

ev
el

s = L – 1 – r

Hanan Hardan 12

Image Negatives (Negative Transformation)

Image (r(

Advantages of negative :
 Produces an equivalent of a photographic negative.
 Enhances white or gray detail embedded in dark regions.

Image (s (after applying T (negative)

Hanan Hardan 13

Note how much clearer the tissue is in the negative image

Image Negatives (Negative Transformation)

Hanan Hardan 14

Image Negatives (Negative Transformation)

 Example 1:
the following matrix represents the pixels values of
an 8-bit image (r) , apply negative transform and
find the resulting image pixel values.

 solution:
L= 28 = 256

s=L-1-r
s =255-r

Apply this transform to
each pixel to find the negative

95 90 110 100

135 145 140 98

85 88 90 89

115 99 105 102

160 165 145 155

120 110 115 157

170 167 165 166

140 156 150 153

Image (r)

Image (s)

Hanan Hardan 15

Image Negatives (Negative Transformation)

Exercise:

the following matrix represents the pixels values of a
5-bit image (r) , apply negative transform and find
the resulting image pixel values.

 solution:

30 29 26 21

30 20 21 19

31 26 16 16

23 27 18 19

Image (r)

Image (s)

Hanan Hardan 16

The negative of an image can be obtained also with IPT
function imcomplement:

 g = imcomplement (f);

Image Negatives (Negative Transformation)

Hanan Hardan 17

Log Transformations function

 The general form of the log transformation:

 s = c log (1+r)

 Where c is a constant, and r ≥ 0

 Log curve maps a narrow range of low gray-level values
in the input image into a wider range of the output
levels.

 Used to expand the values of dark pixels in an image
while compressing the higher-level values.

 It compresses the dynamic range of images with large
variations in pixel values.

 Log functions are particularly useful when the input grey
level values may have an extremely large range of
values

Hanan Hardan 18

Log Transformations function

 Logarithmic transformations are implemented using the
expression:

 g = c * log (1 + double (f))

Hanan Hardan 19

Log Transformations function

 But this function changes the data class of the image to
double, so another sentence to return it back to uint8
should be done:

gs = im2uint8 (mat2gray(g));

 Use of mat2gray brings the values to the range [0 1] and
im2uint8 brings them to the range [0 255]

Hanan Hardan 20

Log Transformations function

 Example:

>> g = log(1 + double(f));

>> gs = im2uint8(mat2gray(g));

>> imshow(f), figure, imshow (g), figure, imshow(gs);

f g gs
Hanan Hardan 21

Inverse Logarithm Transformation

 Do opposite to the log transformations

 Used to expand the values of high pixels in
an image while compressing the darker-level
values.

Hanan Hardan 22

Logarithmic Transformations

InvLog Log

Hanan Hardan 23

Power-Law Transformations

 Power-law(Gamma) transformations
have the basic form of:

 s = c.rᵞ

 Where c and ᵞ are positive constants

Map a narrow range of dark input
values into a wider range of output
values or vice versa

Hanan Hardan 24

Power-Law Transformations

Different transformation curves are
obtained by varying ᵞ (gamma)

Hanan Hardan 25

Power-Law Transformations

 If gamma <1 :the mapping is weighted
toward brighter output values.

 If gamma =1 (default):the mapping is
linear.

 If gamma >1 :the mapping is weighted
toward darker output values.

Hanan Hardan 26

Power Law Example

Hanan Hardan 27

Power Law Example

Hanan Hardan 28

Power Law Example

Hanan Hardan 29

Power Law Example

Hanan Hardan 30

•The images to the right
show a magnetic resonance

(MR) image of a fractured
human spine

•Different curves highlight
different detail

Power Law Example

Hanan Hardan 31

Power Law Example

Hanan Hardan 32

Function imadjust

 Function imadjust is the basic IPT tool for
intensity transformations of gray-scale
images. It has the syntax:

 g = imadjust (f, [low_in high_in], [low_out high_out], gamma)

Hanan Hardan 33

Function imadjust

 As illustrated in figure 3.2 (above), this function maps the
intensity values in image f to new values in g, such that
values between low_in and high_in map to values
between low_out and high_out.

 Values below low_in and above high_in are clipped; that
is values below low_in map to low_out, and those above
high_in map to high_out.

Hanan Hardan 34

Function imadjust
 The input image can be of class uint8, uint16, or double,

and the output image has the same class as the input.

 All inputs to function imadjust, other than f, are specified
as values between 0 and 1, regardless of the class of f. If f
is of class uint8, imadjust multiplies the value supplied by
255 to determine the actual values to use; if f is of class
uint16, the values are multiplied by 65535.

 Using the empty matrix ([]) for [low_in high_in] of for
[low_out high_out] results in the default values [0 1].

 If high_out is less than low_out, the output intensity is
reversed.

 Hanan Hardan 35

Function imadjust
 Parameter gamma specifies the shape of the curve that

maps the intensity values of f to create g. If gamma is
less than 1, the mapping is weighted toward higher
(brighter) output values, as fig 3.2 (a) shows. If gamma is
greater than 1, the mapping is weighted toward lower
(darker) output values. If it is omitted from the function
arguments, gamma defaults to 1 (linear mapping).

Hanan Hardan 36

Function imadjust

 Example1:

>> f = imread ('baby-BW.jpg');

>> g = imadjust (f, [0 1], [1 0]);

>> imshow(f), figure, imshow (g);

>> imshow(f), figure, imshow (g);

This Obtaining the negative image

f g
Hanan Hardan 37

Function imadjust

 Example2:

 >> g = imadjust (f, [0.5 0.75], [0 1], .5);

 >> imshow(f), figure, imshow (g);

f g

Hanan Hardan 38

Function imadjust

 Example3:

 >> g = imadjust (f, [0.5 0.75], [0.6 1], 0.5);

 >> imshow(f), figure, imshow (g);

f g

Hanan Hardan 39

Function imadjust

 Example4:

 >> g = imadjust (f, [], [], 2);

 >> imshow(f), figure, imshow (g);

f g

Hanan Hardan 40

Piecewise-Linear Transformation Functions

 Principle Advantage: Some important
transformations can be formulated only as a
piecewise function.

 Principle Disadvantage: Their specification
requires more user input that previous
transformations

 Types of Piecewise transformations are:

 Contrast Stretching

 Gray-level Slicing

 Bit-plane slicing

 Hanan Hardan 41

Contrast Stretching

 One of the simplest piecewise linear
functions is a contrast-stretching
transformation, which is used to enhance
the low contrast images.

 Low contrast images may result from:

 Poor illumination

 Wrong setting of lens aperture during image
acquisition.

Hanan Hardan 42

Contrast Stretching

If T(r) has the form as shown in the figure below,
the effect of applying the transformation to every
pixel of f to generate the corresponding pixels in g
would:

 Produce higher contrast than the original
image, by:

 Darkening the levels below m in the original

 image

 Brightening the levels above m in the

 original image

 So, Contrast Stretching: is a simple image

 enhancement technique that improves the
contrast in an image by ‘stretching’ the range of
intensity values it contains to span a desired
range of values.

Hanan Hardan 43

Assume that
a: rmin,
b:rmax,

Contrast stretching: (r1,s1)=(rmin,0) , (r2,s2)=(rmax,L-1)

(r1, s1)

(r2, s2)

Contrast Stretching

Contrast stretching

Hanan Hardan 44

Example: in the graph, suppose we have the

following intensities : a=90, b=180, m=100

if r is above 180 ,it becomes 255 in s.

If r is below 90 , it becomes 0,

If r is between 90, 180 , T applies as follows:

 when r < 100 , s closes تقتربto zero (darker)

 when r>100 , s closes to 255 (brighter)

If r >180; s =255
If r <180 and r<90; s=T(r)
If r <90; s =0

T=

This is called contrast stretching, which means that
the bright pixels in the image will become brighter
and the dark pixels will become darker, this means :
higher contrast image.

Pixels above 180 become 255

Pixels less than 90 become 0

g(x,y) = T[f(x,y)]

Or

s= T(r)

 Remember that:

darker

brighter

0 255

255

Contrast Stretching

Hanan Hardan 45

Contrast-Stretching Transformation

 The function takes the form of:

 Where r represents the intensities of the input
image, s the corresponding intensity values in
the output image, and E controls the slope of
the function.

Hanan Hardan 46

Image (r(
Image (s (after applying T

(contrast stretching)

Notice that the intensity transformation function T,
made the pixels with dark intensities darker and the
bright ones even more brighter, this is called
contrast stretching>

Contrast Stretching

Hanan Hardan 47

Contrast-Stretching Transformation

 This equation is implemented in MATLAB for the
entire image as

 Note the use of eps to prevent overflow if f has
any 0 values.

Hanan Hardan 48

Contrast-Stretching Transformation

 Example1:

>>g = 1 ./ (1+ (100 ./(double(f) + eps)) .^ 20);

>> imshow(f), figure, imshow(g);

Hanan Hardan 49

Contrast-Stretching Transformation

 Example2:

>> g = 1 ./ (1+ (50 ./(double(f) + eps)) .^ 20);

>> imshow(f), figure, imshow(g);

Hanan Hardan 50

Contrast-Stretching Transformation

 Example3:

>> g = 1 ./ (1+ (150 ./(double(f) + eps)) .^ 20);

>> imshow(f), figure, imshow(g);

Hanan Hardan 51

Thresholding

 Is a limited case of contrast stretching, it produces a two-
level (binary) image.

 Some fairly simple, yet powerful, processing approaches
can be formulated with grey-level transformations. Because
enhancement at any point in an image depends only on the
gray level at that point, techniques in this category often
are referred to as point processing.

Hanan Hardan 52

Assume that
a: rmin,
b:rmax,
k : intensity

Contrast stretching:
(r1,s1)=(rmin,0) , (r2,s2)=(rmax,L-1)
Thresholding:
(r1,s1)=(k,0) , (r2,s2)=(k,L-1)

Thresholding

(r2, s2)

(r1, s1)

Thresholding:

Hanan Hardan 53

Example: suppose m= 150 (called threshold),

if r (or pixel intensity in image f الصورة الاصلية) is
above this threshold it becomes 1 in s (or pixel
intensity in image g الصورة بعد التعديل), otherwise it
becomes zero.

If f(x,y)>150; g(x,y)=1
If f(x,y)<150; g(x,y)=0

T=

If r >150; s =1
If r <150; s =0

T=

Or simply…

This is called
thresholding,
and it produces
a binary image!

Pixels above 150 become 1

Pixels less than 150 become 0

g(x,y) = T[f(x,y)]

Or

s= T(r)

 Remember that:

255

255 0

Thresholding

Hanan Hardan 54

Image (s (after applying T

(Thresholding)

Notice that the intensity transformation function T, convert the
pixels with dark intensities into black and the bright pixels into
white. Pixels above threshold is considered bright and below it is
considered dark, and this process is called thresholding.

Thresholding

Image (r (

Hanan Hardan 55

Contrast Stretching

Hanan Hardan 56

Application on Contrast stretching and thresholding

8-bit image with low contrast

After contrast stretching

 (r1,s1)=(rmin,0) , (r2,s2)=(rmax,L-1)

Thresholding function

(r1,s1)=(m,0) , (r2,s2)=(m,L-1)

m : mean intensity level in the image
Hanan Hardan 57

Contrast Stretching
 Figure 3.10(a) shows a typical transformation used for

contrast stretching. The locations of points (r1, s1) and (r2,
s2) control the shape of the transformation function.

 If r1 = s1 and r2 = s2, the transformation is a linear
function that produces no changes in gray levels.

 If r1 = r2, s1 = 0 and s2 = L-1, the transformation
becomes a thresholding function that creates a binary
image.

 Intermediate values of (r1, s1) and (r2, s2) produce
various degrees of spread in the gray levels of the output
image, thus affecting its contrast.

 In general, r1 ≤ r2 and s1 ≤ s2 is assumed, so the function
is always increasing.

Hanan Hardan 58

Contrast Stretching
 Figure 3.10(b) shows an 8-bit image with low contrast.

 Fig. 3.10(c) shows the result of contrast stretching,
obtained by setting (r1, s1) = (rmin, 0) and (r2, s2) =
(rmax,L-1) where rmin and rmax denote the minimum and
maximum gray levels in the image, respectively. Thus, the
transformation function stretched the levels linearly from
their original range to the full range [0, L-1].

 Finally, Fig. 3.10(d) shows the result of using the
thresholding function defined previously, with r1=r2=m,
the mean gray level in the image.

Hanan Hardan 59

130 90 120 110

200 98 94 91

100 99 91 90

90 85 96 82

Exercise:

the following matrix represents the pixels values of a 8-bit image
(r) , apply thresholding transform assuming that the threshold
m=95, find the resulting image pixel values.

 solution:

Image (r)

Image (s)

piecewise Linear transformation functions.

Hanan Hardan 60

function a2(x,s)

y=x;
[m n]=size(x);
for i=1:m
 for j=1:n
 if x(i,j)>= s
 y(i,j)=255;
 else y(i,j)=0;
 end
 end
end

figure, imshow(x);
figure, imshow(y);

 solution in matlab:

Hanan Hardan 61

