

Advanced Computer Architecture (0630561)

Lecture 10

Hardware and Software Parallelism

Prof. Kasim M. Al-Aubidy

Computer Eng. Dept.

ACA-\.Lecture

Introduction:

- Modern computer architecture implementation requires special hardware and software support. This includes;
 - > Distinguish between hardware and software parallelism.
 - > Mismatch problem between hardware and software.
 - Fundamental concept of compilation support needed to close the gap between hardware and software.

Hardware Parallelism:

- This refers to the type of parallelism defined by the machine architecture and hardware multiplicity.
- Hardware parallelism is a function of cost and performance tradeoffs. It displays the resource utilization patterns of simultaneously executable operations. It can also indicate the peak performance of the processors.
- One way to characterize the parallelism in a processor is by the number of instruction issues per machine cycle.
- If a processor issues k instructions per machine cycle, then it is called a k-issue processor.
- In a modern processor, two or more instructions can be issued per machine cycle.
- A conventional processor takes one or more machine cycles to issue a single instruction. These types of processors are called **one-issue machines**, with a single instruction pipeline in the processor.
- A multiprocessor system which built n k-issue processors should be able to handle a maximum of nk threads of instructions simultaneously.

Example Detection of parallelism in a program

Consider the simple case in which each process is a single HLL statement. We want to detect the parallelism embedded in the following instructions P_1, P_2, P_3, P_4 , and P_5 .

$$P_1: C = D \times E$$

$$P_2: M = G + C$$

$$P_3: A = B + C$$

$$P_4: C = L + M$$

$$P_5: F = G \div E$$

Assume that each statement requires one step to execute. No pipelining is considered here. The dependence graph is

$$P_1: C = D \times E$$

$$P_2: M = G + C$$

$$P_3: A = B + C$$

$$P_4: C = L + M$$

$$P_5: F = G \div E$$

Sequential execution in five steps, assuming one step per statement (no pipelining)

Parallel Execution:

 $= D \times E$ CM = G + C A = B + C C = L + M $F = G \div E$ P_2 : P_3 : P_{4} :

- Parallel execution in THREE steps, assuming TWO adders are available per step.
- If TWO adders are available, the parallel execution requires only THREE steps.
- Only 5 pairs can execute in parallel, if there is no resource conflicts.
- In this example, as shown in the fig, only P2 || P3 || P5 is possible.

Software Parallelism:

- \succ It is defined by the control and data dependence of programs.
- The degree of parallelism is revealed in the program profile or in the program flow graph.
- Software parallelism is a function of algorithm, programming style, and compiler optimization.
- The program flow graph displays the patterns of simultaneously executable operations.
- Parallelism in a program varies during the execution period. It limits the sustained performance of the processor.

Mismatch between S/W & H/W Parallelism:

Example:

- $A = L_1^* L_2 + L_3^* L_4$
- $B = L_1^* L_2 L_3^* L_4$

Software Parallelism:

There are 8 instructions;

FOUR Load instructions (L1, L2, L3 & L4).

TWO Multiply instructions (X1 & X2).

ONE Add instruction (+)

ONE Subtract instruction (-)

• The parallelism varies from 4 to 2 in three cycles.

Average S/W Parallelism =
$$\frac{8 \text{ cycles}}{3 \text{ cycles}} = \frac{8}{3} = 2.67$$

Hardware Parallelism:

Parallel Execution:

- Using TWO-issue processor:
- The processor can execute one memory access (Load or Store) and one arithmetic operation (multiply, add, subtract) simultaneously.
- The program must execute in 7 cycles.
- The h/w parallelism average is 8/7=1.14.
- It is clear from this example the mismatch between the s/w and h/w parallelism.

	Ŀ	Cycle 1
	Ŀ	Cycle 2
(XI)	G	Cycle 3
	Q	Cycle 4
1 Q		Cycle 5
$\left(\begin{array}{c} \Phi \end{array} \right)$		Cycle 6
Ŷ		Cycle 7

ACA-1. Lecture

Example:

- A h/w platform of a Dual-Processor system, single issue processors are used to execute the same program.
- Six processor cycles are needed to execute the 12 instructions by two processors.
- S1 & S2 are two inserted store operations.
- L5 & L6 are two inserted load operations.
- The added instructions are needed for inter-processor communication through the shared memory.

ACA-\.Lecture