Advanced Computer Architecture
(0630561)

Lecture 3

RISC Performance

Prof. Kasim M. Al-Aubidy
Computer Eng. Dept.

ACA-YLecture

RISC Performance:

* A large number of registers is useful for storing
intermediate results and for optimizing operand
references.

* The advantage of register storage as opposed to
memory storage is that registers can transfer
information to other registers much faster than the
transfer of information to and from memory.

* Register-to-register operations can be minimized
by keeping the most frequent accessed operands
In reqgisters. For this reason, a large number of
registers in the processing unit are associated with
RISC processors.

Y ACA-YLecture

Example:
An illustrative example with the following assumption:

+ A program with 80% of executed instructions being simple
and 20% complex.

+ CISC: simple instructions take 4 cycles, complex instructions
take 8 cycles; cycle time is 100 ns.

+ RISC: simple instructions are executed in one cycle; complex
operations are implemented as a sequence of instructions (14
instructions on average): cycle time is 75 ns.

How much time takes a program of 1 000 000 instructions?
+ CISC: (105x0.80%x4 + 105x0.20x8)x107" = 0.48 s
« RISC: (105x0.80x1 + 10%0.20%14)x0.75x107 = 0.27 s

Al ACA-YLecture

Register to Register Operation

- Load-and-store architecture
- Only LOAD and STORE instructions reference data in memory.
— All other instructions operate only with registers

This characteristic simplifies the instruction set and

therefore the control unit.

— A RISC instruction set may include only 1 or 2 ADD
instructions (e.g. integer add, add with carry)

- VAX has 25 different ADD instructions

This architecture encourages the optimization of
register use, so that frequently accessed operands
remain in high-speed storage.

¢ ACA-YLecture

Register to Register Operation

A large number of registers is available.

— Variables and intermediate results can be stored
in registers and do not require repeated loads and
stores from/to memory.

— All local variables of procedures and the passed
parameters can be stored in registers.

— The large number of registers is typical for RISC,
because the reduced complexity of the processor
means that we have silicon space on the
processor chip to implement them. This is usually
not the case with CISC machines.

ACA-YLecture

R to R and M to M Approaches:

B 16 16 16 8 1 16
Add B C A Lead | RB B
Memory to memory Lead |RC C
I= 56,D=96, M= 152 Add | RA|RB [RC
Store | RA A
I= Size of executed mstuctions. (aA=B+C b i |
D= Size of executed data. [=104,D=96,M=2
M=I+D= Total Idewmort traffic
b 16 16 16 § d 4 4
Add B C A Add |RA[RB[RC
Add A C B Add |RB[RA[RC
Sub B D D Sus | RD|RD|RB
Mﬂ“ﬂl}' to II.'IEITIEI'}' Rl‘gi ster i RI‘E;EIHT
[= 168, D= 288, M = 456 i T

b)A=-B+C;B+—A+C;D—D=B

ACA-YLecture

Register Windows:

 Procedure CALL and RETURN occurs in HL
programming languages. When translated into
machine language, a procedure CALL produces a
sequence of instructions that:
- Save register values.
- Pass parameters needed for the procedure.
- Call a subroutine to execute the body of the procedure.

» After a procedure RETURN, the program will:
— Restore the old register values,
— Pass results to the calling program,
— Return from the subroutine.

% ACA-YLecture

Register Windows:

Saving and restoring registers and passing parameters
and results involve time-consuming operations. To
overcome this, one of the following techniques must be
used:

Using multiple-register banks: each procedure is allocated
its own bank of registers. This will eliminate the need for
saving and storing register values.

Using the memory stack to store the parameters that are
needed by the procedure, but this requires a memory
access every time the stack is accessed.

Using overlapped register windows (RISC processors) to
provide the passing of parameters and avoid the need for
saving and restoring register values.

ACA-YLecture

Register Windows:
For overlapped register windows:

Each procedure CALL results in the allocation of a new
window consisting of a set from the register file for use by
the new procedure.

Each procedure CALL activates a new register window by
iIncrementing a pointer, while the RETURN statement
decrements the pointer and causes the activation of the
previous window.

Windows for adjacent procedures have overlapping
registers that are shared to provide the passing of
parameters and results.

ACA-YLecture

Register Windows:

+ A large number of registers is usually very useful.
« |f contents of all registers must be saved at every procedure

call, however, more registers mean longer delay.

* A solution to this problem is to divide the register file into a set
of fixed-size windows.

— Each register window is assigned to a procedure.
- Windows for adjacent procedures are overlapped to allow parameter

passing.
Parameter Local Temporary Lavel J
Registers Registers Registers sdbo L
Call/Return
Parameter Laoweal Temporary
Registers Registers Registers

Level J + 1

ACA-YLecture

AR

1.

At any time only one window of registers is visible and is
addressable.

The window is divided into three fixed-size areas:

Parameter registers: hold parameters passed down from the
procedure that called the current procedure and hold results to be
passed back up.

Local registers: used for local variables.

Temporary registers: used to exchange parameters and results
with the next lower level.

The temporary registers at one level are physically the
same as the parameter registers at the next lower level.

The register windows can be used to hold the few most
recent procedure activations. Older activations must be
saved in memory and later restored when the nesting
depth decreases. Thus, the actual organization of the
register file is as a circular buffer of overlapping windows.

ACA-YLecture

Circular Buffer Organization of Overlapped Windows:

Eesooie T

VWhen a call is made, a
current window pointer is
moved to show the

currently active register ;“T*
window b

If all windows are in use,
an interrupt is generated
and the oldest window

(the one furthest back in
the call nesting) is saved

to memory

A saved window pointer | '&T;-'.'.‘J.‘Iilf.
indicates where the next - Berkeley RISC: 8 windows poinies
saved windows should ©f 16 registers each d/’
restaore to - Pyramid Computer: 16

windows of 32 registers each v

Y ACA-YLecture

« A circular buffer of 6 windows. The buffer is R e
filled to a depth of 4 (A called B, B called C, C /. /)
called D) with procedure D active. rf el A 7

« CWP points to the window of the currently (~
active procedure. Reg references are offset by
CWP to determine the actual physical reg.

« SWP identifies the window most recently saved
iIn memory.

If procedure D now calls procedure E, arguments for E are placed in D’s.... ~~
temporary regs (overlap between w3 & w4), and CWP is advanced by one
window.

If procedure E then calls procedure F, the call cannot be made with the current
status of the buffer. This is because window F overlaps window A.

If F begins to load its temporary registers, it will overwrite the parameter
registers of A (A-in). Thus, when CWP is incremented (modulo 6) so that it
becomes equal to SWP, an interrupt occurs, and window A is saved. Only the
first two portions (A-in & A-loc) need to saved. Then, the SWP is incremented
and the call to F proceeds.

VY ACA-YLecture

Example:
The system has 74 registers:
Ro-Re: Ten hold parameters shared by all procedures.

R10-R73: Sixty four registers are divided into FOUR windows to
accommodate procedures A, B, C & D.

« Each register window consists of 10 local registers and
TWO sets of 6 registers common to adjacent windows.

* Local Registers: used for local variables.

« Common Registers: used for exchange of parameters and
results between adjacent procedures.

« Each procedure has 32 registers when it is active, these
are;

global regs + local regs + overlapping regs
10+10+6+6= 32 Registers

)¢ ACA-YLecture

Yo

Rips
el !}{:ﬁ..-ﬂpntﬁ B bs C
) e 2
L= I
Fraoc (<) - | ocal > B
ex2
==1 \§ ey rvp o= v
| = A W= =B
e —za
pPROC (B | K=z |
_ <F— Leced t_ A
Eo Eis Co
Elobal =ac vy S
Pe qi sters e T AXETD

PrRoC (A)

ACA-YLecture

Register Window Size:

G: No. of global registers.

L: No. of local registers in each window.

C: No. of registers common to two windows
W: No. of windows.

 Window size (S): No. of registers available for each
window.

Window Size= S= L+2C+G

* Register file (F): Total no. of registers needed in the
processor.

Register File= F= (L+C)W+G
For the given example:
G=10, L=10, C=6 and W=4, then
S=L+2C+G= 32 regs, and F=(L+C)W+G= 74 regs

‘1 ACA-YLecture

Large Register File versus Cache:

« The register file, organized into windows, acts as a small,
fast buffer for holding a subset of all variables.

« The register file acts much like a cache memory.

« The window-based register file holds all the local scalar
variables of most recent procedure activations. The cache
holds a selection of recently used scalar variables. The
following table compares characteristics of two approaches:

VY

Large Register File

Al local scalars

1 Individual variables

Compiler-assigned global variables

Save/Restore based on procedure
nesting depth

Hegrster addressing

Cache

Recentlyv-used local scalars
Blocks of memory
Recentlyv-used global vanables

Cave'Restore based on cache
replacement algorithm

Memory sddressing

ACA-YLecture

Instruction

R | Registers

4 4'——)- ———— = [Data
Wikt ———» Decoder

(a) Windows-based register fle

Instruaction
A

\ses /

(b)) Cache

It should be clear that the even the cache memory is as fast as the register
file, the access time will be considerably longer.

YA ACA-YLecture

