
Lecture٣-ACA١

Advanced Computer Architecture
(0630561)

Lecture 3

RISC Performance
Prof. Kasim M. Al-Aubidy

Computer Eng. Dept.



Lecture٣-ACA٢

RISC Performance:
• A large number of registers is useful for storing

intermediate results and for optimizing operand
references.

• The advantage of register storage as opposed to
memory storage is that registers can transfer
information to other registers much faster than the
transfer of information to and from memory.

• Register-to-register operations can be minimized
by keeping the most frequent accessed operands
in registers. For this reason, a large number of
registers in the processing unit are associated with
RISC processors.



Lecture٣-ACA٣

Example:



Lecture٣-ACA٤

Register to Register Operation



Lecture٣-ACA٥

Register to Register Operation



Lecture٣-ACA٦

R to R and M to M Approaches:



Lecture٣-ACA٧

Register Windows:
• Procedure CALL and RETURN occurs in HL

programming languages. When translated into
machine language, a procedure CALL produces a
sequence of instructions that:
- Save register values.
- Pass parameters needed for the procedure.
- Call a subroutine to execute the body of the procedure.

• After a procedure RETURN, the program will:
– Restore the old register values,
– Pass results to the calling program,
– Return from the subroutine.



Lecture٣-ACA٨

Register Windows:
• Saving and restoring registers and passing parameters

and results involve time-consuming operations. To
overcome this, one of the following techniques must be
used:

1. Using multiple-register banks: each procedure is allocated
its own bank of registers. This will eliminate the need for
saving and storing register values.

2. Using the memory stack to store the parameters that are
needed by the procedure, but this requires a memory
access every time the stack is accessed.

3. Using overlapped register windows (RISC processors) to
provide the passing of parameters and avoid the need for
saving and restoring register values.



Lecture٣-ACA٩

Register Windows:
For overlapped register windows:
• Each procedure CALL results in the allocation of a new

window consisting of a set from the register file for use by
the new procedure.

• Each procedure CALL activates a new register window by
incrementing a pointer, while the RETURN statement
decrements the pointer and causes the activation of the
previous window.

• Windows for adjacent procedures have overlapping
registers that are shared to provide the passing of
parameters and results.



Lecture٣-ACA١٠

Register Windows:



Lecture٣-ACA١١

• At any time only one window of registers is visible and is
addressable.

• The window is divided into three fixed-size areas:
1. Parameter registers: hold parameters passed down from the

procedure that called the current procedure and hold results to be
passed back up.

2. Local registers: used for local variables.
3. Temporary registers: used to exchange parameters and results

with the next lower level.
• The temporary registers at one level are physically the

same as the parameter registers at the next lower level.
• The register windows can be used to hold the few most

recent procedure activations. Older activations must be
saved in memory and later restored when the nesting
depth decreases. Thus, the actual organization of the
register file is as a circular buffer of overlapping windows.



Lecture٣-ACA١٢

Circular Buffer Organization of Overlapped Windows:



Lecture٣-ACA١٣

• A circular buffer of 6 windows. The buffer is
filled to a depth of 4 (A called B, B called C, C
called D) with procedure D active.

• CWP points to the window of the currently
active procedure. Reg references are offset by
CWP to determine the actual physical reg.

• SWP identifies the window most recently saved
in memory.

If procedure D now calls procedure E, arguments for E are placed in D’s
temporary regs (overlap between w3 & w4), and CWP is advanced by one
window.
If procedure E then calls procedure F, the call cannot be made with the current
status of the buffer. This is because window F overlaps window A.
If F begins to load its temporary registers, it will overwrite the parameter
registers of A (A-in). Thus, when CWP is incremented (modulo 6) so that it
becomes equal to SWP, an interrupt occurs, and window A is saved. Only the
first two portions (A-in & A-loc) need to saved. Then, the SWP is incremented
and the call to F proceeds.



Lecture٣-ACA١٤

Example:
The system has 74 registers:
R0-R9: Ten hold parameters shared by all procedures.
R10-R73: Sixty four registers are divided into FOUR windows to

accommodate procedures A, B, C & D.
• Each register window consists of 10 local registers and

TWO sets of 6 registers common to adjacent windows.
• Local Registers: used for local variables.
• Common Registers: used for exchange of parameters and

results between adjacent procedures.
• Each procedure has 32 registers when it is active, these

are;
global regs + local regs + overlapping regs

10+10+6+6= 32 Registers



Lecture٣-ACA١٥



Lecture٣-ACA١٦

Register Window Size:
G: No. of global registers.
L: No. of local registers in each window.
C: No. of registers common to two windows
W: No. of windows.
• Window size (S): No. of registers available for each

window.
Window Size= S= L+2C+G

• Register file (F): Total no. of registers needed in the
processor.

Register File= F= (L+C)W+G
For the given example:
G=10, L=10, C=6 and W=4, then
S= L+2C+G= 32 regs, and F= (L+C)W+G= 74 regs



Lecture٣-ACA١٧

Large Register File versus Cache:
• The register file, organized into windows, acts as a small,

fast buffer for holding a subset of all variables.
• The register file acts much like a cache memory.
• The window-based register file holds all the local scalar

variables of most recent procedure activations. The cache
holds a selection of recently used scalar variables. The
following table compares characteristics of two approaches:



Lecture٣-ACA١٨

It should be clear that the even the cache memory is as fast as the register
file, the access time will be considerably longer.


