Advanced Comphter Arxchitecture
(0630561)

Lecture 6

Pipeline Hazards

Prof. Kasim M. Al-Aubidy
Computer Eng. Dept.

ACA-Lecture

Pipeline Conflicts : 3 major difficulties

e 1) Resource conflicts
memory access by two segments at the same time

e 2) Data dependency

when an instruction depend on the result of a previous
instruction, but this result is not yet available

e 3) Branch difficulties

branch and other instruction (interrupt, ret, ..) that
change the value of PC

Data Dependency

e Hardware »Hardware Interlock »QOperand Forwarding
e Software » Delayed Load

Y ACA-Lecture

¢ Handling of Branch Instructions Clockeyles: | 11213 | 416 6/7/8|9
E

1. Load I A

» Prefetch target instruction

2. Inersrmani | A, B

e Branch Target Buffer : BTB 3. Add TR

d. Bubtract I A | E

e Loop Buffer

. Na=operatian

e Branch Prediction

I
MNo=ppecatio

Jozopaigtion N LA

>] X

Delayed Branch .

Clack cycles r (2l 3 415 B&]|TF
1. Lead I | A E

2. Incrament | B [

A Branch o X I A | E

4, Add | | A | E

. Bub I | A|E

A, Instruztion In K I | & | E

{b) Rearranaing the Instructions

Example of delayed branch
) ACA-"Lecture

RISC Pipeline =
RISC CPU @

e Instruction Pipeline el I W ROl

» Single-cycle instruction execution et L |a|E

e Compiler support 2. Load A2 | A]?)
Example : Three-segment Instruction Pipeline === ' L‘;J :

e 3 Suboperations Instruction Cycle 3 Hiera IEE

s 1)1 Instruction feteh (a) Pipeline timing with data conflict
n 2) A Instruction decoded and ALU operation

s 3) E : Transfer the output of ALU to a register, ?'Z::’::“: : : : R
memory, or PC(Program control Inst.=JMP/CALL) -
2. Load RE I A | E
e Delayed Load !
@. MNo-operation | I | A |E
e Delayed Branch : Al £+ e o I
£. Btora R3 I A

(b} Pipeline timing with delayed load

¢ ACA-Lecture

Pipeline Hazards

« Pipeline hazards are situations that prevent the
next instruction in the instruction stream from
executing during its designated clock cycle. The
Instruction is said to be stafled. When an instruction
15 stalled, all instructions later in the pipeline than
the stalled instruction are also stalled. Instructions
earlier than the stalled one can continue. No new
instructions are fetched during the stall.

« [Jypes of hazards:
» structural: two Instructions use same h/w In same cycle

» data: two instructions use same data (register/memory)
» control; one instruction affects which instruction is next

Structural Hazards
« Structural hazards occur when a certain resource
(memory, functional unit) i1s requested by more than

one nstruction at the same time.

ACA-Lecture

Instruction ADD R4 X fetches in the FO stage operand X
from memory. The memory doesn’'t accept another

access during that cycle.

Clock cycle — 1 2 3 4 5 6 7 8 9 101112
ADD R4 X FI (DI [COFO| El (WO

Instr. i+ Fl (Dl JCOFO|EIl RO

Instr. 1+2 FI [D1 [COFC|EI WO

Instr. 1+3 stall| FI [DI ([COFO|(EI WO

Instr. 1+4 Fl|DI |[COFO| El A

Penalty: 1 cycle

« Certain resources are duplicated in order to avoid
structural hazards. Functional units (ALU, FFP unit)
can be pipelined themselves in order to support
several instructions at a time. A classical way to
avold hazards at memory access 1s by providing
separate data and instruction caches.

ACA-Lecture

Data Hazards

« We have two instructions, 11 and 12. In a pipeline
the execution of 12 can start before |1 has
terminated. If in a certain stage of the pipeling, |12
needs the result produced by 11, but this result has
not yet been generated, we have a data hazard.

11 PALIL R2,R3 R2 « R2Z2*"R3

|2 ADD R1,R2 R1«— R1+ R2

Clock cycle — 1T 2 3 4 5 6 7 8 9101112
MUL R2Z2,R3 FlI DI |[COFO|EI WO

ADD R1,R2 FI [DI [COlstal stan [FOEl &

Instr. 1+2 FI (DI COFCOEl W

Before executing its FO stage, the ADD mnstruction 1s
stalled until the MUL instruction has written the result
into R2.

Penalty: 2 cycles

ACA-Lecture

Data Hazards

two different instructions use the same storage location
+ we must preserve the illusion of sequential execution

read-after-write (RAW)
add R1 ,_R2, R3
sub R2, R4, 1
or R1, R6, R3

read-after-write (RAW) = true dependence (dataflow)

« problem: sub reads R1 before add has written it

= Pipelining enables this overlapping to occur
= But this vioclates sequential execution semanticsl

« Recall: user just sees |SA and expects sequential execution

» mechanics? disable PC, F/D write
 RAW detection? compare register names

detect RAW and stall instruction at |D before it reads registers

ACA-Lecture

WAR: Write After Read

add R1, R2, R3
sub ro# R4 R1
or Rl, R6, R3

* problem: add could use wrong value for R2

= can't happen in vanilla pipeline (reads in |ID, writes in WB)
« can happen If: early writes (e.g., auto-increment) + late reads (7?7)
« can happen If: out-of-order reads (e.qg., out-of-order execution)

- artificial: using different output register for sub would solve
* The dependence is on the name R2, but not on actual dataflow

q ACA-Lecture

WAW: Write After Write

add FEl, R2, R3
sub R?, R4, R1
or Fl, R6, R3

* problem: reordering could leave wrong value in r1
« later instruction that reads rR1 would get wrong value

« can't happen in vanilla pipeline (register writes are in order)
« another reason for making ALU ops go through MEM stage
« can happen: multi-cycle operations (e.g., FP, cache misses)

- artificial: using different output register for oxr would solve
« Also a dependence on a name: R1

Y ACA-Lecture

RAR: Read After Read

add

sub

or

Rl, RZ2Z,
RZ2, R4,
R1, R6,

R3
R

R3

* no problem: R3 Is correct even with reordering

AR

ACA-Lecture

Some of the penalty produced by data hazards canbe

avoided using a technique called forwarding (bypassing).
The ALU result is always fed back to the ALU input.

[f the hardware detects that the value needed for the
current operation is the one produced by the previous

operation (but which has not yet been written back)

It selects the forwarded result as the ALU input, in-
stead of the value read from register or memary.

from reg
or memaory

.

from reg
or memory

L

MUX

MUX

'

'

ALU

:

to reqister or memary

Clock cycle —

MUL R2,R3
ADD R1,R2

L

2 3 4 5 6 7 8 9101112

F

]

CO

FO

El

RO

FI

o

cCO

stall

FO

El

WO

After the El stage of the MUL instruction the result is avail-
able by forwarding. The penalty is reduced to one cycle.

'Y

ACA-Lecture

'Y

Control Hazards are produced by branch instructions.

J itional | |

TARGET

After the FO stage of the branch instruction the
address of the target is known and it can be fetched

Clock cycle —

BR TARGET
target
target+1

1 2 3 4

Y

5 6 7 8 9101112

FI

DI

COIFO

EIWO

stall stall

FI D1 COFO|E]

WO

FI DI |COFO

El

WO

The instruction following the branch is fetched; before
the DI i1s finished it 1s not known that a branch is exe-

cuted. Later the fetched instruction is discarded
Penalty: 3 cycles

ACA-"Lecture

Conditional branch

ADD R1R2 R1 «—R1+R2
BES TARGET branch If zero
Instruction 1+1

TARGET ---- oo _-_-_-_--
Branch is taken

At this moment, both the condition (set by ADD)
and the target address are known.

Clock cycle — 1T 2 3 4 506 7 8 9101112

ADD R1,R2 FI1[DI[CO[FO EIPIG Penalty- 3 cycles
BEZ TARGET FI [DI [coFo[El fwOl

target stall stall F1 [D1 [CO[FO[El Wi

Eranch not taken _ o
At this moment the condition i1s

known and instr+1 can go on.

Clock cycle — 1T 2 3 4 5|6 7 8 9101112
¥
ADD R1,R2 FI DI COFO[EI MO Penalty 2 cycles
BEZ TARGET Fl DI [COFO[EI WO
instr i+1 Fl|stall stan[D1 [CO[F O] EIl WO

V¢ ACA-Lecture

