@

Beal-Time svswllls
[0630581)

Lecture (5)

Gomputer Software Requirements for
Real-Time Applications

Prof. Kasim M. Al-Aubidy
Computer Engineering Department
Philadelphia University
Summer Semester, 2011

Real-Time Systems, Prof. Kasim Al-Aubidy

Lecture Outline:

» Microcomputer programming.

» Programming techniques.

» Software requirements for real-time systems
» Program development process.

Real-Time Systems, Prof. Kasim Al-Aubidy

Microcontroller Programming:

| am writing in the
Assamblar language

moviw 2a
MovWwI porth

| am running a program

called a Cross-Assembler
moviw 2a =11 0000 0010 1010

movwl portb = 00 0000 1000 0110

| lead the machine code
which the computer
sands mea into the

- microcontroller

program memaory

Real-Time Systems, Prof. Kasim Al-Aubidy v

Microcontroller Programming:

MCs have traditionally been programmed using the assembly language of the
target device. As a result, the assembly languages of the microcontrollers
manufactured by different firms are totally different and the user has to learn a
new language before being able program a new type of device.

MCs can be programmed using high level languages such as BASIC, and C.

HLL Advantages:
High-level languages offer several advantages compared to the assembly language:
It 1s easier to develop programs using a high-level language.

Program maintenance is much easier if the program is developed using a high-
level language.

Testing a program developed in a high-level language is much easier.
High-level languages are more user-friendly and less prone to making errors.
It is easier to document a program developed using a high-level language.

HLL Disadvantages:

The length of the code in memory is usually larger when a high-level language is
used.

The programs developed using the assembly language usually run faster than
those developed

using a high-level language.

Real-Time Systems, Prof. Kasim Al-Aubidy ¢

The controller algorithm in a computer 1s implemented as a program which runs
continuously in a loop which is executed at the start of every sampling time.
Inside the loop, the desired reference value 1s read, the actual plant output 1s also
read, and the difference between the desired value and the actual value is
calculated. This forms the error signal.

The control algorithm is then implemented and the controller output for this
sampling instant is calculated.

This output is sent to a D/A converter which generates an analog equivalent of
the desired control action. This signal is then fed to an actuator which in turn
drives the plant to the desired point.

The operation of the controller algorithm, assuming that the reference input and
the plant output are analog signals, the operation of the controller algorithm can
be summarized as:

Repeat Forever

When it is time for next sampling instant

Read the desired value, R, from A/D converter

Read the actual plant output, Y , from the A/D converter
Calculate the error signa, E=R—-Y

Calculate the controller output, U

Send the controller output to D/A converter

Wait for the next sampling instant

End

Real-Time Systems, Prof. Kasim Al-Aubidy ©

One of the important features of the above algorithms 1s that once they have
been started they run continuously until some event occurs to stop them or until
they are stopped manually by an operator.

It is important to make sure that the loop is run continuously and exactly at the
same times. This is called synchronization and there are several ways in which
synchronization can be achieved in practice, such as:

— using polling in the control algorithm;
— using external interrupts for timing;
— using timer interrupts;
— ballast coding in the control algorithm;
— using an external real-time clock.
These methods are discussed briefly through lecture.

Real-Time Systems, Prof. Kasim Al-Aubidy 1

Programming Techniques:
1. Using Polling:

Polling is the software technique where we keep waiting until a certain event
occurs, and only then perform the required actions. This way, we wait for the
next sampling time to occur and only then run the controller algorithm.

The polling technique is used in DDC applications since the controller cannot do
any other operation during the waiting of the next sampling time.

The polling technique is described below as a sequence of steps:
Repeat Forever
While Not sampling time
Wait
End
Read the desired value, R
Read the actual plant output, ¥
Calculate the error signal, E=R—Y
Calculate the controller output, U

Send the controller output to D/A converter
End

Real-Time Systems, Prof. Kasim Al-Aubidy \

2. Using External Interrupts for Timing:

The controller synchronization task can easily be performed using an external
interrupt.

The controller algorithm can be written as an interrupt service routine (ISR).

The external interrupt will typically be a clock with a period equal to the required
sampling time. Thus, the computer will run the ISR at every sampling instant.

At the end of the ISR control is returned to the main program where the program
either waits for the occurrence of the next interrupt or can perform other tasks
(e.g. displaying data on a LCD) until the next external interrupt occurs.

The external interrupt approach provides accurate implementation of the control
algorithm as far as the sampling time is concerned.

One drawback of this method is that an external clock is required to generate the
interrupt pulses.

The external interrupt technique has the advantage that the controller is not
waiting and can perform other tasks in between the sampling instants.

The external interrupt technique of synchronization is described below as a
sequence of steps:

Main program:
Wait for an external interrupt (or perform some other tasks)
End

Real-Time Systems, Prof. Kasim Al-Aubidy A

* Interrupt service routine (ISR):
Read the desired value, R
Read the actual plant output, ¥
Calculate the error signal, E=R—Y
Calculate the controller output, U

Send the controller output to D/A converter
Return from interrupt

Real-Time Systems, Prof. Kasim Al-Aubidy

3. Using Timer Interrupts:

Another popular way to perform controller synchronization is to use the timer interrupt
available on most microcontrollers.

The controller algorithm is written inside the timer ISR, and the timer is programmed to
generate interrupts at regular intervals, equal to the sampling time.

At the end of the algorithm control returns to the main program, which either waits for the

occurrence of the next interrupt or performs other tasks (e.g. displaying data on an LCD)
until the next interrupt occurs.

The timer interrupt approach provides accurate control of the sampling time. Another
advantage of this technique is that no external hardware is required since the interrupts are
generated by the internal timer of the microcontroller.

The timer interrupt technique of synchronization is described as a sequence of steps:
Main program:
Wait for a timer interrupt (or perform some other tasks)
End

Interrupt service routine (ISR):

Read the desired value, R

Read the actual plant output, Y

Calculate the error signal, E=R—Y
Calculate the controller output, U

Send the controller output to D/A converter
Return from interrupt

Real-Time Systems, Prof. Kasim Al-Aubidy Ve

4 Using Ballast Coding:

In this technique the loop timing is made to be independent of any external or internal
timing signals. The method involves finding the execution time of each instruction inside
the loop and then adding dummy code to make the loop execution time equal to the
required sampling time.

* This method has the advantage that no external or internal hardware is required. But one
big disadvantage is that if the code inside the loop is changed, or if the CPU clock rate of
the MC is changed, then it will be necessary to readjust the execution timing of the loop.

* The ballast coding technique of synchronization is described below as a sequence of
steps. Here, it is assumed that the loop timing needs to be increased and some dummy
code 1s added to the end of the loop to make the loop timing equal to the sampling time:

Do Forever:

Read the desired value, R

Read the actual plant output, Y

Calculate the error signal, E=R—Y
Calculate the controller output,U

Send the controller output to D/A converter
Add dummy code

Add dummy code
End

Real-Time Systems, Prof. Kasim Al-Aubidy A

5. Using an External Real-Time Clock:

This technique 1s similar to using an external interrupt to synchronize the control
algorithm. Here, some RT clock hardware 1s attached to the microcontroller where
the clock 1s updated at every fick; for example, depending on the clock used, 50 ticks
will be equal to 1 s if the tick rate is 20 ms. The RT clock is then read continuously
and checked against the time for the next sample. Immediately on exiting from the
wait loop the current value of the time is stored and then the time for the next
sample is updated by adding the stored time to the sampling interval. Thus, the
interval between the successive runs of the loop 1s independent of the execution time
of the loop. Although the external clock technique gives accurate timing, it has the
disadvantage that RT clock hardware is needed.

The external RT clock technique of synchronization is described below as a
sequence of steps. T is the required sampling time in ticks, which is set to z at the
beginning of the algorithm. For example, if the clock rate 1s 50 Ticks per second,
then a Tick is equivalent to 20 ms, and if the required sampling time is 100 ms, we
should set 7= 5:

Real-Time Systems, Prof. Kasim Al-Aubidy VY

T'=n

Next Sample Time = Ticks + T

Do Forever:

While Ticks < Next Sample Time
Wait

End

Current Time = Ticks

Read the desired value, R

Read the actual plant output, Y
Calculate the error signal, E=R—Y
Calculate the controller output, U
Send the controller output to D/A converter
Next Sample Time=Current Time + T
End

Real-Time Systems, Prof. Kasim Al-Aubidy

VY

Software Requirements for Real-Time Systems:

Computer hardware 1s nowadays very fast, and control computers are generally
programmed using a high-level language. The use of the assembly language is
reserved for very special and time-critical applications, such as fast, real-time
device drivers.

C is a popular language used in most computer control applications. It is a
powerful language that enables the programmer to perform low-level operations,
without the need to use the assembly language.

The software requirements in real-time systems can be summarized as follows:
— the ability to read data from input ports;
— the ability to send data to output ports;
— internal data transfer and mathematical operations;
— timer interrupt facilities for timing the controller algorithm.

All of these requirements can be met by most digital computers, and, as a result,
most computers can be used as controllers in digital control systems.

Real-Time Systems, Prof. Kasim Al-Aubidy R

Program Development Process:

The programmer writes the program, called the
source code, in Assembler language.

This 1s then assembled by the Cross-Assembler
running on the host computer. The designer may
choose to test the program by simulation. This is
likely to lead to program.

When satisfied with the program, the developer
will then download it to the program memory of
the microcontroller itself, using either a stand-
alone ‘programmer’ linked to the host computer
or a programming facility designed into the
embedded system itself.

The designer will then test the program running
in the actual hardware. Again, this may lead to
changes being required 1n the source code.

To develop a simple project, a selection of
different software tools is beneficial. These are
usually bundled together into what is called an

Integrated Development Environment (IDE),
such as PROTUS and MPLAB.

Real-Time Systems, Prof. Kasim Al-Aubidy

Write source code

/

Assemble/compile

!

(Simulate)

Download

'

Test in hardware

\o

Example:
Software design using
flowcharts.

Real-Time Systems,

=
I

Read actual
temperature T,

”

Read demand
temperature Ty

- N

Activate
compressor

Mo

=k B
et -r"j

Switch off
compressor

Activate
alarm

o
Prof. Kasim Al-Aubidy

Example:

Software design usin Start!
S di s 5 \l User initiates
tate diagrams. " Dssrdsiad ™
Ready Fill
water
—. Function
N Full lavel
Ti t
C ,/J complete Fault me 'm/ detected
(-H-/\r / cleared \ /
o Out of
‘f:‘ balance Time-aut Heat
/’" i Motor water
= = faillure
Function Motos Reauired
complete failure / taggli;a;gra
Rinse Wash
Funetion
-— complete —

Real-Time Systems, Prof. Kasim Al-Aubidy VY

