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Readings in Pipelining
H+P

• Appendix A (except for A.8)
• This will be mostly review for those who took ECE 152

Recent Research Papers
• “The Optimal Logic Depth Per Pipeline Stage is 6 to 8 FO4 

Inverter Delays”, Hrishikesh et al., ISCA 2002.
• “Power: A First Class Design Constraint”, Mudge, IEEE 

Computer, April 2001.  (not directly related to pipelining)
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Basic Pipelining
• basic := single, in-order issue

• single issue := one instruction at a time (per stage)
• in-order issue := instructions (start to) execute in order
• next unit: multiple issue
• unit after that: out-of-order issue

• pipelining principles
• tradeoff: clock rate vs. IPC
• hazards: structural, data, control

• vanilla pipeline: single-cycle operations
• structural hazards, RAW hazards, control hazards

• dealing with multi-cycle operations
• more structural hazards, WAW hazards, precise state
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Pipelining
observe: instruction processing consists of N sequential stages

idea: overlap different instructions at different stages

+ increase resource utilization: fewer stages sitting idle
+ increase completion rate (throughput): up to 1 in 1/N time
• almost every processor built since 1970 is pipelined

• first pipelined processor: IBM Stretch [1962]

non-pipelined

pipelined

inst0.1 inst0.2 inst0.3
inst1.1 inst1.2 inst1.3

inst0.1 inst0.2 inst0.3
inst1.1 inst1.2 inst1.3
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Without Pipelining

• 5 parts of instruction execution
• fetch (F, IF): fetch instruction from I$
• decode (D, ID): decode instruction, read input registers
• execute (X, EX): ALU, load/store address, branch outcome
• memory access (M, MEM): load/store to D$/DTLB
• writeback (W, WB): write results (from ALU or ld) back to register file

I$
D$

regfile

DF M WX

+4

nPC

PC
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Simple 5-Stage Pipeline 

• 5 stages (pipeline depth is 5)
• fetch (F, IF): fetch instruction from I$
• decode (D, ID): decode instruction, read input registers
• execute (X, EX): ALU, load/store address, branch outcome
• memory access (M, MEM): load/store to D$/DTLB
• writeback (W, WB): write results (from ALU or ld) back to register file

• stages divided by pipeline registers/latches

I$
D$

regfile

DF M WX

F/D D/X X/M M/WPC

+4
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Pipeline Registers (Latches)

• contain info for controlling flow of instructions through pipe
• PC: PC
• F/D: PC, undecoded instruction
• D/X: PC, opcode, regfile[rs1], regfile[rs2], immed, rd
• X/M: opcode (why?), regfile[rs1], ALUOUT, rd
• M/W: ALUOUT, MEMOUT, rd

I$
D$

regfile

DF M WX

F/D D/X X/M M/WPC

+4
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Pipeline Diagram 

Compared to non-pipelined case:
• Better throughput: an instruction finishes every cycle
• Same latency per instruction: each still takes 5 cycles

1 2 3 4 5 6 7 8 ⇐ cycles
inst0 F D X M W
inst1 F D X M W
inst2 F D X M W
inst3 F D X M W

ECE 252 / CPS 220 Lecture Notes
Pipelining

8© 2005 by Sorin, Roth, Hill, Wood, 
Sohi, Smith, Vijaykumar, Lipasti

Principles of Pipelining
let: instruction execution require N stages, each takes tn time

• un-pipelined processor
• single-instruction latency  T = Σtn
• throughput = 1/T = 1/Σtn
• M-instruction latency = M*T  (M>>1)

• now: N-stage pipeline
• single-instruction latency T =  Σtn (same as unpipelined)
• throughput = 1/ max(tn) <= N/T       (max(tn) is the bottleneck)
          if all tn are equal (i.e., max(tn) = T/N), then throughput = N/T
• M-instruction latency (M >> 1) = M * max(tn) <= M*T/N
• speedup <= N

• can we choose N to get arbitrary speedup?
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Wrong (part I): Pipeline Overhead
V := oVerhead delay per pipe stage

• cause #1: latch overhead
• pipeline registers take time

• cause #2: clock/data skew

so, for an N-stage pipeline with overheads
• single-instruction latency T =  Σ(V + tn) = N*V + Σtn
• throughput = 1/(max(tn) + V) <= N/T  (and <= 1/V)
• M-instruction latency = M*(max(tn) + V) <= M*V + M*T/N 
• speedup = T/(V+max(tn)) <= N

Overhead limits throughput, speedup & useful pipeline depth
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Wrong (part II): Hazards
hazards: conditions that lead to incorrect behavior if not fixed

• structural: two instructions use same h/w in same cycle
• data: two instructions use same data (register/memory)
• control: one instruction affects which instruction is next

• hazards ⇒ stalls (sometimes)
• stall: instruction stays in same stage for more than one cycle

• what if average stall per instruction = S stages?
• latency’ ⇒ T(N+S)/N  = ((N+S)/N)*latency > latency
• throughput’ ⇒ N2/T(N+S) = (N/(N+S))*throughput < throughput
• M_latency’ ⇒ M*T(N+S)/N2 = ((N+S)/N)*M_latency > M_latency
• speedup’ ⇒ N2/(N+S) = (N/(N+S))*speedup < speedup
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Pipelining: Clock Rate vs. IPC
deeper pipeline (more stages, larger N)

+ increases clock rate
– decreases IPC (longer stalls for hazards - will see later)
• ultimate metric is execution rate = clock rate*IPC

• (clock cycle / unit real time) * (instructions / clock cycle)
• number of instructions is fixed, for purposes of this discussion

• how does pipeline overhead factor in?  

to think about this, parameterize the clock cycle
• basic time unit is the gate-delay (time to go through a gate)

• e.g., 80 gate-delays to process (fetch, decode,...) an instruction
• let’s look at an example ...
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Clock Rate vs. IPC Example
• G: gate-delays to process an instruction 
• V: gate-delays of overhead per stage 
• S: average cycle stall per instruction per pipe stage

– overly simplistic model for stalls

• compute optimal N (depth) given G, V, S [Smith+Pleszkun]
• IPC = 1 / (1 + S*N)
• clock rate (in gate-delays) = 1/(gate delays/stage) =1/(G/N + O)
• e.g., G = 80, S = 0.16, V = 1

N IPC := 1/(1+0.16*N) clock := 1/(80/N+1) execution rate
10 0.38 0.11 0.042
20 0.24 0.20 0.048
30 0.17 0.27 0.046
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Pipeline Depth Upshot
trend is for deeper pipelines (more stages)

• why? faster clock (higher frequency)
• clock period = f(transistor latency, gate delays per pipe stage)
• superpipelining: add more stages to reduce gate-delays/pipe-stage
• but increased frequency may not mean increased performance...
• who cares? we can sell frequency!

• e.g., Intel IA-32 pipelines
• 486: 5 stages (50+ gate-delays per clock period)
• Pentium: 7 stages
• Pentium II/III: 12 stages
• Pentium 4: 22 stages (10 gate-delays per clock)
• Gotcha! 800MHz Pentium III performs better than 1GHz Pentium 4
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Managing the Pipeline
to resolve hazards, need fine pipe-stage control

• play with pipeline registers to control pipe flow
• trick #1: the stall (or the bubble)

• effect: stops SOME instructions in current pipe-stages
• use: make younger instructions wait for older ones to complete
• implementation: de-assert write-enable signals to pipeline registers

• trick #2: the flush
• effect: clears instructions out of current pipe-stages
• use: undoes speculative work that was incorrect (see later)
• implementation: assert clear signals on pipeline registers

• stalls & flushes must be propagated upstream (why?)
• upstream: towards fetch  (downstream = towards writeback)
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Structural Hazards
two different instructions need same h/w resource in same cycle

• e.g., loads/stores use the same cache port as fetch
• assume unified L1 cache (for this example)

1 2 3 4 5 6 7 8 9 10 11 12 13
load F D X M W
inst2 F D X M W
inst3 F D X M W
inst3 F D X M W
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Fixing Structural Hazards
• fix structural hazard by stalling (s* = structural stall)

+ low cost, simple
– decreases IPC
• used rarely

• Q: which one to stall, inst4 or load?
• always safe to stall younger instruction (why?)...
• ...but may not be the best thing to do performance-wise (why?)

1 2 3 4 5 6 7 8 9 10 11 12 13
load F D X M W
inst2 F D X M W
inst3 F D X M W
inst4 s* F D X M W
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Avoiding Structural Hazards
• option #1: replicate the contended resource

+ good performance
– increased area, slower (interconnect delay)?
• use for cheap, divisible, or highly-contended resources (e.g., I$/D$)

• option #2: pipeline the contended resource
+ good performance, low area
– sometimes complex (e.g., RAM)
• useful for multicycle resources

• option #3: design ISA/pipeline to reduce structural hazards 
• key 1: each instruction uses a given resource at most once
• key 2: each instruction uses a given resource in same pipeline stage
• key 3: each instruction uses a given resource for one cycle
• this is why we force ALU operations to go thru MEM stage
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Data Hazards
two different instructions use the same storage location

• we must preserve the illusion of sequential execution

add R1, R2, R3
sub R2, R4, R1
or R1, R6, R3
read-after-write 

(RAW) 

true dependence 
(real)

add R1, R2, R3
sub R2, R4, R1
or R1, R6, R3
write-after-read 

(WAR)

anti-dependence 
(artificial)

add R1, R2, R3
sub R2, R4, R1
or R1, R6, R3
write-after-write 

(WAW)

output dependence 
(artificial)

Q: What about read-after-read dependences? (RAR)
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RAW
read-after-write (RAW) = true dependence (dataflow)

add R1, R2, R3
sub R2, R4, R1
or R1, R6, R3

• problem:  sub reads R1 before add has written it
• Pipelining enables this overlapping to occur
• But this violates sequential execution semantics!
• Recall: user just sees ISA and expects sequential execution
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RAW: Detect and Stall
detect RAW and stall instruction at ID before it reads registers

• mechanics? disable PC, F/D write  
• RAW detection? compare register names

• notation: rs1(D) := source register #1 of instruction in D stage
• compare rs1(D) and rs2(D) with rd(D/X), rd(X/M), rd(M/W)
• stall (disable PC + F/D, clear D/X) on any match

• RAW detection? register busy-bits
• set for rd(D/X) when instruction passes ID
• clear for rd(M/W)
• stall if rs1(D) or rs2(D) are “busy”

+ low cost, simple
– low performance (many stalls)
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depend on how ID and WB stages share the register file
• each gets register file for half a cycle
• 1st half ID reads, 2nd half WB writes ⇒ 3 cycle stall

• 1st half WB writes, 2nd half ID reads ⇒ 2 cycle stall

1 2 3 4 5 6 7 8 9
add R1,R2,R3 F D X M W
sub R2,R4,R1 F d* d* d* D X M W
load R5,R6,R7 p* p* p* F D X M

1 2 3 4 5 6 7 8 9
add R1,R2,R3 F D X M W
sub R2,R4,R1 F d* d* D X M W

Two Stall Timings
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Stall Signal Example (2nd Timing)

F

PC

D

F/D

X

D/X

M

X/M

W

M/W
load r2,0(r3)add r4,r2,r1 add r5,r5,#4 call funcload r6,0(r4)

F

PC

D

F/D

X

D/X

M

X/M

W

M/W
add r4,r2,r1 add r5,r5,#4load r6,0(r4)

write disable write disable clear

write disable write disable clear

load r2,0(r3)

F

PC

D

F/D

X

D/X

M

X/M

W

M/W
add r4,r2,r1load r6,0(r4) load r2,0(r3)

c1: rs1(D) == rd(D/X) ⇒ stall

c2: rs1(D) == rd(X/M) ⇒ stall

c3: rs1(D) == rd(X/M) ⇒ go

F

PC

D

F/D

X

D/X

M

X/M

W

M/W
add r4,r2,r1load r6,0(r4)sub r6,r6,#1

RAW
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Reducing RAW Stalls: Bypassing

why wait until WB stage? data available at end of EX/MEM stage
• bypass (aka “forward”) data directly to input of EX
+ very effective at reducing/avoiding stalls

• in practice, a large fraction of input operands are bypassed (why?) 

– complex
• does not relieve you from having to perform WB

D$

regfile

M WX

D/X X/M M/W

ECE 252 / CPS 220 Lecture Notes
Pipelining

24© 2005 by Sorin, Roth, Hill, Wood, 
Sohi, Smith, Vijaykumar, Lipasti

Implementing Bypassing

• first, detect bypass opportunity
• tag compares in D/X latch
• similar to but separate from stall logic in F/D latch

• then, control bypass MUX
• if rs2(X) == rd(X/M) then ALUOUT(M)
• else if rs2(X) == rd(M/W) then ALUOUT(W)

D$

regfile

M WX

D/X X/M M/W
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Pipeline Diagrams with Bypassing

• even with full bypassing, not all RAW stalls can be avoided
• example: load to ALU in consecutive cycles

1 2 3 4 5 6 7 8 9 10 11
add R1,R5,R3 F D X M W
sub R2,R4,R1 F D X M W example 1

1 2 3 4 5 6 7 8 9 10 11
load R1,24(R5) F D X M W
add R3,R6,R7 F D X M W
sub R2,R4,R1 F D X M W example 2

1 2 3 4 5 6 7 8 9 10 11
load R1,24(R5) F D X M W
sub R2,R4,R1 F D d* X M W example 3
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before
load R2, b
load R3, c
add R1, R2, R3 //stall
store R1, a
load R5, e
load R6, f
sub R4, R5, R6 // stall
store R4, d

Pipeline Scheduling
compiler schedules (moves) instructions to reduce stall

• eliminate back-to-back load-ALU scenarios
• example code sequence   a = b + c; d = e - f

after 
load R2, b
load R3, c
load R5, e
add R1, R2, R3 // no stall
load R6, f
store R1, a
sub R4, R5, R6 // no stall
store Rd, d

ECE 252 / CPS 220 Lecture Notes
Pipelining

27© 2005 by Sorin, Roth, Hill, Wood, 
Sohi, Smith, Vijaykumar, Lipasti

WAR: Write After Read
write-after-read (WAR) = artificial (name) dependence

add R1, R2, R3
sub R2, R4, R1
or R1, R6, R3

• problem: add could use wrong value for R2
• can’t happen in vanilla pipeline (reads in ID, writes in WB)

• can happen if: early writes (e.g., auto-increment) + late reads (??)
• can happen if: out-of-order reads (e.g., out-of-order execution)

• artificial: using different output register for sub would solve
• The dependence is on the name R2, but not on actual dataflow
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WAW: Write After Write
write-after-write (WAW) = artificial (name) dependence
add R1,R2,R3
sub R2,R4,R1
or R1,R6,R3

• problem: reordering could leave wrong value in R1
• later instruction that reads R1 would get wrong value

• can’t happen in vanilla pipeline (register writes are in order)
• another reason for making ALU ops go through MEM stage
• can happen: multi-cycle operations (e.g., FP, cache misses)

• artificial: using different output register for or would solve
• Also a dependence on a name: R1
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RAR: Read After Read
read-after-read (RAR)

add R1, R2, R3
sub R2, R4, R1
or R1, R6, R3

• no problem: R3 is correct even with reordering
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Memory Data Hazards
have seen register hazards, can also have memory hazards

RAW
store R1,0(SP)
load R4,0(SP)

WAR
load R4,0(SP)
store R1,0(SP)

WAW
store R1,0(SP)
store R4,0(SP)

• in simple pipeline, memory hazards are easy
• in-order
• one at a time
• read & write in same stage

• in general, though, more difficult than register hazards

1 2 3 4 5 6 7 8 9
store R1,0(SP) F D X M W
load R1,0(SP) F D X M W
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Hazards vs. Dependences
dependence: fixed property of instruction stream (i.e., program)

hazard: property of program and processor organization
• implies potential for executing things in wrong order

• potential only exists if instructions can be simultaneously “in-flight”
• property of dynamic distance between instrs vs. pipeline depth 

For example, can have RAW dependence with or without hazard
• depends on pipeline
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Control Hazards
when an instruction affects which instruction executes next
store R4,0(R5)
bne R2,R3,loop
sub R1,R6,R3

• naive solution: stall until outcome is available (end of EX)
+ simple
– low performance (2 cycles here, longer in general) 
• e.g. 15% branches * 2 cycle stall ⇒ 30% CPI increase! 

1 2 3 4 5 6 7 8 9
store R4,0(R5) F D X M W
bne R2,R3,loop F D X M W
?? c* c* F D X M W
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Control Hazards: “Fast” Branches
fast branches: can be evaluated in ID (rather than EX)

+ reduce stall from 2 cycles to 1

– requires more hardware 
• dedicated ID adder for (PC + immediate) targets

– requires simple branch instructions
• no time to compare two registers (would need full ALU)
• comparisons with 0 are fast (beqz, bnez)

1 2 3 4 5 6 7 8 9
sw R4,0(R5) F D X M W
bne R2,R3,loop F D X M W
?? c* F D X M W
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Control Hazards: Delayed Branches
delayed branch: execute next instruction whether taken or not

• instruction after branch said to be in “delay slot” 
• old microcode trick stolen by RISC (MIPS)

store R4,0(R5)
bne R2,R3,loop
sub R1,R6,R6

bned R2,R3,loop
store R4,0(R5)
sub R1,R6,R6

1 2 3 4 5 6 7 8 9
bned R2,R3,loop F D X M W
store R4,0(R5) F D X M W
sub R1,R6,R6 c* F D X M W
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What To Put In Delay Slot?
• instruction from before branch

• when? if branch and instruction are independent
• helps? always

• instruction from target (taken) path
• when? if safe to execute, but may have to duplicate code
• helps? on taken branch, but may increase code size

• instruction from fall-through (not-taken) path
• when? if safe to execute
• helps? on not-taken branch

• upshot: short-sighted ISA feature
– not a big win for today’s machines (why? consider pipeline depth)
– complicates interrupt handling (later)
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Control Hazards: Speculative Execution
idea: doing anything is better than waiting around doing nothing

• speculative execution
• guess branch target ⇒ start executing at guessed position
• execute branch ⇒ verify (check) guess
+ minimize penalty if guess is right (to zero?)
– wrong guess could be worse than not guessing

• branch prediction: guessing the branch
• one of the “important” problems in computer architecture
• very heavily researched area in last 15 years
• static: prediction by compiler
• dynamic: prediction by hardware
• hybrid: compiler hints to hardware predictor
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The Speculation Game
speculation: engagment in risky business transactions on the 
chance of quick or considerable profit

• speculative execution (control speculation)
• execute before all parameters known with certainty

+ correct speculation
+ avoid stall/get result early,  performance improves

– incorrect speculation (mis-speculation)
– must abort/squash incorrect instructions
– must undo incorrect changes (recover pre-speculation state)

• the speculation game: profit > penalty
• profit = speculation accuracy * correct-speculation gain 
• penalty = (1–speculation accuracy) * mis-speculation penalty
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Speculative Execution Scenarios
1 2 3 4 5

inst0/B F D X M W
inst8 F D X M
inst9 F D X
inst10 F D

1 2 3 4 5
inst0/B F D X M W
inst1 F D
inst2 F
inst8 verify/flush F D

• correct speculation
• cycle1: fetch branch, predict next (inst8)
• c2, c3: fetch inst8, inst9
• c3: execute/verify branch ⇒ correct 
• nothing needs to be fixed or changed

• incorrect speculation: mis-speculation
• c1: fetch branch, predict next (inst1)
• c2, c3: fetch inst1, inst2
• c3: execute/verify branch ⇒ wrong
• c3: send correct target to IF (inst8)
• c3: squash (abort) inst1, inst2 (flush F/D)
• c4: fetch inst8
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Static (Compiler) Branch Prediction
Some static prediction options

• predict always not-taken
+ very simple, since we already know the target (PC+4)
– most branches (~65%) are taken (why?)

• predict always taken
+ better performance
– more difficult, must know target before branch is decoded

• predict backward taken
• most backward branches are taken

• predict specific opcodes taken
• use profiles to predict on per-static branch basis

• pretty good
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Comparison of Some Static Schemes
CPI-penalty = %branch * [(%T * penaltyT) + (%NT * penaltyNT)]

• simple branch statistics
• 14% PC-changing instructions (“branches”)
• 65% of PC-changing instructions are “taken”

scheme penaltyT penaltyNT CPI penalty
stall 2 2 0.28

fast branch 1 1 0.14
delayed branch 1.5 1.5 0.21

not-taken 2 0 0.18
taken 0 2 0.10
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Dynamic Branch Prediction

hardware (BP) guesses whether and where a branch will go
0x64    bnez r1,#10
0x74    add r3,r2,r1

• start with branch PC (0x64) and produce
• direction (Taken)
• direction + target PC (0x74)
• direction + target PC + target instruction (add r3, r2,r1)

I$
D$

regfile

DF M WX

F/D D/X X/M M/WPC

BP
I$
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Branch History Table (BHT)
branch PC ⇒ prediction (T, NT)

– need decoder/adder to compute target if taken
• branch history table (BHT)

• read prediction with least significant bits (LSBs) of branch PC
• change bit on misprediction
+ simple
– multiple PCs may map to same bit (aliasing)

• major improvements
• two-bit counters [Smith]
• correlating/two-level predictors [Patt]
• hybrid predictors [McFarling]

branch PC

BHT
1
0
1

T/N
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Improvement: Two-bit Counters
example: 4-iteration inner loop branch

– problem: two mis-predictions per loop
• solution: 2-bit saturating counter to implement hysteresis

• 4 states: strong/weak not-taken (N/n), strong/weak taken (T/t)
• transitions: N ⇔ n ⇔ t ⇔ T

+ only one mis-prediction per iteration

state/prediction N T T T N T T T N T T T
branch outcome T T T N T T T N T T T N
mis-prediction? * * * * * *

state/prediction n t T T t T T T t T T T
branch outcome T T T N T T T N T T T N
mis-prediction? * *  *  *
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Improvement: Correlating Predictors
different branches may be correlated

• outcome of branch depends on outcome of other branches
• makes intuitive sense (programs are written this way)

• e.g., if the first two conditions are true, then third is false
if (aa == 2) aa = 0;
if (bb == 2) bb = 0;
if (aa != bb) { . . . }
 

revelation: prediction = f(branch PC, recent branch outcomes)
• revolution: BP accuracies increased dramatically
• lots of reseach in designing that function for best BP
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Correlating (Two-Level) Predictors
• branch history shift register (BHR) holds recent outcomes

• combination of PC and BHR accesses BHT
• basically, multiple predictions per branch, choose based on history

design space
• number of BHRs

• multiple BHRs (“local”, Intel)
• 1 global BHR (“global”, everyone else)

• PC/BHR overlap
• full, partial, none (concatenated?)

• popular design: Gshare [McFarling]
• 1 global BHR, full overlap, f = XOR

branch PC

f

BHT

BHR

T/N
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Correlating Predictor Example
• example with alternating T,N  (1-bit BHT, no correlation)

• add 1 1-bit BHR, concatenate with PC
• effectively, two predictors per PC
• top (BHR=N) bottom (BHR=T) active entry

state/prediction N T N T N T N T N T N T
branch outcome T N T N T N T N T N T N
mis-prediction? * * * * * * * * * * * *

state/prediction N
N

T
N

T
N

T
N

T
N

T
N

T
N

T
N

T
N

T
N

T
N

T
N

branch outcome T N T N T N T N T N T N
mis-prediction? *
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Hybrid/Competitive/Tournament Predictors
observation: different schemes work better for different branches

idea: multiple predictors, choose on per static-branch basis

mechanics
• two (or more) predictors
• chooser

• if chosen predictor is wrong...
• ...and other is right...
• ...flip chooser

• popular design: Gselect [McFarling]
• Gshare + 2-bit saturating counter BHR

branch PC

f

ch
oo

se
r

pr
ed

ic
to

r 1

pr
ed

ic
to

r 2
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Branch Target Buffer (BTB)
branch PC ⇒ target PC

• target PC available at end of IF stage
+ no bubble for correct predictions

• branch target buffer (BTB)
• index: branch PC
• data: target PC (+ T/NT?)
• tags: branch PC (why are tags needed here and not in BHT?)
– many more bits per entry than BHT
• considerations: combine with I-cache? store not-taken branches?

• branch target cache (BTC)
• data: target PC + target instruction(s)
• enables “branch folding” optimization (branch removed from pipe)
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Jump Prediction
exploit behavior of different kinds of jumps to improve prediction

• function returns
• use hardware return address stack (RAS)
• call pushes return address on top of RAS
• for return, predict address at top of RAS and pop
– trouble: must manage speculatively

• indirect jumps (switches, virtual functions)
• more than one taken target per jump
• path-based BTB [Driesen+Holzle]
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Branch Issues
issue1: how do we know at IF which instructions are branches?

• BTB: don’t need to “know” 
• check every instruction: BTB entry ⇒ instruction is a branch

issue2: BHR (RAS) depend on branch (call) history
• when are these updated?

• at WB is too late (if another branch is in-flight)
• at IF (after prediction)  
• must be able to recover BHR (RAS) on mis-speculation (nasty)
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Adding Multi-Cycle Operations
RISC tenet #1: “single-cycle operations”

• why was this such a big deal?
• fact: not all operations complete in 1 cycle

• FP add, int/FP multiply: 2–4 cycles, int/FP divide: 20–50 cycles
• data cache misses: 10–150 cycles!

• slow clock cycle down to slowest operation?
– can’t without incurring huge performance loss

• solution: extend pipeline - add pipeline stages to EX
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Extended Pipeline

• separate integer/FP, pipe register files
• loads/stores in integer pipeline only (why?)

• additional, parallel functional units
• E+: FP adder (2 cycles, pipelined)
• E*: FP/integer multiplier (4 cycles, pipelined)
• E/: FP/integer divider (20 cycles, not pipelined)

I$

int RF

D
F

M WX
F/D

D/X X/M M/W
PC D$

FP RF
W

FP+ FP+
E+
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Multi-Cycle Example

• write-after-write (WAW) hazards
• register write port structural hazards
• functional unit structural hazards
• elongated read-after-write (RAW) hazards

1 2 3 4 5 6 7 8 9 10
divf f0,f1,f2 F D E/ E/ E/ E/ W
mulf f0,f3,f4 F D E* E* W
addf f5,f6,f7 F D E+ E+ W
subf f8,f6,f7 F D * E+ E+ W
mulf f9,f8,f7 F D * * E* E*
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Another Multi-Cycle Example
example: SAXPY (math kernel)
Z[i] = A*X[i] + Y[i]  // single precision

1 2 3 4 5 6 7 8 9 10
ldf f2,0(r1) F D X M W
mulf f6,f0,f2 F D d* E* E* E* E* W
ldf f4,0(r2) F p* D X M W
addf f8,f6,f4 F D d* d* E+ E+ W
stf f8,0(r3) F p* p* D X M W
add r1,r1,#4 F D X M W
add r2,r2,#4 F D X M W
add r3,r3,#4 F D X M W

f6
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Register Write Port Structural Hazards
where are these resolved?

• multiple writeback ports?
– not a good idea (why not?)

• in ID?
• reserve writeback slot in ID (writeback reservation bits)
+ simple, keeps stall logic localized to ID stage
– won’t work for cache misses (why not?)

• in MEM?
+ works for cache misses, better utilization
– two stall controls (F/D and M/W) must be synchronized

• in general: cache misses are hard
• don’t know in ID whether they will happen early enough (in ID) 
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WAW Hazards
how are these dealt with?

• stall younger instruction writeback?
+ intuitive, simpler
– lower performance (cascading writeback structural hazards)

• abort (don’t do) older instruction writeback?
+ no performance loss
– but what if intermediate instruction causes an interrupt (next)
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Dealing With Interrupts
interrupts (aka faults, exceptions, traps)

• e.g., arithmetic overflow, divide by zero, protection violation
• e.g., I/O device request, OS call, page fault

classifying interrupts
• terminal (fatal) vs. restartable (control returned to program)
• synchronous (internal) vs. asynchronous (external)
• user vs. coerced
• maskable (ignorable) vs. non-maskable
• between instructions vs. within instruction
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Precise Interrupts             
“unobserved system can exist in any intermediate state, upon 
observation system collapses to well-defined state”

–2nd postulate of quantum mechanics

• system ⇒ processor, observation ⇒ interrupt

what is the “well-defined” state?
• von Neumann: “sequential, instruction atomic execution” 
• precise state at interrupt

• all instructions older than interrupt are complete
• all instructions younger than interrupt haven’t started

• implies interrupts are taken in program order
• necessary for VM (why?), “highly recommended” by IEEE
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Interrupt Example: Data Page Fault

• squash (effects of) younger instructions
• inject fake TRAP instruction into IF
• from here, like a SYSCALL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
inst0 F D X M W
inst1 F D X M  page fault
inst2 F D X
inst3 F D restart faulting instruction
inst4 F
TRAP F D X M W
trap0 flush EX, ID,IF F D X M W
inst1 inject TRAP instr OS trap handler F D X M
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More Interrupts
• interrupts can occur at different stages

• IF, MEM: page fault, misaligned data, protection violation
• ID: illegal/privileged instruction
• EX: arithmetic exception

• too complicated to draw what goes on here
• cycle2: instruction page fault, flush inst1, inject TRAP
• c4: data page fault, flush inst0, inst1, TRAP
– can get into an infinite loop here (with help of OS page placement)

1 2 3 4 5 6 7 8 9
inst0 F D X M W data page fault
inst1 F D X M W instruction page fault
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Posted Interrupts
posted interrupts

• set interrupt bit when condition is raised
• check interrupt bit (potentially “take” interrupt) in WB

+ interrupts are taken in order
– longer latency, more complex

• what happens now?
• c2: set inst1 bit
• c4: set inst0 bit
• c5: take inst0 interrupt

1 2 3 4 5 6 7 8 9
inst0 F D X M W data page fault
inst1 F D X M W instruction page fault

ECE 252 / CPS 220 Lecture Notes
Pipelining

62© 2005 by Sorin, Roth, Hill, Wood, 
Sohi, Smith, Vijaykumar, Lipasti

Interrupts and Multi-Cycle Operations

multi-cycle operations + precise state = trouble
• #1: how to undo early writes?

• e.g., must make it seem as if mulf hasn’t executed
• undo writes: future file, history file  -> ugly!

• #2: how to take interrupts in-order if WB is not in-order?
• force in-order WB
– slow

1 2 3 4 5 6 7 8 9 10 11
divf f0,f1,f2 F D E/ E/ E/ E/ W div by 0 (posted)
mulf f3,f4,f5 F D E* E* W
addf f6,f7,f8 F D E+ E+ s* W
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Interrupts Are Nasty
• odd bits of state must be precise (e.g., CC)
• delayed branches

• what if instruction in delay slot takes an interrupt?

• modes with early-writes (e.g., auto-increment)
• must undo write (e.g., future-file, history-file)

• some machines had precise interrupts only in integer pipe
• sufficient for implementing VM
• e.g., VAX/Alpha

Lucky for us, there’s a nice, clean way to handle precise state
• We’ll see how this is done in a couple of lectures ...
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Summary
• principles of pipelining

• pipeline depth: clock rate vs. number of stalls (CPI)

• hazards
• structural
• data (RAW, WAR, WAW)
• control

• multi-cycle operations
• structural hazards, WAW hazards

• interrupts
• precise state

next up: dynamic ILP (chapter 3)


