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ABSTRACT:

In one hand, the Model Reference Adaptive Control (MRAC) architecture has been 
widely used in linear adaptive control field. The control objective is to adjust the 
control signal in a stable manner so that the plant’s output asymptotically tracks the 
reference model’s output. The performance will depend on the choice of a suitable 
reference model and the derivation of an appropriate learning scheme.  
 While in the other hand, clusters analysis has been employed for many years in the 
field of pattern recognition and image processing. To be used in control the aim is 
being to find natural groupings among a set of collected data. The mean-tracking 
clustering algorithm is going to be used in order to extract the input-output pattern of 
rules from applying the suggested MRAC scheme. These rules will be learnt later 
using the widely used Multi-layer perceptron neural network to gain all the benefits 
offered by those nets. 
 A hierarchical MRAC based Neuro-controller is suggested to control robots in a 
flexible manufacturing system. This proposed controller will be judged for different 
simulated cases of study to demonstrate its capability in dealing with such a system. 
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1.  INTRODUCTION: 
 
Recently, low cost, small and middle production is made possible by a flexible 

manufacturing system (FMS). Flexible manufacturing systems represent efficiently 
grouped machine tools linked together for batch processing. The FMS consists of 
work cells, each cell is responsible of producing a group of parts with similar 
production processes [1-2]. FMS is designed to accept raw materials at its input and 
automatically processes these raw materials into a certain product, which will be 
delivered at its output. The manufacturing process of these materials may take place 
on different work cells. Hence the capability and throughput of these systems are 
affected by the efficiency of the robots that move the product to and from these work 
cells. Moreover, inside each cell several machines may share to complete the 
manufacturing process [3]. In this case, the robot will play an important role in 
delivery, disposal and transport systems between cells and machines inside each 
cell.  
 The dynamic equations of the robot are a set of highly nonlinear differential 
equations.  Therefore, the movement of the end effecter in a particular trajectory 
requires an efficient controller, which generates control signals applied by the robot 
joint actuators. There are many control strategies that can be applied to control robot 
joints. The traditional linear controllers cannot effectively control the motion of the 
robot. A controller based on the theory of the nonlinear control is suitable for the 
robot control [4]. Unfortunately, such controllers are not suitable for real-time 
applications. This leads to think about controllers with intelligent capabilities to control 
the robot's operations in uncertain environments. 
 There are several types of control algorithms that can be used for joint control of the 
robot. Some of these use classical controllers, such as proportional-integral-
derivative (PID) [5] and adaptive controllers [6-7], others use intelligent controllers 
based on neural nets [8-9] and/or fuzzy logic [10-11]. Conventional PID controller is 
still widely used in robotics. The performance of such a controller is not optimal and 
its parameters require readjustment, since the joint parameters are varying with time. 
Several tuning methods [12] have been published to obtain the controller parameters; 
however, most of these methods require the mathematical model of the robot. The 
nonlinear dynamic interactions of the robot joints are effectively minimized by 
applying sliding mode controllers [13]. Such a controller requires prior information 
about the robot parameters.  
 This papers deals with design and implementation of a neuro controller extracted 
from model reference adaptive controller (MRAC). The resultant functional controller 
is built based on the rules derived from applying a certain correcting formula to drift 
the system to behave as close as possible to the selected model. This can be applied 
to any joint in the manufacturing system, which represents the control activity in 
hierarchical control in order to make it suitable for real-time applications. The 
proposed controller will improve the system performance by distributing the control 
tasks on multilevels.  
 

2. HIERARCHICAL CONTROL ARCHITECTURE: 
 
In our previous work [2-3], the design and implementation of a hierarchical rout 

planner for FMS were proposed, as illustrated in Fig.1. The aim of the FMS rout 
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planner is to obtain the optimal manufacturing routes for jobs according to well-
designed cost function. The sequencing and monitoring module will monitor the 
competitive jobs to use the manufacturing cells and the required machines and 
robots. Also, this module can discover the abnormal conditions in the system and 
generates feedback signals to the route planner to modify the old manufacturing 
routes to avoid the problems that may occur. 
 For an FMS, several tasks of measurement, control, planning, operator 
communications, etc. can be distributed among a number of computers linked 
together and configured in a hierarchical structure. For the proposed system, given in 
Fig.2, five levels are recommended, these are; 
• Measurement and actuation level: It provides on-line measurement and actuation 

database for the whole system. 
• Control calculations level: It generates the required control signal for each joint. 
• Controller parameters tuning level: It updates the controller parameters according 

to the actual behavior of the joint and the required trajectory. 
• Robot trajectory planning level: determines the input commands for each joint 

according to the robot trajectory. 
• Planning and sequencing level: It obtains the optimal manufacturing routs for 

jobs, and then selects the required manufacturing cells, machines and robots. 
This architecture has several features, such as: 
- Information abstraction. 
- Balancing precision with complexity. 
- Multiple time scale operations. 
 It is assumed that the higher levels in the hierarchy, that is planning and sequencing, 
deal with a more abstract view of the control problem and do so in less precise terms. 
Moreover, the action-taking place at the higher levels affects the behavior of the 
system over a longer time span whereas the lower levels in the hierarchy operate on 
a faster time scale.  
 Fig.3 outlines the general layout of a robot system. It consists of a manipulator, and 
an input/output interface. A feedback interface is required to convert the position 
sensor signal of each joint into a digital code. The actuating signal generated by the 
control algorithm is loaded to the actuator of each joint through a feedforward 
interface. 
 

3. MODEL REFERENCE ADAPTIVE CONTROL: 
 The MRAC architecture has been widely used in the linear adaptive control field as 
shown in Fig.4 The control objective is to adjust the control signal in a stable manner 
so that the plant’s output y(t), asymptotically tracks the reference model’s output 
y m (t). The performance of this algorithm depends on the choice of a suitable 
reference model and the derivation of an appropriate learning mechanism. 
Researchers in the sixties found that simple gradient-based learning rules were 
sometimes insufficient and there is no reason why this should not also be the case 
for more general nonlinear plant models and controllers [14, 15, 16].  
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4. CONTROL STRATEGY: 
 
The main function of the learning algorithm is to obtain the correct control signal (ud) 

corresponding to the desired output yd . The error (eL), called the learning error and 
defined as the difference between the desired response ( yd ) and the measured 
process output (y), is used as a learning signal. It is expected that the learning error 
(eL ) will asymptotically approach zero, or a predefined small region, with increasing 
number of trials. The proposed learning scheme is as shown in Fig.5. 
 
5. LEARNING ALGORITHM: 
 
The object of the learning control is to determine the control input u td ( ) by repetitive 

trial such that the error asymptotically tends to zero, or a prespecified small value, in 
the time interval of interest. The following Error and Derivative Correction learning 
algorithm is proposed; 

u t u t Pe t Q e tk k Lk Lk+

⋅
= + + + +1 ( ) ( ) ( ) ( )λ λ … (1) 

 
Where k denotes the instant number, λ is the time advances and p, q are learning 
gains. 
 It is noted that the error between the step command signal SP (t) and the controlled 
output y(t) cannot be used as a learning basis because such a learning objective 
(step output) is clearly unrealistic. Therefore, a reference model is introduced which 
specifies an achievable performance one would like to attain. Then, the learning error 
(eL ) is used as a learning signal; see Fig.5. Equation (1) is used throughout the 
simulation for SISO, P and Q are just scalar gains. 
The main bottlenecks of this algorithm reside in choosing a suitable reference model 
and the time-consuming trail and error procedure in finding the suitable settings of 
the learning gains. The reader is referred to [17] for complete derivations of the 
previously discussed learning control algorithms. 

 
6. NEURO CONTROLLER DESIGN: 
 
6.1 Mean-Tracking Algorithm: 
 
Clusters analysis has been employed for many years in the field of pattern 

recognition and image processing, the aim is being to find natural groupings among a 
set of collected data. A main problem always is the question of how many clusters 
there should be within a set of collected data. In practice, however, the number of 
clusters is problem dependent. The mean-tracking clustering algorithm was derived 
with the intention of dealing efficiently with operating data collected from high speed 
production machinery, the data is in the form of variable information taken from 
sensors in the plant, i.e.; variables such as speed, tension, temperature. In this case 
data is plotted in an n-dimensional space, each data point in the space corresponds 
to the machine state at a particular instant of time. Natural clusters of data points are 
then formed; all of the points within a cluster depict similar operating conditions to 
other points within that cluster. The center of gravity of the search data is then found 
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by finding the mean value of all the points, which lie within the same cluster [18], see 
Fig.6 for description. In the proposed functional neuro-fuzzy controller the controlled 
data, input-output variables, are collected and clustered based on fuzzy-number 
using mean-tracking algorithm. 
 
6.2 The Implemented Controller: 
 
Depending on the methods for converting qualitative / linguistic labels into 

quantitative / numerical values, the structures of the resulting controllers are 
significantly different. Three possible controller input modes can be defined as in the 
following vectors:   
 
Z=[ , , ..... , ]e ce e ce e cem m m m m T m T1 1 2 2 … (2) 

Z= [ , ,..... , ]e se e se e sem m m m mT mT1 1 2 2 … (3) 

Z=[ , ,....., ]e ce se e ce se e ce sem m m m m m mT mT mT1 1 1 2 2 2 … (4) 
 

Where em, cem and sem are the measured error, change of error and sum of error. 
The three input types determined by the above representations (2, 3, 4) are called 
EC, ES, and ECS respectively. It is noted that they are analogous to classical PD, PI, 
and PID controllers respectively. 
 By explicitly embedding the meaning of the linguistic labels, the control jth rule can 
be written as: 
 
IFemis [C ej m( ),δj me( )] AND e m is [C cej m( ),δj mce( )] THEN u is [C uj( ), δj u( )]….            (5) 
 
Whereδ j me( ) , δ j mce( )  is the input width for error and change-in-error respectively 

with centers C ej m( )andC cej m( ), while δj u( ) is the width of the control action with 

centerC uj( ).
Now, it is possible to teach an NN with only the central value vectors, i.e; the 

previous j th  linguistic rules becomes: 
 
IF C ej m( )  AND C cej m( )  THEN C uj( )  …                                                               (6) 

 
While leaving the width vectors implicitly treated. One may ask how the fuzzy 
concept is handled in such paradigm. The answer as concluded before is that the NN 
inherently possesses some fuzziness, which is exhibited in the form of interpolation 
over new situations. 
 The clustering criterion based on mean-tracking algorithm using fuzzy number can 
be done over the vectors defined by equations(2, 3, 4) along with their corresponding 
control action (u) to get the centers of those variables to be learned using BNN of a 
structure shown in Fig.7. An ECS controller mode of clustered training vectors, 
conducted from controlling a process using the MRAC system are used to learn BNN 
of Fig.7. 
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The functional neuro-controller of figure 7 has many advantages over that of MRAC 
that can be summarized as follows: 
1- the size of the controller architecture decreases dramatically to offer less storage 

memory, less computations time and less fuzziness. Thus more efficient controller 
is available also a less cost hardware controller, if needed, can be easily achieved. 

2- more robust controller is obtained as will be verified in the simulation results. 
 
7. SIMULATION RESULTS: 
 
A robot model of an open loop type 0 second order transfer function: 

 
G(s) = 1/ s2 + 7.5s + 0.09… (7) 

 
Is taken to be control using the proposed control scheme. The closed loop response 

to a unit step change in input shows the sluggish over damped behavior of the 
system since it has low gain with a high damping ratio; moreover steady state error is 
detected. Thus the need is raised to include the effect of proportional, derivative and 
integral actions (ECS) type.  
 Model reference of: 
 
Gm(s) = 5.4/ s2+5.4s +5.4… (8) 

 
Is chosen, after many trials, so that the robot system dynamic can follow such model 

with an applicable control action values. Applying equation (1) with gains p=1.0 and 
q=0.0, the required data for unit step change in input with sampling time of 0.1 sec. 
have been collected in the short-term memory to be used later. 
 Using these input-output data, 17-extracted rules are obtained as shown in Table.1, 
using the following clusters: 
 
em = 0.0 to 1.0 step 0.15 
cem = -0.85 to 0.0 step 0.15…                                                                (9) 
sem = 1.0 to 9.5 step 1.5 

 
It is important to state here that since the integral action has been included by the 

accumulation in control signal, thus the sum of error will be of no use and it is added 
just to keep the notation of its existence. 
 Applying the error back-propagation learning algorithm with the following 
characteristics: 
 Topology: 3-node input layer, 12-node tansh nonlinear hidden layer, 1-node linear 
output layer. 
 Parameters setting: random initial weights of values between -0.5 to 0.5, 
steepness=1.0, threshold=1.0, learning rate=0.1, momentum term=0.0 and a 
stopping criterion of 0.01.  
Convergence has been reached after 1645 iteration to give final weights set which is 
inherently representing the controller behavior.  
Fig.8 illustrates the two controlled responses of that conventional PID and neuro 
controllers along with that of uncontrolled one. The superiority of the neuro controller 
can be detected directly. 
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Many simulation tests have been achieved as well to verify the proposed controller 
capabilities as below: 
. Robustness test: applying a disturbance of 20% of input value at steady state will 
not drift the controlled response into instability but to a slight acceptable steady state 
error of 0.037 value, which is within the tolerance band as shown in Fig.9. While 
Fig.10 illustrates the stand still controlled response if a time delay of 1 sec is 
occurred initially. 
. Tracking ability: Although the controller is extracted based on the unit step change 
in input, the generalization feature offered by neural networks gives the advantage of 
the ability to follow another input signal successfully. This is clearly shown in figures 
11 and 12, which illustrate the good tracking ability to both square, and staircase 
waves respectively.  

8. CONCLUSIONS: 
 Many concluded points of high importance can be declared as follows: 
- The complexity of MRAC is in choosing the appropriate model, which the 

underlying controlled system must follow. 
- Suitable BNN parameters setting and topology are of high importance to gain fast 

convergence. Unfortunately there is no specified setting criterion, thus a trial and 
error procedure is applied.   

- Representation of the input-output data achieved by using the mean-tracking 
algorithm is found to produce a robust functional neuro controller. 

- The number of the extracted centers should be chosen neither large that gives a 
meaningless use of the clustering criterion nor so small that yields a bad 
representation of the original data. 

- Generalization feature offered by neural networks gives the flexibility and 
adaptivity to use the resultant controller in many applications. 

- A hardware form of the neuro controller can be easily achieved since it will be of 
small size and low cost. 

 

Fig.1. System organization   Fig. 2. Hierarchical architecture 
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Fig. 4. Model reference control architecture
 

Fig.3. Robot system layout 
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Fig. 5. Block diagram of the    
 proposed MRAC system       

Fig.6. The mean-tracking 
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Center of 
em

Center of 
cem

Center of 
sem

Center of 
control 
action 

1 0 1 6.484656 
1 -0.25 2.5 6.291598 
1 -0.55 2.5 6.021482 

0.9 -0.85 4 5.814579 
0.75 -0.85 4 5.65887 
0.6 -0.85 5.5 4.701158 

0.45 -0.7 7 3.688067 
0.45 -0.55 7 2.936129 
0.3 -0.55 7 2.737491 
0.3 -0.4 7 2.235832 
0.3 -0.4 8.5 2.091233 

0.15 -0.4 8.5 1.696041 
0.15 -0.25 8.5 1.271224 
0.15 -0.1 8.5 0.805575 

0 -0.1 8.5 0.382604 
0 -0.1 9.5 0.116563 
0 0 9.5 0.090025 

Table 1. ECS clustered training vector of  
17 rules is used to train the BNN of figure 7 
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Fig.8. Comparisons between responses 
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Fig.9. Effect of disturbance on the controlled response 
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Fig.10. Effect of time delay on  
 the controlled response 
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