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ABSTRACT 
 

The paper presents the design and evaluation of an Active 
Router (AR) architecture, which provides flexibility for 
the development of future network services. The hardware 
is based on a personal computer with 2GHz, Intel P4 
processor. The designed AR depends on the use of 
Windows OS, enhancing the Active Network 
Encapsulation Protocol (ANEP) and the efficient use of 
C++ programming. Windows OS and C++ language are 
rarely used in such projects due to complexity of kernel-
mode and network-oriented programming requirements. 
Enhancing ANEP gains novel service composition 
scheme. Finally, the success of the AR architecture and 
prototype implementation is evaluated by means of a 
practical application.  
 
Index Terms—  Active Network, Programmable Network, 
Active Router, Programmable Router, IM Driver. 
 

1.  INTRODUCTION 
 
Traditional packet-switched networks, or exactly 
intermediate nodes, perform only the processing necessary 
to forward packets towards their destination. Over time, 
more and more functionality is being deployed inside the 
network, in an effort to provide better services to users[1]. 
For example, firewalls at the border routers (gateways) for 
security purposes[2] and network caching as a mechanism 
to reduce network load[3]. The need for qualitatively 
better communication mechanisms for real-time traffic has 
led to the investigation of Quality-of-Service (QoS) 
mechanisms for the Internet. Most of these network-side 
services are implemented as individual ad-hoc extensions. 
However, the network provides no architectural support 
for flexible extensibility [1].  

Wetherall and Tennenhouse [4] have first pursued the 
idea of placing program fragments into IP packets as part 
of the ActiveIP project. Initially, they studied the potential 
of placing small programs within the option fields of IP 
packets. These so-called active options, encoded in Tcl 
language in their prototype implementation, were executed 
by modified network nodes as the packets traversed the 
network.  SwitchWare Active Network Architecture [5] 
consists of three layers: active packets, active extensions 

and a secure active router infrastructure. Active packets carry 
programs consisting of code and data to replace both the 
header and payload of traditional packets.  

Active Node Transfer System (ANTS) provides a capsule 
programming model[6]. Capsules are packets that encapsulate 
data with a customized forwarding code. Applications use the 
network by sending and receiving capsules via active nodes. 
When a capsule arrives at an active node, the corresponding 
routine is executed to forward the capsule. The demand-pull 
mechanism is used to obtain code from the previous node that 
the capsule visited. The ANTS prototype is implemented in 
Java under UNIX operating system. 

The Smart Packets project [7] emphasizes at addressing 
problems that are inherent in typical polled managed devices 
rather than aiming for general transport mechanisms such as 
ANTS. Smart packets are encapsulated within ANEP packets 
and ANEP packets are encapsulated within an IP packet using 
a specific option (router alert). The Smart Packets architecture 
expects all programs to fit within one Ethernet frame. There is 
no existing language that had a compact enough 
representation for Smart Packets environment. As a result, 
Sprocket and Spanner languages are developed as part of the 
Smart Packets project.  

This paper addresses an attempt to investigate a useful 
step towards active network mechanisms that considers 
flexible extensibility through programmability as part of the 
fundamental architectural design.  
 

2.  ACTIVE NETWORK FUNDEMANTELES 
 
A central feature that distinguishes ANs from configurable 
ones is the programming model. A configurable network aims 
to establish a maximal set of high-level features that can be 
configured with a single action, while AN focuses on 
identifying a minimal set of primitives (for example, system 
calls of host operating systems) from which one can compose 
(or program) a broad spectrum of features[1]. By providing a 
programmable interface in network nodes, ANs expose the 
resources and mechanisms for constructing or refining new 
network services from those elements. In short, ANs support 
dynamic modification of the network behavior as seen by the 
user. The scope of network programmability varies from 
control plane to data plane programmability and extends from 
very limited to highly flexible forms depending on the 
programming interface[8]. 
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      Several programming models have been suggested for 
ANs. A common approach is to provide a programmable 
engine at each intermediate node that can be programmed 
on a per-packet basis. Every packet contains in addition to 
the user payload (data) some form of active program that 
is executed on each intermediate node as it traverses the 
network. This is called active packet or in-band approach. 
Another approach in which active programs are loaded 
onto the active nodes in out-of-band fashion, prior to the 
transmission of data packets. This is called active 
extension or out-of-band approach [9].  
 

 

Figure 1.   Active node architecture of DARPA. 
 
2.1   Active Node Architecture 
 
Active network working group at DARPA defines the 
fundamental parts of an active node and how they 
interoperate[10]. The functionality is divided into the 
Active Node Operating System (NodeOS) and the 
Execution Environment (EE). While the NodeOS manages 
access to node local resources and system configurations, 
the EE implements the active network APIs supported by 
the node. Figure 1 shows the envisioned general 
architecture for an Active Network node. Although this 
architectural framework considers only the integrated 
approach, it is considered by many researchers to be a de-
facto standard[9].  
 
2.2 Active Network Encapsulation Protocol (ANEP) 
 
The ANEP document specifies a mechanism for 
encapsulating AN frames for transmission over different 
media[11].  The suggested format allows use of an 
existing network infrastructure (such as IPv4 or IPv6) or 
transmission over the link layer.  This mechanism allows 
co-existence of different execution environments and 
proper demultiplexing of received packets. The program is 
executed by a receiving node in the environment specified 
by the ANEP.  The format of the ANEP header is: 

 

The version described by this document is 1. Only the most 
significant bit in the flags field is used. If its value is 0, the 
node could try to forward the packet using the default routing 
mechanism (if one is in use), if the necessary information is 
available in the Options part of the header. If the value is 1, 
the node should discard the packet. The ANEP Header Length 
field specifies the length of the ANEP header in 32 bit words. 
The Type ID field indicates the evaluation environment of the 
packet. The active node should evaluate the packet in the 
proper environment. If the value contained in this field is not 
recognized, the node should check the value of the most 
significant bit of the Flags field in deciding how to handle the 
packet.  The ANEP also may contain option field(s). Some 
options are identified by the ANEP document [11] and the 
others are left to the implementer responsibility. 

Figure 2.   Windows OS network architecture. 
 
2.3  Networking Stack in Windows OS 
 
Windows OS network architecture may be imagined as shown 
in Figure 2. Components that contribute the same horizontal 
level, in the figure, provide similar functionality [12]. The 
Windows 2003 network layers are described below from the 
bottom of the network architecture model up to the top.  
Network Driver Interface Specification (NDIS) provides a 
communication path between network adapters and network 
protocols and manages the binding between these 
components. NDIS layer consists of the following [13]: 
- NDIS wrapper represented by the NDIS library (Ndis.sys), 

which exports functions for use by transport protocols and 
adapter drivers.  

- NDIS miniport drivers, which are responsible for 
interfacing transport protocols to particular network 
adapters. 

       According to the designer's requirements, NDIS layer 
may contain one or more NDIS Intermediate (IM) drivers that 
are located between transport drivers and miniport NIC 
drivers to perform additional functionality. 
 

3.  ACTIVE ROUTER ARCHITECTURE 
  
The proposed networking stack model has to be "component-
based" design and not layered. The advantages of component-
based design, namely code modularity, reusability, and 
dynamic composition, facilitate the development and 
deployment of custom network services.  



 
 

Figure 3.   CD and PM units. 
 
Actually, the protocol stacks are replaced by protocol 
components that can be tailored and composed to perform 
application specific functions.                               
      Concerning the Programming Model, active packet 
(in-band) approach in AN tends to be fairly restrictive due 
to the limited programming capabilities. In the other side, 
the active extension (out-of-band) approach often lacks 
adequate service composition capabilities for software 
components. This project resolves these limitations by 
extending the active extension programming model by a 
flexible composition framework for software components.  
NDIS IM driver has been chosen as a base in designing 
the packet interceptor in this project. It is located between 
the LLC and MAC sub layers, and this feature gives IM 
driver a lot of control over network packets, without 
affecting other network protocol stack components. 
Moreover, an IM driver could be layered above or below 
another IM driver without affecting its function. 
 
3.1  Architecture Overview 
 
The architecture of the proposed AN has been divided into 
two functional parts:  
-  the Component Distributor (CD) and 
-  the Packet Manipulator (PM) part.  
The CD concerns the transferring and managing of User 
Components (UCs) from a Privileged End–System (PES) 
or network administrator (ADMN) to the AR. In other 
side, the PM functional part extends the OS networking 
stack such that it can intercept the in-bound packets that 
enter the AR and discriminate among the various types of 
packets. After distinguishing the type, the PM forwards 
the packet to the proper component to be serviced. The 
proposed architecture is designed to extend exiting routers 
by layering active network-specific functionality on top of 
the router operating system. The following sections 
explain the two parts of the proposed AR, as shown in 
Figure 3. 
 
3.2  Component Distributor (CD) 
 
The proposed CD allows the user to load new components 
in the AR. The UC is a program performing either 
protocol processing or value-added function to the packet. 
It is expected that the code of the UC is sent from any 
Privileged-End System (PES) to the Active Router (AR) 
using the CD unit. The end user who send and install a UC 

should be authenticated and authorized to add a UC into the 
router. Also, the code of the UC must be authenticated to 
ensure safe evaluation within the AR execution environment. 
Each UC has its own Component Identifier (CID) which is 
associated with the component during transmission.  
PEU must firstly send the UC (which implements the required 
protocol or service) to the AR to be installed there. Then, 
PEU send his packets (which require active processing) such 
that it refers to the required component using the CID. In this 
manner, the AR will process the received ADPs by the 
indicated UC. To gain a certain active service, the AN user is 
responsible to determine which UCs and in which order they 
must be composed.  
      The proposed scheme of CD is the transfer of the UC to 
router(s) along the path that active packet using the service 
follows. The code is cached at these routers for later use. The 
CD unit provides the capability of packing (if more than one 
UC), and then uploading the UC from a PES to the AR using 
FTP protocol. Furthermore, the CD unit is also responsible 
for controlling (replace or uninstall) the installed UCs 
remotely. The CD unit operates in a client/server fashion. The 
AR represents the server, whereas the PES represents the 
client. Hence, jobs of the CD can be summarized as: packing, 
uploading and controlling the UC. 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Packet manipulator architecture. 
 
3.3  The Packet Manipulator 
 
Certainly, manipulating a network packet demands capturing 
the packet itself. The IM driver has been proposed to be the 
foundation of the Packet Manipulator (PM) architecture. In 
addition to catching a packet, the PM performs a light 
firewalling, lifting the packet from the kernel to the user 
mode, recognizing its type, and finally dispatching the packet 
to the user component that it whishes for processing. 
Consequently, the PM architecture was further divided into 
the following functional units, as shown in Fig.4:  
Packet Interceptor/Injector (PIJ): It provides the interface 
between the active network environment and the data path on 
the router. It is responsible for intercepting the network traffic 
traversing the node and passing it to the active network 
environment for processing. Also, it can re–inject the network 
data back into the default forwarding path on the node or 
sends it directly through one of the outgoing interfaces.  
Packet Filter (PF): This project provides a programmable PF 
on the read handle. The PF actions are: 



- Block: drop the matching packet from the normal 
packet flow. 

- Pass:   allow the matching packet to pass up to the PT 
driver as in the normal flow.  

- Read:  pass a copy of the received packet to the 
packet bridge which is the next unit in the AR. 

Packet Bridge (PB): It is required to transfer network 
data to and from the UC. It is noteworthy to state that the 
PIJ and PF units are placed within the kernel space of the 
proposed AR.  It is suggested to load the UCs in the user 
space of the OS. Accordingly, PB targets the 
transportation of Packets to the user mode to be, then, 
processed by UCs. Also, if required, the PB transport 
packets back to the PIJ to be re–injected into the default 
forwarding path on the node or sent it directly through one 
of the outgoing interfaces.  
Packet Classifier (PC): The object of the PC is the 
discrimination among the various types of packets that 
may pass through the Packet Manipulator (PM). To be 
serviced properly, packets should be firstly classified. To 
clarify the ambiguity that may occur, these different types 
of packets can be categorized into the following: 
Component and Data packets. The designed PC 
distinguishes between these types, and then forwards each 
one to the correct path.  
Packet Dispatcher (PD): It defines the "route" through 
the UC space for the ADPs passing the AR. The PD plays 
a central role in the service composition process. It 
determines, based on the ANEP header, which UC(s) are 
involved and in which order they should process the ADP. 
After the UC(s) finished it's processing on the ADPs, the 
PD returns the packet back to the windows network stack 
through the PB. 
 

0                                       15  16                                            31 
version Flags Component Count (CC) 
ANEP Header Length ANEP Packet Length 

Service Composition (SC) 
options 
payload 

Figure 5.  Format of the proposed ANEP. 
 
 

0                                       15  16                                  31 
1st component ID 2nd component ID 
3rd component ID 

…………………….
.. 

……………..…………
…........... 

Figure 6. Format of "service composition" field. 
 
3.4  Service Composition 
 
The concept of component-based services is envisaged to 
achieve a good flexibility in introducing functionalities for 
the ADPs. This means that we have either multi Execution 
Environment (EE), where each one represents a single 
component, or single EE. In the two assumptions there is a 
limitation in determining which components(s) and in 
what order are appropriate to process the ADPs.          

According to the basic ANEP header, the type ID field in the 
entering ADP can assign only one component to process the 
packet. This is a big restriction. This will restrain the AR to 
be really active and flexible. Furthermore it may weak or omit 
the principal of component-based services in the AR; 
therefore, a proposal is presented below to enhance the 
original ANEP to overcome this limitation. 
 
3.5  Enhancing ANEP 
 
In the proposed ANEP enhancement, the type ID field is used 
to indicate the count of UCs that may be composed to 
introduce the service to the active packet. The Component ID 
(CID) of the component itself is described in a new proposed 
variable-length field called Service Composition (SC) field. It 
is placed after the basic header and before the options field as 
shown in Fig. 5. This new field consists of the CIDs of the 
components that must be composed to create the required 
active service. The order at which the CIDs appear in the 
service composition field is considered as the sequence of the 
components that will be executed in the AR. Using this 
format, the lack of service composition capability in the 
original ANEP can be avoided. For example, when an active 
packet want to be processed by three components; that are 
component 4, 6 and 3, respectively, in such case; the 
Component Count "CC" field would contain the value 3, and 
the SC field will contain the CIDs of components 4, 6, and 3 
respectively. The proposed format of the SC field is shown in 
Fig. 6. As an example, a common service like IPv4 routing 
and forwarding may take 5 or 6 components (according to the 
designer of the components) to perform the packet integrity, 
TTL decrement, CRC calculation, lookup of routing table, 
and finally forwarding to the suitable next hop (or 
destination). Table 1 shows a comparison between the 
original ANEP format and the proposal for enhancing ANEP. 
 
Table 1.  Comparison between ANEP and enhanced ANEP. 

Function Original ANEP ANEP Proposal 
Service 
components 

Single component 
services. 

Single and multi- component 
services 

functionality fair Functionality better Functionality 

Processing 
time 

Require the original 
ANEP processing time 

Require more processing time than 
the original 

Type ID range Wide type ID range. wide type ID range 

Flexibility of 
service 

Services are restricted 
because it depends on 

single component 

Services are flexible because it is 
fully controlled by the end user 

Bit overhead Original bit overhead Overhead is larger than the 
original 

 
3.6  Modes of Operation 
 
According to the specified architecture, four modes of 
operation of the proposed AN can be recognized;  
Upload Mode: The upload mode of AN operation targets the 
transferring of one or more UC(s) from one of the PESs to the 
AR. As shown in Fig. 7-a, this mode does not involve any 
transmission beyond the AR. 



 
Figure 7.  Modes of operations. 
 
Control Mode:  The purpose of this mode is the control 
(uninstall or replace) of the previously installed UCs, as 
shown in Fig. 7-b. This mode does not consist of any 
actual transmission of code or data; it only involves 
packets of commands issued by the CD client in the ES 
and implemented by the CD server in the AR.  
Active Data Mode:  This mode represents the envisaged 
operation of the designed AN (see Fig.7-c). It constitutes 
the transmission of Active Data Packets (ADPs) between 
the internet and any ES in the target LAN (in both 
directions), passing through the AR. ADP contains an 
ANEP header. 
Traditional Data Mode: It is adopted to keep the 
backward compatibility with the existing computer 
networks. Packets transferred in this mode are exactly 
same as that are used in the current traditional computer 
networks, as shown in Fig. 7-d.  
 

4.  SYSTEM IMPLEMENTATION 
 
Since conventional stand alone routers are typically closed 
commercial systems, it is virtually impossible to get 
source-level access to their software. Consequently, the 
AR prototype implementations outlined in this section is 
being built upon a Personal Computer with Microsoft’s 
Windows 2003 server (which supports basic routing 
functionality). 
       The software linker between the CD server and the 
PM in the AR is the Execution Environment Manager 
(EEM).   

4.1 Component Distributor Implementation 
 
All Widows-based computers have internet explorer-based 
FTP clients; the user can always launch the FTP client from 
the address bar of the explorer. But FTP server capabilities 
are built into Internet Information Server (IIS) application that 
included with Windows 2003 servers and above. PEU can 
display the two sides' screens (FTP client and server) in his 
workstation. UCs can be uploaded easily by drag and drop 
from the PES screen to the AR screen. PEU, also, can control 
(delete partially or completely and rename) the installed UCs 
in the AR. 
      The proposed UC is implemented as two files: code and 
configuration files. The code file of the UC is a C++ language 
file converted to DLL library. It contains the required 
processing to be applied on the ADPs. The configuration file 
is an initialization file that contains configuration data such as 
the path of code file of UC (the .dll file name) and an optional 
control buffer.  
 
4.2 Packet Manipulator Implementation 
 
IM driver: The foremost step in realizing the PM 
architecture is the implementation of a simple "pass through" 
IM driver. The IM passthru simply re–warps the sent/received 
packet and pass it down/up to lower/higher–level drivers. The 
passthru driver has been implemented as six C language 
modules: Main, Adapter, NDISreq, Recv, Send and Status.  
PIJ Unit:  There are no comments from Microsoft about how 
to intercept (or inject) a packet from (into) an IM driver. 
Complicated way must be followed to get a copy of a 
received packet that may enter the AR processing. Two 
approaches are available; the developer either enforces a 
step–by–step (manual) C-programming or uses a cloned 
packet approach. However, the second approach was taken. 
PCAUSA Corporation[14] offered ready–to–use cloned–
packet software which targets extending the Microsoft IM 
driver to achieve a buffered complete copy of received 
packets. The cloned–packet approach has been realized by 
adding a smart module "UTIL" to support Recv module.  
PF unit: The base code of PIJ unit was reorganized by adding 
a new module to isolate the actual filtering code from the 
basic packet interception. The key functions provided in this 
module are: 
- SetPktFilter: It is responsible to move the information of 

filter setting from the user application to the context pool of 
the currently opened adapter.. 

- ResetPktFilter: It resets what the SetPktFilter has been set. 
PB Unit:  The PB unit targets to facilitate the interface 
between the kernel and user sides of the PM. Hence, PB 
consists of modules in both the kernel and the Win32 
application sides. The DEVMJFCN.C and WDMSUP.C are 
modules in the kernel side that encapsulates the routines 
related to the IOCTL interface. In user mode side, the 
modules are realized in C language and then converted to dll 
file such that they export a ready to use APIs for the Win32 
applications of the AR. These APIs involve the following:  
- OpenVirtual/LowerAdapter API. 



- ReadOnAdapter API. 
- WriteOnAdapter API. 
- SetPKTFilter API. 
- ResetPKTFilter API. 

      In this research, the IRP–based interface is used to 
implement the user/driver programming interface. In a 
consequence, applications can use the basic Win32 
functions; CreatFile, DeviceIoControl, ReadFile, 
WriteFile; and CloseHandle in the user–mode side of the 
interface.  
PC Unit: At this point, a copy of a complete, received, 
filtered packet has been gained and queued in the user-
space of the AR. The PC is realized in a discrete function 
that includes the following steps: 
- Examine the type of Network layer protocol. 
- According to the protocol type, CLSF function can 

determine which field in the protocol header should be 
tested to know the packet is an ADP or not. 

- According to the suitable header's field, if the packet is 
ADP, return non zero value. 

PD Unit:  After completing the filtering and classification 
operations, the PC will deliver only the Active Data 
Packets (ADP) to the Packet Dispatcher (PD). Jobs of PD 
unit are implemented as three C++ functions:  
- ServNo function: it determines how many UCs must 

be called and executed on the received ADP.  
- ServID function:  it targets to withdraw the CIDs of the 

required UCs in a correct order.  
- GetServInfo function: it gets a copy of contents of the 

configuration file associated with the UC. 
 

5.  SYSTEM EVALUATION 
 
The evaluation of the AR architecture is to a large extent a 
theoretical analysis. Based on a concrete case study, this 
section evaluates the designed AR qualitatively and 
quantitatively.  
 
5.1  Packet Generator/Injector 
 
The computation of UC is typically driven by the data 
passing through the AR, therefore, additional software that 
generates data packets matching the tested component is 
required. In this work, an external program is proposed 
and implemented which creates and then injects data 
packets into the network stack of the testing machine. We 
will call this program a Packet Generator/Injector (PGI). 
In each testing course the testing machine which runs the 
PGI software is connected to the AR (to be tested).  
 
5.2 Evaluation Methods 
  
Since the main contribution of this paper is the 
architecture for ARs, a qualitative evaluation of the 
concepts and design of the architecture has been regarded 
as more meaningful. Since it has been feasible to 
implement only a subset of the overall AR architecture, a 

quantitative evaluation of the entire system (with 
applications) cannot be provided at this stage.   
 
5.3 Qualitative Evaluation: Case Study 
 
Assume that an establishment (Company, Bank, Library, 
Campus … etc) divided into headquarter and other branches 
distributed around wide area, such that they exchange 
information through the internet. It is envisioned that Active 
Routers (ARs) will form the core elements (access and 
gateway) of this network. ADMN of the network was decided 
to operate under TCP/IP suite and running the ARs under 
Windows 2003 server.  
      The challenge of the setting is to “open up” the 
establishment network and to provide public services 
(through internet) to remote authorized users (RAUs). RAUs 
may belong to the establishment staff or external customers. It 
is required to provide sufficient confidentiality for the 
transferred information from RAUs to the establishment 
(headquarter or one of the branches) services. It is decided to 
provide security by the developed encryption algorithm called 
“RC5” [15]. Since existing proposals for such example 
problem rely on enhanced support in network routers (which 
is not yet provided by most router manufacturers), it can be 
argued that the problem can be addressed more elegantly 
through the use of AN technology.  

       

Figure 8.   Setup of case study prototype realization. 
       
      For prototype implementation, the basic setting of case 
study is minimized into only three computers, namely A, B 
and C, as shown in Fig. 8.  Computer B realizes the gateway 
active router whereas computer A realizes two entities. 
Before any information exchange, computer A will represent 
the PES; actually it is the software department of the 
establishment which will create and install the UC (the RC5 
decryption component). After installing the UC, the function 
of this computer will be replaced to represent one of the 
RAUs who will send encrypted ADPs to the establishment 
(computer C), through the gateway AR (computer B). NIC 

Active Router (AR) 
OS: Windows 2003 Server 
No. of LAN cards: 2 
IP Addresses of LAN cards: 192.168.1.1 
and 10.0.0.1 
Functions:  
1- Receive and store UC by Component 
Distributor (FTP) server. 
2- Traditional and Active Routing of Data 
Packets by Packet Manipulator (PM) and  

End System (ES) 
OS: Windows XP 
No. of LAN cards: 1 
IP Addresses of LAN cards: 
192.168.1.3  
Functions:  
1-Previliged End System (PES): 
Create and send UCs by Component 
Distributor (FTP) client. 
2- Packet Generator\Injector (PGI): 

End System (ES) 
OS: Windows XP 
No. of LAN cards: 1 
IP Addresses of LAN cards: 10.0.0.2 
Functions:  
Receive routed packets as destination 
and print them for testing. 



cards used in this prototypical setting are of type 
SURECOM 10/100M PCI adapter and uses Fast Ethernet 
Protocol.  
      In this proof-of-concept case study, RAU realizes the 
RC5 encryption algorithm as a single module (RC5.C) 
using VC++6 environment. After performing RC5 
encryption of ADP payload, the RAU exploits the 
previously explained PGI unit to create and then send the 
packet. C++ language is used in programming the code 
and configuration files. Concerning the control buffer of 
the configuration file, it is exploited to store the users' 
supplied secret key.  
      In the AR computer (gateway), the pre-installed CD 
server receive the UC sent by software department of the 
establishment. CD server installs the two files (code and 
configuration) in a pre-defined folder in the AR. However, 
EEM continue running the Packet Manipulator for 
searching whether there is a new received packet or not. 
When the RAU begins send the RC5 encrypted ADPs, 
EEM will perform the required processing (decryption). 
Thousands of ADPs with varios payload contents and 
length are generated, encrypted and then sent from the 
RAU (computer A) to the establishment (computer C) 
passing through the AR gateway (computer B). All the 
original packets are arrived to computer C which means 
that successful decryption has been done in the AR. 
 
5.4  Quantitative Evaluation 
 
To evaluate the designed AR architecture and hence the 
performance of the envisaged AN, three types of tests 
were done; Control Test, AN Test, and Backward 
Compatibility Test. In all of them, a throughput and 
%CPU usage has been measured. The measurements are 
done using the Windows performance tool. In the three 
tests, a data of 360 MB size has been transferred from 
computer A to C, through B, and all measurements are 
accomplished at computer B. all results are tabulated in 
Table 2. 
 

Table 2: Results of quantitative evaluation tests. 
Test 

Sequence Test type Throughput 
(Packets/sec) 

%CPU 
Usage 

1 Control test 5679.8 30.2 
PM test 2902.6 78.8 
5 UCs test 914.9 84.1 

10 UCs test 453.1 86.7 
2 AN 

test 

15 UCs test 335.8 89.8 

3 Backward 
compatibility test 4041.3 75.2 

 
Control Test: It just tested the speed of the network, 
operating system overhead, and network stack overhead 
without installing the developed AR software. In control 
test, computer B is configured appropriately to operate as 
a traditional router. Packets of TDP type are used in this 
measurement. The next two tests, which involve the active 

enhancement software, will be compared with control test to 
measure how much degradation and processing cost is paid 
for active programmability. 
Active Network Test: In this test, all the implemented 
software, which has been explained in section 5, is installed in 
computer B which still running Windows 2003 server. The 
object of this test is to gauge throughput and CPU usage 
required to achieve the active programmability of the router. 
AN test involves two parts, PM test and UC test.  
PM Test: The measurements try to quantify the processing 
speed and load needed in PM units (namely, PIJ, PF, PB, PC 
and PD). The Component Loader (CL) is suppressed 
temporarily from the EEM to accomplish this target.  
UC Test: It aims to check how many UCs can be used in 
each service such that the AR is not saturated. The evaluation 
in this paper is directed to evaluate the architecture only and 
not tied to a specific service or application. Therefore, the test 
checks the system performance based on the same 
configuration as used in the previous test except with the 
addition of a number of "Null" components to measure the 
extensibility of the system. The significant factor to be 
gauged is the loading of component from its local cache to the 
memory, when UC is called.  
Backward Compatibility Test:  In backward compatibility 
test, the developed AR software is also installed in computer 
B. A stream of TDPs (IP packets) is sent from computer A 
toward computer C through the AR. The purpose of this test 
is to ensure the backward compatibility to the current 
traditional routers and check the quantity of degradation in 
throughput and the cost in processing time when AR is used 
to route TDPs rather than traditional router. 
 

6.  DISCUSSION 
 
PM test takes approximately double processing time and half 
throughput with respect to the control test. It is the price that 
must be paid to transport to user-level processing of the PM 
stage (i.e. PB, PC and PD). Because of the PIJ and PF units 
are operate within the kernel of the router, their effects are 
negligible.  
      Concerning the UC test, the values of measurements refer 
to high throughput degradation accompanied by consuming of 
most processing power, for 5, 10 and 15 UCs. The appended 
degradation in throughput and increase in CPU cost is mainly 
attributed to the successive loading of the component's code 
from the permanent cache to the EE (RAM). It is also 
possible to conclude that the system in its current state 
(experimental) is not extensible when more than 15 UCs are 
added to the path of ADPs. This can be solved, for example, 
by pulling the PC and PD units down to the kernel space 
which will lead to two times increase in throughput. Using 
multi-processor router (as in current traditional routers) or 
upgrading router's hardware by FPGA technology may also 
contribute in solving this shortcoming. At close to 453.1 
packets/sec (3.6 Mbps), the developed system is usable, for 
example, in modems, wireless links, and access links through 
T1 (1.5 Mbps) applications. The results seem to be reasonable 
as a solution for AR in small-sized edge-networks.  



      It is important to note that there is tradeoff here 
between the performance and modularity. To get 
acceptable performance, count of UCs must be minimized. 
Decreasing the number of UCs leads to less flexibility. 
From other side, installing a new protocol or function with 
high modularity (divided into small UCs) means sever 
degradation in throughput. One of the intermediate choices 
is to insert the mainstream protocol (such as IPv4) as a 
standard network stack with the capability of support new 
protocols and functions as UCs.  
      The backward compatibility test is succeeded in 
proving that the AR routes and forwards the TDPs (IP 
packets) correctly without any error or side effects and it is 
not severely affects the standard throughput obtained in 
control test. The relative little degradation in throughput is 
due to the overhead of PM units (except PD unit) with 
paying double processing time. 
 

7.  CONCLUSIONS 
 

Many concluded points of high importance can be 
declared as follows: 
- Component-based active router architecture enables 

network programmability through extensibility of router 
functionality and services.  

- The enhanced ANEP-based service composition enables 
transparent network programmability. New network 
functionality can be flexibly integrated into the packet 
processing chain on the router simply by inserting a 
CIDs into the ANEP header.  

- Implementation of a NodeOS that provides resource 
control and safety features requires the NodeOS to be 
tightly coupled with the underlying (host) operating 
system.  

- A split implementation across both kernel and user space 
of the underlying system appears to be a good choice. 
This approach takes advantage of the high flexibly 
programming environment in user-mode and 
sophisticated protection and safety mechanisms of 
today’s OSs. 

- Standard user-space implementations for active networks 
typically suffer largely from the performance hit 
resulting from the copy operations required to pass the 
network traffic “up” into user-space and back “down” 
again. As far as possible, packet processing must be in 
kernel space. 

- It is recommended to use programmable devices to 
implement the hardware and software of the proposed 
system. 
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