
WINDOWS-BASED ACTIVE-ROUTER DESIGN AND EVALUATION

Sufyan T. Faraj1, Omar A. Athab1, Kasim M. Al-Aubidy2

1 Faculty of Computers, Anbar University, Iraq
e-mail: sufyantaih@yahoo.com

2 Faculty of Engineering, Philadelphia University, Jordan
e-mail: alaubidy@gmail.com

ABSTRACT

The paper presents the design and evaluation of an Active
Router (AR) architecture, which provides flexibility for
the development of future network services. The hardware
is based on a personal computer with 2GHz, Intel P4
processor. The designed AR depends on the use of
Windows OS, enhancing the Active Network
Encapsulation Protocol (ANEP) and the efficient use of
C++ programming. Windows OS and C++ language are
rarely used in such projects due to complexity of kernel-
mode and network-oriented programming requirements.
Enhancing ANEP gains novel service composition
scheme. Finally, the success of the AR architecture and
prototype implementation is evaluated by means of a
practical application.

Index Terms— Active Network, Programmable Network,
Active Router, Programmable Router, IM Driver.

1. INTRODUCTION

Traditional packet-switched networks, or exactly
intermediate nodes, perform only the processing necessary
to forward packets towards their destination. Over time,
more and more functionality is being deployed inside the
network, in an effort to provide better services to users[1].
For example, firewalls at the border routers (gateways) for
security purposes[2] and network caching as a mechanism
to reduce network load[3]. The need for qualitatively
better communication mechanisms for real-time traffic has
led to the investigation of Quality-of-Service (QoS)
mechanisms for the Internet. Most of these network-side
services are implemented as individual ad-hoc extensions.
However, the network provides no architectural support
for flexible extensibility [1].

Wetherall and Tennenhouse [4] have first pursued the
idea of placing program fragments into IP packets as part
of the ActiveIP project. Initially, they studied the potential
of placing small programs within the option fields of IP
packets. These so-called active options, encoded in Tcl
language in their prototype implementation, were executed
by modified network nodes as the packets traversed the
network. SwitchWare Active Network Architecture [5]
consists of three layers: active packets, active extensions

and a secure active router infrastructure. Active packets carry
programs consisting of code and data to replace both the
header and payload of traditional packets.

Active Node Transfer System (ANTS) provides a capsule
programming model[6]. Capsules are packets that encapsulate
data with a customized forwarding code. Applications use the
network by sending and receiving capsules via active nodes.
When a capsule arrives at an active node, the corresponding
routine is executed to forward the capsule. The demand-pull
mechanism is used to obtain code from the previous node that
the capsule visited. The ANTS prototype is implemented in
Java under UNIX operating system.

The Smart Packets project [7] emphasizes at addressing
problems that are inherent in typical polled managed devices
rather than aiming for general transport mechanisms such as
ANTS. Smart packets are encapsulated within ANEP packets
and ANEP packets are encapsulated within an IP packet using
a specific option (router alert). The Smart Packets architecture
expects all programs to fit within one Ethernet frame. There is
no existing language that had a compact enough
representation for Smart Packets environment. As a result,
Sprocket and Spanner languages are developed as part of the
Smart Packets project.

This paper addresses an attempt to investigate a useful
step towards active network mechanisms that considers
flexible extensibility through programmability as part of the
fundamental architectural design.

2. ACTIVE NETWORK FUNDEMANTELES

A central feature that distinguishes ANs from configurable
ones is the programming model. A configurable network aims
to establish a maximal set of high-level features that can be
configured with a single action, while AN focuses on
identifying a minimal set of primitives (for example, system
calls of host operating systems) from which one can compose
(or program) a broad spectrum of features[1]. By providing a
programmable interface in network nodes, ANs expose the
resources and mechanisms for constructing or refining new
network services from those elements. In short, ANs support
dynamic modification of the network behavior as seen by the
user. The scope of network programmability varies from
control plane to data plane programmability and extends from
very limited to highly flexible forms depending on the
programming interface[8].

978-1-4244-4346-8/09/$25.00 ©2009 IEEE

2009 6th International Multi-Conference on Systems, Signals and Devices

 Several programming models have been suggested for
ANs. A common approach is to provide a programmable
engine at each intermediate node that can be programmed
on a per-packet basis. Every packet contains in addition to
the user payload (data) some form of active program that
is executed on each intermediate node as it traverses the
network. This is called active packet or in-band approach.
Another approach in which active programs are loaded
onto the active nodes in out-of-band fashion, prior to the
transmission of data packets. This is called active
extension or out-of-band approach [9].

Figure 1. Active node architecture of DARPA.

2.1 Active Node Architecture

Active network working group at DARPA defines the
fundamental parts of an active node and how they
interoperate[10]. The functionality is divided into the
Active Node Operating System (NodeOS) and the
Execution Environment (EE). While the NodeOS manages
access to node local resources and system configurations,
the EE implements the active network APIs supported by
the node. Figure 1 shows the envisioned general
architecture for an Active Network node. Although this
architectural framework considers only the integrated
approach, it is considered by many researchers to be a de-
facto standard[9].

2.2 Active Network Encapsulation Protocol (ANEP)

The ANEP document specifies a mechanism for
encapsulating AN frames for transmission over different
media[11]. The suggested format allows use of an
existing network infrastructure (such as IPv4 or IPv6) or
transmission over the link layer. This mechanism allows
co-existence of different execution environments and
proper demultiplexing of received packets. The program is
executed by a receiving node in the environment specified
by the ANEP. The format of the ANEP header is:

The version described by this document is 1. Only the most
significant bit in the flags field is used. If its value is 0, the
node could try to forward the packet using the default routing
mechanism (if one is in use), if the necessary information is
available in the Options part of the header. If the value is 1,
the node should discard the packet. The ANEP Header Length
field specifies the length of the ANEP header in 32 bit words.
The Type ID field indicates the evaluation environment of the
packet. The active node should evaluate the packet in the
proper environment. If the value contained in this field is not
recognized, the node should check the value of the most
significant bit of the Flags field in deciding how to handle the
packet. The ANEP also may contain option field(s). Some
options are identified by the ANEP document [11] and the
others are left to the implementer responsibility.

Figure 2. Windows OS network architecture.

2.3 Networking Stack in Windows OS

Windows OS network architecture may be imagined as shown
in Figure 2. Components that contribute the same horizontal
level, in the figure, provide similar functionality [12]. The
Windows 2003 network layers are described below from the
bottom of the network architecture model up to the top.
Network Driver Interface Specification (NDIS) provides a
communication path between network adapters and network
protocols and manages the binding between these
components. NDIS layer consists of the following [13]:
- NDIS wrapper represented by the NDIS library (Ndis.sys),

which exports functions for use by transport protocols and
adapter drivers.

- NDIS miniport drivers, which are responsible for
interfacing transport protocols to particular network
adapters.

 According to the designer's requirements, NDIS layer
may contain one or more NDIS Intermediate (IM) drivers that
are located between transport drivers and miniport NIC
drivers to perform additional functionality.

3. ACTIVE ROUTER ARCHITECTURE

The proposed networking stack model has to be "component-
based" design and not layered. The advantages of component-
based design, namely code modularity, reusability, and
dynamic composition, facilitate the development and
deployment of custom network services.

Figure 3. CD and PM units.

Actually, the protocol stacks are replaced by protocol
components that can be tailored and composed to perform
application specific functions.
 Concerning the Programming Model, active packet
(in-band) approach in AN tends to be fairly restrictive due
to the limited programming capabilities. In the other side,
the active extension (out-of-band) approach often lacks
adequate service composition capabilities for software
components. This project resolves these limitations by
extending the active extension programming model by a
flexible composition framework for software components.
NDIS IM driver has been chosen as a base in designing
the packet interceptor in this project. It is located between
the LLC and MAC sub layers, and this feature gives IM
driver a lot of control over network packets, without
affecting other network protocol stack components.
Moreover, an IM driver could be layered above or below
another IM driver without affecting its function.

3.1 Architecture Overview

The architecture of the proposed AN has been divided into
two functional parts:
- the Component Distributor (CD) and
- the Packet Manipulator (PM) part.
The CD concerns the transferring and managing of User
Components (UCs) from a Privileged End–System (PES)
or network administrator (ADMN) to the AR. In other
side, the PM functional part extends the OS networking
stack such that it can intercept the in-bound packets that
enter the AR and discriminate among the various types of
packets. After distinguishing the type, the PM forwards
the packet to the proper component to be serviced. The
proposed architecture is designed to extend exiting routers
by layering active network-specific functionality on top of
the router operating system. The following sections
explain the two parts of the proposed AR, as shown in
Figure 3.

3.2 Component Distributor (CD)

The proposed CD allows the user to load new components
in the AR. The UC is a program performing either
protocol processing or value-added function to the packet.
It is expected that the code of the UC is sent from any
Privileged-End System (PES) to the Active Router (AR)
using the CD unit. The end user who send and install a UC

should be authenticated and authorized to add a UC into the
router. Also, the code of the UC must be authenticated to
ensure safe evaluation within the AR execution environment.
Each UC has its own Component Identifier (CID) which is
associated with the component during transmission.
PEU must firstly send the UC (which implements the required
protocol or service) to the AR to be installed there. Then,
PEU send his packets (which require active processing) such
that it refers to the required component using the CID. In this
manner, the AR will process the received ADPs by the
indicated UC. To gain a certain active service, the AN user is
responsible to determine which UCs and in which order they
must be composed.
 The proposed scheme of CD is the transfer of the UC to
router(s) along the path that active packet using the service
follows. The code is cached at these routers for later use. The
CD unit provides the capability of packing (if more than one
UC), and then uploading the UC from a PES to the AR using
FTP protocol. Furthermore, the CD unit is also responsible
for controlling (replace or uninstall) the installed UCs
remotely. The CD unit operates in a client/server fashion. The
AR represents the server, whereas the PES represents the
client. Hence, jobs of the CD can be summarized as: packing,
uploading and controlling the UC.

Figure 4. Packet manipulator architecture.

3.3 The Packet Manipulator

Certainly, manipulating a network packet demands capturing
the packet itself. The IM driver has been proposed to be the
foundation of the Packet Manipulator (PM) architecture. In
addition to catching a packet, the PM performs a light
firewalling, lifting the packet from the kernel to the user
mode, recognizing its type, and finally dispatching the packet
to the user component that it whishes for processing.
Consequently, the PM architecture was further divided into
the following functional units, as shown in Fig.4:
Packet Interceptor/Injector (PIJ): It provides the interface
between the active network environment and the data path on
the router. It is responsible for intercepting the network traffic
traversing the node and passing it to the active network
environment for processing. Also, it can re–inject the network
data back into the default forwarding path on the node or
sends it directly through one of the outgoing interfaces.
Packet Filter (PF): This project provides a programmable PF
on the read handle. The PF actions are:

- Block: drop the matching packet from the normal
packet flow.

- Pass: allow the matching packet to pass up to the PT
driver as in the normal flow.

- Read: pass a copy of the received packet to the
packet bridge which is the next unit in the AR.

Packet Bridge (PB): It is required to transfer network
data to and from the UC. It is noteworthy to state that the
PIJ and PF units are placed within the kernel space of the
proposed AR. It is suggested to load the UCs in the user
space of the OS. Accordingly, PB targets the
transportation of Packets to the user mode to be, then,
processed by UCs. Also, if required, the PB transport
packets back to the PIJ to be re–injected into the default
forwarding path on the node or sent it directly through one
of the outgoing interfaces.
Packet Classifier (PC): The object of the PC is the
discrimination among the various types of packets that
may pass through the Packet Manipulator (PM). To be
serviced properly, packets should be firstly classified. To
clarify the ambiguity that may occur, these different types
of packets can be categorized into the following:
Component and Data packets. The designed PC
distinguishes between these types, and then forwards each
one to the correct path.
Packet Dispatcher (PD): It defines the "route" through
the UC space for the ADPs passing the AR. The PD plays
a central role in the service composition process. It
determines, based on the ANEP header, which UC(s) are
involved and in which order they should process the ADP.
After the UC(s) finished it's processing on the ADPs, the
PD returns the packet back to the windows network stack
through the PB.

0 15 16 31
version Flags Component Count (CC)
ANEP Header Length ANEP Packet Length

Service Composition (SC)
options
payload

Figure 5. Format of the proposed ANEP.

0 15 16 31
1st component ID 2nd component ID
3rd component ID

…………………….
..

……………..…………
…...........

Figure 6. Format of "service composition" field.

3.4 Service Composition

The concept of component-based services is envisaged to
achieve a good flexibility in introducing functionalities for
the ADPs. This means that we have either multi Execution
Environment (EE), where each one represents a single
component, or single EE. In the two assumptions there is a
limitation in determining which components(s) and in
what order are appropriate to process the ADPs.

According to the basic ANEP header, the type ID field in the
entering ADP can assign only one component to process the
packet. This is a big restriction. This will restrain the AR to
be really active and flexible. Furthermore it may weak or omit
the principal of component-based services in the AR;
therefore, a proposal is presented below to enhance the
original ANEP to overcome this limitation.

3.5 Enhancing ANEP

In the proposed ANEP enhancement, the type ID field is used
to indicate the count of UCs that may be composed to
introduce the service to the active packet. The Component ID
(CID) of the component itself is described in a new proposed
variable-length field called Service Composition (SC) field. It
is placed after the basic header and before the options field as
shown in Fig. 5. This new field consists of the CIDs of the
components that must be composed to create the required
active service. The order at which the CIDs appear in the
service composition field is considered as the sequence of the
components that will be executed in the AR. Using this
format, the lack of service composition capability in the
original ANEP can be avoided. For example, when an active
packet want to be processed by three components; that are
component 4, 6 and 3, respectively, in such case; the
Component Count "CC" field would contain the value 3, and
the SC field will contain the CIDs of components 4, 6, and 3
respectively. The proposed format of the SC field is shown in
Fig. 6. As an example, a common service like IPv4 routing
and forwarding may take 5 or 6 components (according to the
designer of the components) to perform the packet integrity,
TTL decrement, CRC calculation, lookup of routing table,
and finally forwarding to the suitable next hop (or
destination). Table 1 shows a comparison between the
original ANEP format and the proposal for enhancing ANEP.

Table 1. Comparison between ANEP and enhanced ANEP.

Function Original ANEP ANEP Proposal
Service
components

Single component
services.

Single and multi- component
services

functionality fair Functionality better Functionality

Processing
time

Require the original
ANEP processing time

Require more processing time than
the original

Type ID range Wide type ID range. wide type ID range

Flexibility of
service

Services are restricted
because it depends on

single component

Services are flexible because it is
fully controlled by the end user

Bit overhead Original bit overhead Overhead is larger than the
original

3.6 Modes of Operation

According to the specified architecture, four modes of
operation of the proposed AN can be recognized;
Upload Mode: The upload mode of AN operation targets the
transferring of one or more UC(s) from one of the PESs to the
AR. As shown in Fig. 7-a, this mode does not involve any
transmission beyond the AR.

Figure 7. Modes of operations.

Control Mode: The purpose of this mode is the control
(uninstall or replace) of the previously installed UCs, as
shown in Fig. 7-b. This mode does not consist of any
actual transmission of code or data; it only involves
packets of commands issued by the CD client in the ES
and implemented by the CD server in the AR.
Active Data Mode: This mode represents the envisaged
operation of the designed AN (see Fig.7-c). It constitutes
the transmission of Active Data Packets (ADPs) between
the internet and any ES in the target LAN (in both
directions), passing through the AR. ADP contains an
ANEP header.
Traditional Data Mode: It is adopted to keep the
backward compatibility with the existing computer
networks. Packets transferred in this mode are exactly
same as that are used in the current traditional computer
networks, as shown in Fig. 7-d.

4. SYSTEM IMPLEMENTATION

Since conventional stand alone routers are typically closed
commercial systems, it is virtually impossible to get
source-level access to their software. Consequently, the
AR prototype implementations outlined in this section is
being built upon a Personal Computer with Microsoft’s
Windows 2003 server (which supports basic routing
functionality).
 The software linker between the CD server and the
PM in the AR is the Execution Environment Manager
(EEM).

4.1 Component Distributor Implementation

All Widows-based computers have internet explorer-based
FTP clients; the user can always launch the FTP client from
the address bar of the explorer. But FTP server capabilities
are built into Internet Information Server (IIS) application that
included with Windows 2003 servers and above. PEU can
display the two sides' screens (FTP client and server) in his
workstation. UCs can be uploaded easily by drag and drop
from the PES screen to the AR screen. PEU, also, can control
(delete partially or completely and rename) the installed UCs
in the AR.
 The proposed UC is implemented as two files: code and
configuration files. The code file of the UC is a C++ language
file converted to DLL library. It contains the required
processing to be applied on the ADPs. The configuration file
is an initialization file that contains configuration data such as
the path of code file of UC (the .dll file name) and an optional
control buffer.

4.2 Packet Manipulator Implementation

IM driver: The foremost step in realizing the PM
architecture is the implementation of a simple "pass through"
IM driver. The IM passthru simply re–warps the sent/received
packet and pass it down/up to lower/higher–level drivers. The
passthru driver has been implemented as six C language
modules: Main, Adapter, NDISreq, Recv, Send and Status.
PIJ Unit: There are no comments from Microsoft about how
to intercept (or inject) a packet from (into) an IM driver.
Complicated way must be followed to get a copy of a
received packet that may enter the AR processing. Two
approaches are available; the developer either enforces a
step–by–step (manual) C-programming or uses a cloned
packet approach. However, the second approach was taken.
PCAUSA Corporation[14] offered ready–to–use cloned–
packet software which targets extending the Microsoft IM
driver to achieve a buffered complete copy of received
packets. The cloned–packet approach has been realized by
adding a smart module "UTIL" to support Recv module.
PF unit: The base code of PIJ unit was reorganized by adding
a new module to isolate the actual filtering code from the
basic packet interception. The key functions provided in this
module are:
- SetPktFilter: It is responsible to move the information of

filter setting from the user application to the context pool of
the currently opened adapter..

- ResetPktFilter: It resets what the SetPktFilter has been set.
PB Unit: The PB unit targets to facilitate the interface
between the kernel and user sides of the PM. Hence, PB
consists of modules in both the kernel and the Win32
application sides. The DEVMJFCN.C and WDMSUP.C are
modules in the kernel side that encapsulates the routines
related to the IOCTL interface. In user mode side, the
modules are realized in C language and then converted to dll
file such that they export a ready to use APIs for the Win32
applications of the AR. These APIs involve the following:
- OpenVirtual/LowerAdapter API.

- ReadOnAdapter API.
- WriteOnAdapter API.
- SetPKTFilter API.
- ResetPKTFilter API.

 In this research, the IRP–based interface is used to
implement the user/driver programming interface. In a
consequence, applications can use the basic Win32
functions; CreatFile, DeviceIoControl, ReadFile,
WriteFile; and CloseHandle in the user–mode side of the
interface.
PC Unit: At this point, a copy of a complete, received,
filtered packet has been gained and queued in the user-
space of the AR. The PC is realized in a discrete function
that includes the following steps:
- Examine the type of Network layer protocol.
- According to the protocol type, CLSF function can

determine which field in the protocol header should be
tested to know the packet is an ADP or not.

- According to the suitable header's field, if the packet is
ADP, return non zero value.

PD Unit: After completing the filtering and classification
operations, the PC will deliver only the Active Data
Packets (ADP) to the Packet Dispatcher (PD). Jobs of PD
unit are implemented as three C++ functions:
- ServNo function: it determines how many UCs must

be called and executed on the received ADP.
- ServID function: it targets to withdraw the CIDs of the

required UCs in a correct order.
- GetServInfo function: it gets a copy of contents of the

configuration file associated with the UC.

5. SYSTEM EVALUATION

The evaluation of the AR architecture is to a large extent a
theoretical analysis. Based on a concrete case study, this
section evaluates the designed AR qualitatively and
quantitatively.

5.1 Packet Generator/Injector

The computation of UC is typically driven by the data
passing through the AR, therefore, additional software that
generates data packets matching the tested component is
required. In this work, an external program is proposed
and implemented which creates and then injects data
packets into the network stack of the testing machine. We
will call this program a Packet Generator/Injector (PGI).
In each testing course the testing machine which runs the
PGI software is connected to the AR (to be tested).

5.2 Evaluation Methods

Since the main contribution of this paper is the
architecture for ARs, a qualitative evaluation of the
concepts and design of the architecture has been regarded
as more meaningful. Since it has been feasible to
implement only a subset of the overall AR architecture, a

quantitative evaluation of the entire system (with
applications) cannot be provided at this stage.

5.3 Qualitative Evaluation: Case Study

Assume that an establishment (Company, Bank, Library,
Campus … etc) divided into headquarter and other branches
distributed around wide area, such that they exchange
information through the internet. It is envisioned that Active
Routers (ARs) will form the core elements (access and
gateway) of this network. ADMN of the network was decided
to operate under TCP/IP suite and running the ARs under
Windows 2003 server.
 The challenge of the setting is to “open up” the
establishment network and to provide public services
(through internet) to remote authorized users (RAUs). RAUs
may belong to the establishment staff or external customers. It
is required to provide sufficient confidentiality for the
transferred information from RAUs to the establishment
(headquarter or one of the branches) services. It is decided to
provide security by the developed encryption algorithm called
“RC5” [15]. Since existing proposals for such example
problem rely on enhanced support in network routers (which
is not yet provided by most router manufacturers), it can be
argued that the problem can be addressed more elegantly
through the use of AN technology.

Figure 8. Setup of case study prototype realization.

 For prototype implementation, the basic setting of case
study is minimized into only three computers, namely A, B
and C, as shown in Fig. 8. Computer B realizes the gateway
active router whereas computer A realizes two entities.
Before any information exchange, computer A will represent
the PES; actually it is the software department of the
establishment which will create and install the UC (the RC5
decryption component). After installing the UC, the function
of this computer will be replaced to represent one of the
RAUs who will send encrypted ADPs to the establishment
(computer C), through the gateway AR (computer B). NIC

Active Router (AR)
OS: Windows 2003 Server
No. of LAN cards: 2
IP Addresses of LAN cards: 192.168.1.1
and 10.0.0.1
Functions:
1- Receive and store UC by Component
Distributor (FTP) server.
2- Traditional and Active Routing of Data
Packets by Packet Manipulator (PM) and

End System (ES)
OS: Windows XP
No. of LAN cards: 1
IP Addresses of LAN cards:
192.168.1.3
Functions:
1-Previliged End System (PES):
Create and send UCs by Component
Distributor (FTP) client.
2- Packet Generator\Injector (PGI):

End System (ES)
OS: Windows XP
No. of LAN cards: 1
IP Addresses of LAN cards: 10.0.0.2
Functions:
Receive routed packets as destination
and print them for testing.

cards used in this prototypical setting are of type
SURECOM 10/100M PCI adapter and uses Fast Ethernet
Protocol.
 In this proof-of-concept case study, RAU realizes the
RC5 encryption algorithm as a single module (RC5.C)
using VC++6 environment. After performing RC5
encryption of ADP payload, the RAU exploits the
previously explained PGI unit to create and then send the
packet. C++ language is used in programming the code
and configuration files. Concerning the control buffer of
the configuration file, it is exploited to store the users'
supplied secret key.
 In the AR computer (gateway), the pre-installed CD
server receive the UC sent by software department of the
establishment. CD server installs the two files (code and
configuration) in a pre-defined folder in the AR. However,
EEM continue running the Packet Manipulator for
searching whether there is a new received packet or not.
When the RAU begins send the RC5 encrypted ADPs,
EEM will perform the required processing (decryption).
Thousands of ADPs with varios payload contents and
length are generated, encrypted and then sent from the
RAU (computer A) to the establishment (computer C)
passing through the AR gateway (computer B). All the
original packets are arrived to computer C which means
that successful decryption has been done in the AR.

5.4 Quantitative Evaluation

To evaluate the designed AR architecture and hence the
performance of the envisaged AN, three types of tests
were done; Control Test, AN Test, and Backward
Compatibility Test. In all of them, a throughput and
%CPU usage has been measured. The measurements are
done using the Windows performance tool. In the three
tests, a data of 360 MB size has been transferred from
computer A to C, through B, and all measurements are
accomplished at computer B. all results are tabulated in
Table 2.

Table 2: Results of quantitative evaluation tests.
Test

Sequence Test type Throughput
(Packets/sec)

%CPU
Usage

1 Control test 5679.8 30.2
PM test 2902.6 78.8
5 UCs test 914.9 84.1

10 UCs test 453.1 86.7
2 AN

test

15 UCs test 335.8 89.8

3 Backward
compatibility test 4041.3 75.2

Control Test: It just tested the speed of the network,
operating system overhead, and network stack overhead
without installing the developed AR software. In control
test, computer B is configured appropriately to operate as
a traditional router. Packets of TDP type are used in this
measurement. The next two tests, which involve the active

enhancement software, will be compared with control test to
measure how much degradation and processing cost is paid
for active programmability.
Active Network Test: In this test, all the implemented
software, which has been explained in section 5, is installed in
computer B which still running Windows 2003 server. The
object of this test is to gauge throughput and CPU usage
required to achieve the active programmability of the router.
AN test involves two parts, PM test and UC test.
PM Test: The measurements try to quantify the processing
speed and load needed in PM units (namely, PIJ, PF, PB, PC
and PD). The Component Loader (CL) is suppressed
temporarily from the EEM to accomplish this target.
UC Test: It aims to check how many UCs can be used in
each service such that the AR is not saturated. The evaluation
in this paper is directed to evaluate the architecture only and
not tied to a specific service or application. Therefore, the test
checks the system performance based on the same
configuration as used in the previous test except with the
addition of a number of "Null" components to measure the
extensibility of the system. The significant factor to be
gauged is the loading of component from its local cache to the
memory, when UC is called.
Backward Compatibility Test: In backward compatibility
test, the developed AR software is also installed in computer
B. A stream of TDPs (IP packets) is sent from computer A
toward computer C through the AR. The purpose of this test
is to ensure the backward compatibility to the current
traditional routers and check the quantity of degradation in
throughput and the cost in processing time when AR is used
to route TDPs rather than traditional router.

6. DISCUSSION

PM test takes approximately double processing time and half
throughput with respect to the control test. It is the price that
must be paid to transport to user-level processing of the PM
stage (i.e. PB, PC and PD). Because of the PIJ and PF units
are operate within the kernel of the router, their effects are
negligible.
 Concerning the UC test, the values of measurements refer
to high throughput degradation accompanied by consuming of
most processing power, for 5, 10 and 15 UCs. The appended
degradation in throughput and increase in CPU cost is mainly
attributed to the successive loading of the component's code
from the permanent cache to the EE (RAM). It is also
possible to conclude that the system in its current state
(experimental) is not extensible when more than 15 UCs are
added to the path of ADPs. This can be solved, for example,
by pulling the PC and PD units down to the kernel space
which will lead to two times increase in throughput. Using
multi-processor router (as in current traditional routers) or
upgrading router's hardware by FPGA technology may also
contribute in solving this shortcoming. At close to 453.1
packets/sec (3.6 Mbps), the developed system is usable, for
example, in modems, wireless links, and access links through
T1 (1.5 Mbps) applications. The results seem to be reasonable
as a solution for AR in small-sized edge-networks.

 It is important to note that there is tradeoff here
between the performance and modularity. To get
acceptable performance, count of UCs must be minimized.
Decreasing the number of UCs leads to less flexibility.
From other side, installing a new protocol or function with
high modularity (divided into small UCs) means sever
degradation in throughput. One of the intermediate choices
is to insert the mainstream protocol (such as IPv4) as a
standard network stack with the capability of support new
protocols and functions as UCs.
 The backward compatibility test is succeeded in
proving that the AR routes and forwards the TDPs (IP
packets) correctly without any error or side effects and it is
not severely affects the standard throughput obtained in
control test. The relative little degradation in throughput is
due to the overhead of PM units (except PD unit) with
paying double processing time.

7. CONCLUSIONS

Many concluded points of high importance can be
declared as follows:
- Component-based active router architecture enables

network programmability through extensibility of router
functionality and services.

- The enhanced ANEP-based service composition enables
transparent network programmability. New network
functionality can be flexibly integrated into the packet
processing chain on the router simply by inserting a
CIDs into the ANEP header.

- Implementation of a NodeOS that provides resource
control and safety features requires the NodeOS to be
tightly coupled with the underlying (host) operating
system.

- A split implementation across both kernel and user space
of the underlying system appears to be a good choice.
This approach takes advantage of the high flexibly
programming environment in user-mode and
sophisticated protection and safety mechanisms of
today’s OSs.

- Standard user-space implementations for active networks
typically suffer largely from the performance hit
resulting from the copy operations required to pass the
network traffic “up” into user-space and back “down”
again. As far as possible, packet processing must be in
kernel space.

- It is recommended to use programmable devices to
implement the hardware and software of the proposed
system.

8. REFERENCES

[1]. P. L. Simeonov, The wandering logic intelligence, a

hyperactive approach to network evolution and its
application to adaptive mobile meltimeidia
communication, PhD dissertation, faculty of
informatics and automation, technology university of
Ilmenau, Germany, 2002.

[2]. P. Xue, S. Chandra, Revisiting multimedia streaming in
mobile ad hoc networks, NOSSDAV ’06 conference,
Newport, Rhode Island, USA, 2006..

[3]. G. Barish, k. Obraczka, World Wide Web catching:
trends and techniques, IEEE communications magazine,
May 2000.

[4]. D. J. Wetherall and D. L. Tennenhouse, The ACTIVE IP
option, In 7th ACM SIGOPS European Workshop,
Ireland, September 1996.

[5]. D. S. Alexander, W. A. Arbaugh, M. Hicks, P. Kakkar,
and J. M. Smith, The SwitchWare active network
architecture, IEEE Network, vol. 12, pp. 29-36,
May/June 1998.

[6]. D. J. Wetherall, Service Introduction in an Active
Network, PhD thesis, Department of Electrical
Engineering and Computer Science, Massachusetts
Institute of Technology, USA, 1999.

 [7]. B. Schwartz, W. Zhou, A. W. Jackson, W. T. Strayer and
D. Rockwell, Smart Packets for Active Networks, In 2nd
Conf. on Open Architectures and Network
Programming, OPENARCH’99, NY, Mar. 1999.

[8]. H. J. Wang, et. al., Iceberg: An Internet-core Network
Architecture for Integrated Communications, Project at
Computer Science Division, U. C. Berkeley, 2000.
Available at: http://iceberg.cs.berkeley.edu.

[9]. S. Schmid, LARA++ Design Specification, Work in
progress report on the next generation active router
architecture of Lancaster University, Computing
Department, Lancaster University, UK, 2000.

[10]. K.L. Calvert (Ed.), Active Networks Working Group,
Architectural Framework for Active Networks, Draft,
August 1998.

[11]. D.S. Alexander et al., Active Network Encapsulation
Protocol (ANEP), Internet draft, IETF, July 1997.

[12]. D. A. Solomon and M. E. Russinovich, Inside Microsoft
Windows 2000, 3rd Edition, Microsoft Press, 2000.

[13]. Microsoft Corporation, Microsoft Windows 2000 Driver
Development Kit, Network Drivers, 2000.

[14]. T.F. Divine, NDIS IM driver samples for windows NT
and higher, Available online at: www.pcausa.com, 2006.

[15]. R. L. Rivest, The RC5 encryption algorithm", MIT Lab.
for computer science, USA, 1995.

