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Abstract:- The traditional way of implementing algorithms in software limits the performance of 
real-time systems, since the data is processed serially. The new generation of FPGAs with embedded 
processors are attracting the interest of the real-time applications. With enhanced capabilities most of 
the processing tasks can be loaded from the software program stack to embedded processors on the 
FPGA to improve performance and reduce the cost of the whole system. A fuzzy inference system 
has been implemented on an FPGA, and used to control a PM motor in a washing machine.  The 
given results demonstrate the capability of such embedded controller in washing machine 
applications where simplicity, reliability and stability are more important issues. 
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INTRODUCTION 

 
The real world environment includes parameters 

which are difficult or impossible to represent 
mathematically. Real-time systems, such as robotics 
and washing machines,  are corrupted by 
unstructured, noisy changing, and unknown 
environmental parameters[1]. A successful design for 
real-time systems should demonstrate the robustness 
and the adaptation capability to properly compensate 
for these changing  conditions. Fuzzy logic is a 
powerful problem-solving methodology to draw 
definite conclusions from vague, ambiguous or 
imprecise information[2]. It can be built into anything 
from small, hand-held products to complex and large 
systems. It uses an imprecise but very descriptive 
language to deal with input data more like a human 
operator. It is very robust and often works when first 
implemented with little or no tuning. 

Recently, filed programmable gate arrays 
(FPGAs) have become a popular technology for 
creating  digital systems, since they can lead to shorter 
time-to-market for designs than application specific 
integrated circuits and allow design modifications to 
be made after system creation and even in the field[3]. 
Advances in FPGA technology have enabled high-
speed processing of hardware and software tasks. 
FPGAs are popular for high-speed, compute-intensive 
applications.  FPGAs have been used for many 
computational tasks, and have been found to be 
reasonable alternatives to custom hardware or 
software implementations of real-time applications [4-
8]. The FPGAs were used to implement fuzzy 
controllers[5,6], a feedforward neural network[7],  
discrete wavelet transforms[8] and real-time signal 
processing applications[9]. In these applications, 
several hardware and software functions are 
embedded on the FPGA. For example, the FPGA 
implementation of a neural network observer[7] needs 

278 multiplication, 67 hyperbolic functions and 28 
divisions for its implementation.  

This paper presents the design and FPGA 
implementation of a general purpose fuzzy inference 
system (FIS) on an FPGA. The implemented FPGA-
based FIS has been used to control the operation of a 
permanent magnet (PM) motor in a washing machine. 
PM motor drives are widely used as actuators in many 
applications, due to its simple and reliable 
mechanism[10]. PM motors provide advantages over 
induction motors for washer applications. In a 
sensorless PM drive system, an implicit rotor position 
sensor is essential for controlling the power devices of 
the inverter. Such a drive system is easy to implement 
but produces high torque ripple which causes high 
acoustic-noise. Therefore, the proposed fuzzy 
controller embedded on the FPGA is used to control 
the operation of the PM motor and to manage all tasks 
in the washing machine. 

 

 
Fig. 1: Block diagram of a general FIS. 

 
 

FUZZY INFERENCE SYSTEM 
 

A general fuzzy inference system consists of four 
parts; the fuzzifier, rule base, inference engine and 
defuzzifier, as shown in Fig. 1. A crisp input is 
fuzzified by input membership function (MF) and 
processed by a fuzzy logic interpretation of a fuzzy 
rules. Then is followed by a defuzzification stage 
resulting in a crisp output [2]. 



 
Fig. 2:  Elements of a general FIS. 

 
FIS Design: 

The following steps are considered during the FIS 
design and implementation  process[2]: 
-  Define the control objectives and criteria. 
-  Determine the input and output relationships. 
-  Choose a minimum number of variables for FIS 

inputs and outputs. 
-  Define a series of IF  THEN rules to create the rule-

based structure of the FIS.  
- Create fuzzy membership functions that define the 

meaning of Input/Output terms used in the rules. 
- Create the necessary fuzzy logic routines if 

implementing in software, otherwise program the 
rules into the fuzzy logic hardware engine. 

- Test the system, evaluate the results, tune the rules 
and membership functions, and retest until 
satisfactory results are obtained. 

 As an example, the proposed FIS has two-input, 
single-output structure with 8-bit resolution. The 
inference engine implements Mamdani's min-max 
relation[2]. The defuzzification uses the center of 
gravity method. The membership functions as well as 
the fuzzy rules are stored in an EPROM 

Figure 2 illustrates all elements required to 
implement the proposed FIS. When new fire strength 
is required, it fetches that value by invoking the fire 
strength calculator. The rule evaluator requests fire 
strength by supplying a pointer to the required input 
and an address to the required membership of that 
input. The fire strength calculator uses these pointers 
as well as the value of the input to address a table in 
the EPROM that contains all the membership 
functions. The result is then presented to the min/max 
evaluator which performs the evaluation of the logic 
in the rule predicate. The single precision summer 
adds each of the results into an accumulator that will 
be used later as the denominator for the division. The 
multiplier multiplies the result of the rule evaluation 
by a coefficient, fetched from the EPROM, 
representing the weight of the output of the rule. The 
multiplied result is then accumulated in a double 
precision accumulator. Once all the rules have been 
evaluated, the defuzzification process begins. The 
value in the double precision accumulator is divided 
by the value in the single precision accumulator and 
the result is sent to the output. The min/max evaluator 

performs the above operations using a two register 
stack. Once the two values have been pushed onto the 
stack, a minimum or a maximum operation may be 
performed as requested by the rule evaluator. 

The defuzzification procedure uses the center of 
gravity method. This is again a very heavily used 
solution because of its proved effectiveness.  The 
outputs will be defuzzified using the following 
formula: 
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where;   

resulti: represents the ith result of the rule 
evaluation, and 

weighti: represents the corresponding weighting 
coefficient. 

 
 
FIS IMPLEMENTATION 
 

Implementation is done using the Integrated 
Software Environment (ISE™) in the Xilinx® design 
software suite that allows you to take your design 
from design entry through Xilinx device 
programming. Field programmable gate arrays 
comprise an array of uncommitted circuit elements 
and interconnect resources. FPGA configuration is 
performed through programming by the end user. 

 

 
Fig. 3:  Phases of the implementation process. 
 
As illustrated in Fig. 3, the design of FPGA-

based systems is composed of four phases; 
- Design entry phase: code in a Verilog (used in our 

case), or HDL, or by a schematic representation of 
the desired function. 

- Synthesis phase: done automatically by the design 
tools, during which the constraints and pin 
assignments are specified.  

- Implementation phase: includes the translation, 
mapping and placing & routing.   

- Code generation phase: the device programming 
can be accomplished. 



Fig. 4: The top module schematic for the FIS. 
 
 
FIS Modules: 

Figure 4 shows the top module schematic for the 
implemented FIS. It consists of these modules; 

- Input registers module. 
- Memory module. 
- Rule evaluator module. 
- Fire strength calculator modu.e. :  
- Min/Max evaluator module.  
- Multiplier module. 
- Summer module.   
- Double summer module.   
- Divider module. 

Several control signals are required to  
synchronize the operation of  these modules according 
to the implemented algorithm.  

The fuzzy rules and membership functions are 
stored in the memory module. The format of the 
membership functions sets stored in memory 
(EPROM32X21M) is as follows: 
<port#> & <set#> & <start_value> & <end_value> 
The fuzzy rules are encoded in memory 
(EPROM64X22R) using the format: 
<rule#> IF <i/p#> is <set#> <AND/OR><i/p#> is <set#> 

THEN <o/p#> is <set#> 
 
Table 1 lists the general specification of the FIS, 

which has been realised on the Xilinx Spartan-3 
FPGA board[13]. The general characteristics, and the 
macro statistics of this board are given in table 2 and 
table 3 respectively. This implementation uses only 
49% of the available slices, 46% of the available look-
up tables (LUTs) and 12% of input-output blocks 
(IOBs), see table 4.  

The average connection delay for this design is 
about 1.0 ns, the maximum pin delay is: 5.2 ns, then 
the maximum operating frequency is 78 MHz, and the 
total memory usage is 154 MB. 

 

Table 1: FIS specifications. 
Max. number of inputs up to 4 
Max. number of outputs up to 4 
Membership functions number up to 8 
Max. number of rules  64 
Membership functions shape all forms 
Resolution 8-bit 
Defuzzification center of gravity
 

Table 2: Device Characteristics 
Device: Xilinx Spartan-3 XC3S200FT256 
Slices: 3584, 256-ball thin Ball Grid Array 

System 
gates 

Logic 
cells 

Multipliers 
blocks (18*18) 

 Clock 
Managers 

Max I/O 
Signals 

200 k 4320 12 4 173 
Select RAM 

18K-bits 
Blocks 

RAM  
K-bits 

In-system  
PROM 

Fast  
Asynchronous SRAM

12 216 2 M-bits 1 M-byte 
 

Table 3:  Macro Statistics 
LUT RAMs 2x8-bit dual-port  
ROMs 7 ROMs, 16x4-bit each 
Registers 55 
Counters 2 
Multiplexers 3 
Accumulators 2 
Latches 8 
Comparators 7 
Multipliers 32x8-bit 
Adders/Subtractors 89 

 
Table 4: Utilization Summary 

Item Available Used Percentage 
Slices 3584 1787 49% 
Slice Flip Flops 7168 85 1% 
4 input LUTs 7168 3303 46% 
Bonded IOBs 173 22 12% 

 
 



FIS Operation: 
When the rule evaluator is first triggered by the 

Start signal, it checks the input registers. If they are 
ready, the evaluation begins by starting to retrieve the 
rules from the memory one by one in order. Each rule 
is then decoded and ready to be executed.   

Execution of a rule first begins by sending the 
membership address to the membership memory 
(EPROM32X21M), which in turn sends the 
membership function to the fire strength calculator 
module. The calculator computes the fire strength of 
each input of that rule and sends it to the Min/Max 
evaluator with a control signal sent to the rule 
evaluator indicating the fire strength is calculated and 
ready. The weight of the output of each rule is also 
computed and presented to the multiplier directly. The 
rule evaluator then sends a control signal to the 
Min/Max evaluator, after each rule is evaluated, so 
that the operation (AND/OR) of the rule takes place.  
The resulting fire strength of the evaluator is 
presented to both the multiplier and the summer. Then 
a control signal indicating the end of the operation 
evaluation is generated. 

The calculation of the center of gravity equation 
requires the calculation of the dividend, which is the 
sum of products of the resulting fire strength and the 
calculated weight of the output of each rule.  This is 
done by using a multiplier and a double precision 
summer.  The divisor is the sum of the resulting fire 
strengths.  Then the final crisp value is produced from 
the divider. 

 
 

FPGA-BASED WASHING MACHINE 
CONTROLLER 

 
Real-time systems have to respond to events 

occurring at irregular intervals. These events cause the 
system to move to a different state. In this case, state 
machine diagrams are used to model the behavior of 
real-time systems in response to internal or external 
events. State machine models are a good way of 
representing the design of a real-time system. Figure 5 
shows a state machine model of a simple washing 
machine controlled by a fuzzy algorithm embedded in 
the FPGA. In fact, real washing machine state models 
are more complex than the given diagram. The 
operation state, for example, can be expanded as 
illustrated in Fig. 5. All hardware functions and 
software tasks are implemented by the FPGA.  

According to the washing machine state diagram, 
the FPGA will perform the following tasks: 
- read the user input commands. 
- measure motor rotating speed. 
- compute the required actuating signal applied to 

the PM motor. 
- generate the required control and monitoring 

signals. 
 

 

 
Fig. 5: State machine model of a washing machine. 

 
 

PM motor control 
The washing machine control task requires high 

torque at low speeds and low torque at high speeds, as 
illustrated in Fig. 6. High amount of torque is required 
to perform the washing cycle. Higher spinning speeds 
lead to greater centrifugal force resulting in better 
water extraction, shorter spinning cycles, and shorter 
drying times. During the wash cycle, the PM motor 
operates in slow speed region. The motor starts 
accelerating to a low speed level, then there is a 
certain time interval of steady spin and this is 
followed by the deceleration back to zero speed[11].  

Upon completion of this positive operation 
sequence, the negative one is followed employing the 
same speed profile but with targeting the negative 
speed level.These operations alternate during wash 
cycle and the chosen wash program determines the 
overall time period of the wash cycle. The washing 
machine operation in spin-dry cycle starts by 
accelerating to a  pre-defined high speed level for a 
short time. Then decelerating speed down either to 
stop or to proceed to a low speed level. This cycle 
might be repeated several times depending on a 
chosen wash program. 

 
Fig. 6:  Speed-torque characteristic of direct drive 

washing machines. 



 
Fig. 7: FPGA-based PM Motor drive system. 

 
In order to run the PM motor efficiently, it is 

important to synchronize the frequency of the applied 
voltage to the rotor position of the PM rotor. An 
efficient control scheme is required to run the PM 
motor in sensorless drive. In this case, a fuzzy 
controller is proposed to satisfy the washing and 
drying cycles of the washing machine. 

 
Drive circuit elements 

 
The motor-drive circuit must detect the rotor 

position to synchronize the stator current with the 
rotor field. Given the rotor position, it is possible to 
drive the PM  motor efficiently because the drive 
circuit can align the stator current to the optimum 
angle relative to the rotor field[11]. The PM motor is 
generally driven by a 3-phase PWM inverter which 
converts a constant voltage to  3-phase voltages 
corresponding to the rotor position.  

The hardware schematic for real-time 
implementation of the direct drive system is shown in 
Fig. 7, it consists; 
- PM motor, with 8-pole rotor. 
- Rotor position detector, producing 24 pulses each 

revolution. 
- Speed measurement to provide online 

measurement of rotating shaft. 
- PWM inverter. 

 
The motor speed can be measured either by 

calculating the rotor position pulses during a fixed 
period, or by calculating the time between each 
consecutive pulses coming from the rotor position 
sensor. In this application, the second approach is 
used. The rotor position is sampled 24 times per 
revolution, and each pulse causes a request to the 
FPGA. The real-time response of the speed 
measurement and fuzzy control tasks becomes critical 
at high speed (1500rpm), at which the sampling 
interval is only 1.667 msec,  

The PWM inverter has two control signals; the 
motor voltage, and the motor frequency. These two 
signals are arranged to be independent control inputs 
into the inverter, so that each input can be adjusted 
without affecting the other. The FIS calculates the duty 
cycle timing of the power switches to control the 
sinusoidal voltage applied to each phase of the motor. 

 
Fig. 8: Motor speed response using fuzzy controller. 

 
 

SIMULATION RESULTS 
 
The embedded fuzzy controller has been tested 

with the PM motor running a real-time mode. In this 
section, the simulation of the propose fuzzy controller, 
which is embedded in the FPGA, is applied to a PM 
motor. The obtained results demonstrate that such a 
controller is able to drive the motor accurately for a 
wide range of operation. The operation of the PM 
motor drive system has been tested for step input. 
Figure 8 shows the control action generated from the 
FPGA and speed response of the motor during 
acceleration and deceleration.  The performance of the 
fuzzy controller can be improved by adaptively tuning 
a subset of its parameters such as number of 
membership functions and their shape. The obtained 
results demonstrate that the proposed fuzzy controller 
is quit enough for the washing machine control 
requirements.  

Figures 9 and 10 show the actuating signal and 
speed response for both washing and drying cycles. It 
is clear that such algorithm has a good tracking to 
input speed commands, and match the functionality of 
the washing machine. The obtained results 
demonstrate that such a controller is able to drive the 
motor accurately for a wide range of operation.  
 

 

 
 

Fig. 9: Motor speed response during washing cycle. 



 
Fig. 10: Motor speed response during drying cycle. 

 
 

CONCLUSION 
 

Fuzzy controllers have been shown to be very 
promising in controlling ill-defined and complicated 
systems. The design and implementation of an FPGA-
based washing machine control is presented in this 
paper. A typical fuzzy inference system, embedded on 
FPGA, has been used to control a PM motor. Also, 
the FPGA has been used for many computational and 
control tasks in a washing machine.  

It has been demonstrated that FPGAs are good 
computing devices which can be used to implement 
hardware functions and software tasks. Such 
implementation is suitable for the given application 
for these reasons: 
- Lead to shorter time-to-market for designs. 
- Reduce board size and cost. 
- Flexibility to adapt the hardware to changing 

application needs. 
- Provide high performance algorithms and 

functions for real-time applications.  
- Ease of usage. 
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