
FPGA-Based Fuzzy Inference System for Real-time Embedded
Applications

Dr. Kasim M. Al-Aubidy

Computer Eng. Dept, Philadelphia University, P O Box 1, Jordan, 19392
E-mail: alaubidy@gmail.com

Abstract:- The traditional way of implementing algorithms in software limits the performance of
real-time systems, since the data is processed serially. The new generation of FPGAs with embedded
processors are attracting the interest of the real-time applications. With enhanced capabilities most of
the processing tasks can be loaded from the software program stack to embedded processors on the
FPGA to improve performance and reduce the cost of the whole system. A fuzzy inference system
has been implemented on an FPGA, and used to control a PM motor in a washing machine. The
given results demonstrate the capability of such embedded controller in washing machine
applications where simplicity, reliability and stability are more important issues.

Keywords:- FPGA, Fuzzy logic, Fuzzy inference system, PM motor, Washing machine.

INTRODUCTION

The real world environment includes parameters

which are difficult or impossible to represent
mathematically. Real-time systems, such as robotics
and washing machines, are corrupted by
unstructured, noisy changing, and unknown
environmental parameters[1]. A successful design for
real-time systems should demonstrate the robustness
and the adaptation capability to properly compensate
for these changing conditions. Fuzzy logic is a
powerful problem-solving methodology to draw
definite conclusions from vague, ambiguous or
imprecise information[2]. It can be built into anything
from small, hand-held products to complex and large
systems. It uses an imprecise but very descriptive
language to deal with input data more like a human
operator. It is very robust and often works when first
implemented with little or no tuning.

Recently, filed programmable gate arrays
(FPGAs) have become a popular technology for
creating digital systems, since they can lead to shorter
time-to-market for designs than application specific
integrated circuits and allow design modifications to
be made after system creation and even in the field[3].
Advances in FPGA technology have enabled high-
speed processing of hardware and software tasks.
FPGAs are popular for high-speed, compute-intensive
applications. FPGAs have been used for many
computational tasks, and have been found to be
reasonable alternatives to custom hardware or
software implementations of real-time applications [4-
8]. The FPGAs were used to implement fuzzy
controllers[5,6], a feedforward neural network[7],
discrete wavelet transforms[8] and real-time signal
processing applications[9]. In these applications,
several hardware and software functions are
embedded on the FPGA. For example, the FPGA
implementation of a neural network observer[7] needs

278 multiplication, 67 hyperbolic functions and 28
divisions for its implementation.

This paper presents the design and FPGA
implementation of a general purpose fuzzy inference
system (FIS) on an FPGA. The implemented FPGA-
based FIS has been used to control the operation of a
permanent magnet (PM) motor in a washing machine.
PM motor drives are widely used as actuators in many
applications, due to its simple and reliable
mechanism[10]. PM motors provide advantages over
induction motors for washer applications. In a
sensorless PM drive system, an implicit rotor position
sensor is essential for controlling the power devices of
the inverter. Such a drive system is easy to implement
but produces high torque ripple which causes high
acoustic-noise. Therefore, the proposed fuzzy
controller embedded on the FPGA is used to control
the operation of the PM motor and to manage all tasks
in the washing machine.

Fig. 1: Block diagram of a general FIS.

FUZZY INFERENCE SYSTEM

A general fuzzy inference system consists of four
parts; the fuzzifier, rule base, inference engine and
defuzzifier, as shown in Fig. 1. A crisp input is
fuzzified by input membership function (MF) and
processed by a fuzzy logic interpretation of a fuzzy
rules. Then is followed by a defuzzification stage
resulting in a crisp output [2].

Fig. 2: Elements of a general FIS.

FIS Design:

The following steps are considered during the FIS
design and implementation process[2]:
- Define the control objectives and criteria.
- Determine the input and output relationships.
- Choose a minimum number of variables for FIS

inputs and outputs.
- Define a series of IF THEN rules to create the rule-

based structure of the FIS.
- Create fuzzy membership functions that define the

meaning of Input/Output terms used in the rules.
- Create the necessary fuzzy logic routines if

implementing in software, otherwise program the
rules into the fuzzy logic hardware engine.

- Test the system, evaluate the results, tune the rules
and membership functions, and retest until
satisfactory results are obtained.

 As an example, the proposed FIS has two-input,
single-output structure with 8-bit resolution. The
inference engine implements Mamdani's min-max
relation[2]. The defuzzification uses the center of
gravity method. The membership functions as well as
the fuzzy rules are stored in an EPROM

Figure 2 illustrates all elements required to
implement the proposed FIS. When new fire strength
is required, it fetches that value by invoking the fire
strength calculator. The rule evaluator requests fire
strength by supplying a pointer to the required input
and an address to the required membership of that
input. The fire strength calculator uses these pointers
as well as the value of the input to address a table in
the EPROM that contains all the membership
functions. The result is then presented to the min/max
evaluator which performs the evaluation of the logic
in the rule predicate. The single precision summer
adds each of the results into an accumulator that will
be used later as the denominator for the division. The
multiplier multiplies the result of the rule evaluation
by a coefficient, fetched from the EPROM,
representing the weight of the output of the rule. The
multiplied result is then accumulated in a double
precision accumulator. Once all the rules have been
evaluated, the defuzzification process begins. The
value in the double precision accumulator is divided
by the value in the single precision accumulator and
the result is sent to the output. The min/max evaluator

performs the above operations using a two register
stack. Once the two values have been pushed onto the
stack, a minimum or a maximum operation may be
performed as requested by the rule evaluator.

The defuzzification procedure uses the center of
gravity method. This is again a very heavily used
solution because of its proved effectiveness. The
outputs will be defuzzified using the following
formula:

∑
∑

=

== n

i i

n

i ii

result

weightresult
output

1

1
*

where;

resulti: represents the ith result of the rule
evaluation, and

weighti: represents the corresponding weighting
coefficient.

FIS IMPLEMENTATION

Implementation is done using the Integrated
Software Environment (ISE™) in the Xilinx® design
software suite that allows you to take your design
from design entry through Xilinx device
programming. Field programmable gate arrays
comprise an array of uncommitted circuit elements
and interconnect resources. FPGA configuration is
performed through programming by the end user.

Fig. 3: Phases of the implementation process.

As illustrated in Fig. 3, the design of FPGA-

based systems is composed of four phases;
- Design entry phase: code in a Verilog (used in our

case), or HDL, or by a schematic representation of
the desired function.

- Synthesis phase: done automatically by the design
tools, during which the constraints and pin
assignments are specified.

- Implementation phase: includes the translation,
mapping and placing & routing.

- Code generation phase: the device programming
can be accomplished.

Fig. 4: The top module schematic for the FIS.

FIS Modules:

Figure 4 shows the top module schematic for the
implemented FIS. It consists of these modules;

- Input registers module.
- Memory module.
- Rule evaluator module.
- Fire strength calculator modu.e. :
- Min/Max evaluator module.
- Multiplier module.
- Summer module.
- Double summer module.
- Divider module.

Several control signals are required to
synchronize the operation of these modules according
to the implemented algorithm.

The fuzzy rules and membership functions are
stored in the memory module. The format of the
membership functions sets stored in memory
(EPROM32X21M) is as follows:
<port#> & <set#> & <start_value> & <end_value>
The fuzzy rules are encoded in memory
(EPROM64X22R) using the format:
<rule#> IF <i/p#> is <set#> <AND/OR><i/p#> is <set#>

THEN <o/p#> is <set#>

Table 1 lists the general specification of the FIS,

which has been realised on the Xilinx Spartan-3
FPGA board[13]. The general characteristics, and the
macro statistics of this board are given in table 2 and
table 3 respectively. This implementation uses only
49% of the available slices, 46% of the available look-
up tables (LUTs) and 12% of input-output blocks
(IOBs), see table 4.

The average connection delay for this design is
about 1.0 ns, the maximum pin delay is: 5.2 ns, then
the maximum operating frequency is 78 MHz, and the
total memory usage is 154 MB.

Table 1: FIS specifications.
Max. number of inputs up to 4
Max. number of outputs up to 4
Membership functions number up to 8
Max. number of rules 64
Membership functions shape all forms
Resolution 8-bit
Defuzzification center of gravity

Table 2: Device Characteristics
Device: Xilinx Spartan-3 XC3S200FT256
Slices: 3584, 256-ball thin Ball Grid Array

System
gates

Logic
cells

Multipliers
blocks (18*18)

 Clock
Managers

Max I/O
Signals

200 k 4320 12 4 173
Select RAM

18K-bits
Blocks

RAM
K-bits

In-system
PROM

Fast
Asynchronous SRAM

12 216 2 M-bits 1 M-byte

Table 3: Macro Statistics
LUT RAMs 2x8-bit dual-port
ROMs 7 ROMs, 16x4-bit each
Registers 55
Counters 2
Multiplexers 3
Accumulators 2
Latches 8
Comparators 7
Multipliers 32x8-bit
Adders/Subtractors 89

Table 4: Utilization Summary

Item Available Used Percentage
Slices 3584 1787 49%
Slice Flip Flops 7168 85 1%
4 input LUTs 7168 3303 46%
Bonded IOBs 173 22 12%

FIS Operation:
When the rule evaluator is first triggered by the

Start signal, it checks the input registers. If they are
ready, the evaluation begins by starting to retrieve the
rules from the memory one by one in order. Each rule
is then decoded and ready to be executed.

Execution of a rule first begins by sending the
membership address to the membership memory
(EPROM32X21M), which in turn sends the
membership function to the fire strength calculator
module. The calculator computes the fire strength of
each input of that rule and sends it to the Min/Max
evaluator with a control signal sent to the rule
evaluator indicating the fire strength is calculated and
ready. The weight of the output of each rule is also
computed and presented to the multiplier directly. The
rule evaluator then sends a control signal to the
Min/Max evaluator, after each rule is evaluated, so
that the operation (AND/OR) of the rule takes place.
The resulting fire strength of the evaluator is
presented to both the multiplier and the summer. Then
a control signal indicating the end of the operation
evaluation is generated.

The calculation of the center of gravity equation
requires the calculation of the dividend, which is the
sum of products of the resulting fire strength and the
calculated weight of the output of each rule. This is
done by using a multiplier and a double precision
summer. The divisor is the sum of the resulting fire
strengths. Then the final crisp value is produced from
the divider.

FPGA-BASED WASHING MACHINE
CONTROLLER

Real-time systems have to respond to events

occurring at irregular intervals. These events cause the
system to move to a different state. In this case, state
machine diagrams are used to model the behavior of
real-time systems in response to internal or external
events. State machine models are a good way of
representing the design of a real-time system. Figure 5
shows a state machine model of a simple washing
machine controlled by a fuzzy algorithm embedded in
the FPGA. In fact, real washing machine state models
are more complex than the given diagram. The
operation state, for example, can be expanded as
illustrated in Fig. 5. All hardware functions and
software tasks are implemented by the FPGA.

According to the washing machine state diagram,
the FPGA will perform the following tasks:
- read the user input commands.
- measure motor rotating speed.
- compute the required actuating signal applied to

the PM motor.
- generate the required control and monitoring

signals.

Fig. 5: State machine model of a washing machine.

PM motor control
The washing machine control task requires high

torque at low speeds and low torque at high speeds, as
illustrated in Fig. 6. High amount of torque is required
to perform the washing cycle. Higher spinning speeds
lead to greater centrifugal force resulting in better
water extraction, shorter spinning cycles, and shorter
drying times. During the wash cycle, the PM motor
operates in slow speed region. The motor starts
accelerating to a low speed level, then there is a
certain time interval of steady spin and this is
followed by the deceleration back to zero speed[11].

Upon completion of this positive operation
sequence, the negative one is followed employing the
same speed profile but with targeting the negative
speed level.These operations alternate during wash
cycle and the chosen wash program determines the
overall time period of the wash cycle. The washing
machine operation in spin-dry cycle starts by
accelerating to a pre-defined high speed level for a
short time. Then decelerating speed down either to
stop or to proceed to a low speed level. This cycle
might be repeated several times depending on a
chosen wash program.

Fig. 6: Speed-torque characteristic of direct drive

washing machines.

Fig. 7: FPGA-based PM Motor drive system.

In order to run the PM motor efficiently, it is

important to synchronize the frequency of the applied
voltage to the rotor position of the PM rotor. An
efficient control scheme is required to run the PM
motor in sensorless drive. In this case, a fuzzy
controller is proposed to satisfy the washing and
drying cycles of the washing machine.

Drive circuit elements

The motor-drive circuit must detect the rotor

position to synchronize the stator current with the
rotor field. Given the rotor position, it is possible to
drive the PM motor efficiently because the drive
circuit can align the stator current to the optimum
angle relative to the rotor field[11]. The PM motor is
generally driven by a 3-phase PWM inverter which
converts a constant voltage to 3-phase voltages
corresponding to the rotor position.

The hardware schematic for real-time
implementation of the direct drive system is shown in
Fig. 7, it consists;
- PM motor, with 8-pole rotor.
- Rotor position detector, producing 24 pulses each

revolution.
- Speed measurement to provide online

measurement of rotating shaft.
- PWM inverter.

The motor speed can be measured either by

calculating the rotor position pulses during a fixed
period, or by calculating the time between each
consecutive pulses coming from the rotor position
sensor. In this application, the second approach is
used. The rotor position is sampled 24 times per
revolution, and each pulse causes a request to the
FPGA. The real-time response of the speed
measurement and fuzzy control tasks becomes critical
at high speed (1500rpm), at which the sampling
interval is only 1.667 msec,

The PWM inverter has two control signals; the
motor voltage, and the motor frequency. These two
signals are arranged to be independent control inputs
into the inverter, so that each input can be adjusted
without affecting the other. The FIS calculates the duty
cycle timing of the power switches to control the
sinusoidal voltage applied to each phase of the motor.

Fig. 8: Motor speed response using fuzzy controller.

SIMULATION RESULTS

The embedded fuzzy controller has been tested

with the PM motor running a real-time mode. In this
section, the simulation of the propose fuzzy controller,
which is embedded in the FPGA, is applied to a PM
motor. The obtained results demonstrate that such a
controller is able to drive the motor accurately for a
wide range of operation. The operation of the PM
motor drive system has been tested for step input.
Figure 8 shows the control action generated from the
FPGA and speed response of the motor during
acceleration and deceleration. The performance of the
fuzzy controller can be improved by adaptively tuning
a subset of its parameters such as number of
membership functions and their shape. The obtained
results demonstrate that the proposed fuzzy controller
is quit enough for the washing machine control
requirements.

Figures 9 and 10 show the actuating signal and
speed response for both washing and drying cycles. It
is clear that such algorithm has a good tracking to
input speed commands, and match the functionality of
the washing machine. The obtained results
demonstrate that such a controller is able to drive the
motor accurately for a wide range of operation.

Fig. 9: Motor speed response during washing cycle.

Fig. 10: Motor speed response during drying cycle.

CONCLUSION

Fuzzy controllers have been shown to be very
promising in controlling ill-defined and complicated
systems. The design and implementation of an FPGA-
based washing machine control is presented in this
paper. A typical fuzzy inference system, embedded on
FPGA, has been used to control a PM motor. Also,
the FPGA has been used for many computational and
control tasks in a washing machine.

It has been demonstrated that FPGAs are good
computing devices which can be used to implement
hardware functions and software tasks. Such
implementation is suitable for the given application
for these reasons:
- Lead to shorter time-to-market for designs.
- Reduce board size and cost.
- Flexibility to adapt the hardware to changing

application needs.
- Provide high performance algorithms and

functions for real-time applications.
- Ease of usage.

REFERENCES

[1]. Wang, L. X., 1994. Adaptive fuzzy systems and

control: design and stability analysis. Prentice
Hall Intr. Inc, NJ.

[2]. Negnevitsky, M.,2005. Artificial intelligence; a
guide to intelligent systems. Addison Wesley,
USA.

[3]. Ciletti M. D., 2002. Advanced digital design with
the Verilog HDL. Prentice Hall, USA.

[4]. Graham, P. and Nelson, B, 1998. FPGA-Based
Sonar Processing. Available online on:
http//www.splish.ee.byu.edu/docs/fpga98.beam.pdf.

[5]. Muresan, V., Crisu, D. and Wang, X, 1997. From
VHDL to FPGA: a case study of a fuzzy logic
controller. Proceedings of the Intr. Conf. of
Young Lecturers and PhD Students, 11-17
August, Hungary, pp:11-17.

[6]. Welch, J. T. and Carletta, J., 2000. A direct
mapping FPGA architecture for industrial process
control applications. Proceeding of the 2000
IEEE Intr. Conf. on Computer Design: VLSI in
Computers & Processors, ICCD2000.

[7]. Kird M. and Masmoudi D., 2005. FPGA
implementation of a feedforward neural network.
3rd Intr. Conf. on systems, signals & devices,
SSD05, 21-24 March, Tunisia, pp: 1-6.

[8]. Mehta, T. A., and Rotem J., 2005. FPGA co-
processing solutions for signal processing
applications. ECE Journal, February, pp:26-27.

[9]. Djemal, R., Demigny D., and Tourki, R. 2005. A
real-time image processing with a compact
FPGA-based architecture. Journal of computer
science, 1 (2): 207-214.

 [10]. Murray A., 2006. Sensorless Motor Control
Simplifies Washer Drives. Power Electronics
Technology Magazine, June, pp:14-21.

[11]. Al-Aubidy, K. M., and Ali, M. M., 2007. Neuro-
Fuzzy controller for a Sensorless PM motor drive
for washing machines. 4th Intr. Conf. on systems,
signals & devices, SSD05, 21-24 March, Tunisia.

 [12]. Erenay K, Ciprut I, Tezduyar, & Istefanopulos,
1998. Application of fuzzy algorithms to the
speed control of washing machines with
brushless DC motors. Proceedings of
International Conference on Electric Machines,
Istanbul, Turkey, pp:1231-1236.

[13]. Digilentic Co, 2004. Spartan-3 starter kit board
user guide, Digilentic Co., Available online on:
www.digilentinc.com.

