

Engine cycle Assumption for analysis The almost-constant-pressure intake and exhaust strokes are assumed to be constant pressure. Compression strokes and expansion strokes are approximated by isentropic processes (reversible and adiabatic) The combustion process is idealized by a constant-volume process (SI cycle), a constant-pressure process (CI cycle), or a combination of both (CI Dual cycle). Exhaust blow-down is approximated by a constantvolume process. ✤All processes are considered reversible

Engine cycle	
According to the previous assumption, the the sed	following air-relations can
Pv = RT	(a)
PV = mRT	(b)
$P = \rho R T$	(c)
$dh = c_P dT$	(d)
$du = c_v dT$	(e) (3-1)
$Pv^k = \text{constant}$ isentropic process	(f) (**)
$Tv^{k-1} = \text{constant}$ isentropic process	(g)
$TP^{(1-k)/k} = \text{constant}$ isentropic process	(h)
$w_{1-2} = (P_2v_2 - P_1v_1)/(1-k)$ isentropic work in closed system	(i)
$= R(T_2 - T_1)/(1 - k)$	
$c = \sqrt{kRT}$ speed of sound	(j)

Engine cycle	
	RE ADELPHIA UNOF
$w_{1-2} = (P_2 v_2 - P_1 v_1)/(1-k) = R(T_2 - T_1)/(1-k)$ = $(u_1 - u_2) = c_v(T_1 - T_2)$	(3-7)
Process 2-3—constant-volume heat input (combustion). All valves closed:	
$v_3 = v_2 = v_{\text{TDC}}$	(3-8)
$w_{2-3} = 0$	(3-9)
$Q_{2-3} = Q_{\rm in} = m_f Q_{\rm HV} \eta_c = m_m c_v (T_3 - T_2)$	(3-10)
$= (m_a + m_f)c_v(T_3 - T_2)$	
$Q_{\rm HV} \eta_c = ({\rm AF}+1)c_v(T_3-T_2)$	(3-11)
$q_{2-3} = q_{\rm in} = c_v(T_3 - T_2) = (u_3 - u_2)$	(3-12)
$T_3 = T_{\max}$	(3-13)
$P_3 = P_{\max}$	(3-14)

Engine cycle		
Process 5-6—constant-pressure exhaust stroke at P _o . Exhaust valve open and intake valve closed:		IS ADELPHIA UN
$P_5 = P_6 = P_o$	(3-23)	
$w_{5-6} = P_o(v_6 - v_5) = P_o(v_6 - v_1)$	(3-24)	
Thermal efficiency of Otto cycle:		
$(\eta_t)_{\text{OTTO}} = w_{\text{net}} / q_{\text{in}} = 1 - (q_{\text{out}} / q_{\text{in}})$	(3-25)	
$= 1 - [c_v(T_4 - T_1)/c_v(T_3 - T_2)]$		
$= 1 - [(T_4 - T_1)/(T_3 - T_2)]$		
Only cycle temperatures need to be known to determine thermal. This can be simplified further by applying ideal gas relationships for the compression and expansion strokes and recognizing that $v_1 = v_4$ and $v_7 = v_4$.	efficiency. e isentropic = v ₃ :	
$(T_2/T_1) = (v_1/v_2)^{k-1} = (v_4/v_3)^{k-1} = (T_3/T_4)$	(3-26)	
Rearranging the temperature terms gives:		
$T_4/T_1 = T_3/T_2$	(3-27)	
Equation (3-25) can be rearranged to:		
$(\eta_t)_{\text{OTTO}} = 1 - (T_1/T_2) \{ [(T_4/T_1) - 1] / [(T_3/T_2) - 1] \}$	(3-28)	
Using Eq. (3-27) gives:		
$(\eta_t)_{\rm OTTO} = 1 - (T_1/T_2)$	(3-29)	
Combining this with Eq. (3-4):		

A four-cylinder, 2.5-liter, SI automobile engine operates at WOT on a four-stroke airstandard Otto cycle at 3000 RPM. The engine has a compression ratio of 8.6:1, a mechanical efficiency of 86%, and a stroke-to-bore ratio S/B = 1.025. Fuel is isocotane with AF = 15, a heating value of 44,300 kJ/kg, and combustion efficiency $\eta_c = 100\%$. At the start of the compression stroke, conditions in the cylinder combustion chamber are 100 kPa and 60°C. It can be assumed that there is a 4% exhaust residual left over from the previous cycle.

Do a complete thermodynamic analysis of this engine.

For one cylinder:

Displacement volume:

 $V_d = 2.5$ liter/4 = 0.625 L = 0.000625 m³

Engine cycle

Equation (2-37c) is used to find brake mean effective pressure:

 $bmep = \eta_m(imep) = (0.86)(1649 \text{ kPa}) = 1418 \text{ kPa}$

This allows another way of finding torque using Eq. (2-41), which gives consistent results:

 $\tau = (\text{bmep})V_d/4\pi = (1418 \text{ kPa})(0.0025 \text{ m}^3)/4\pi = 0.282 \text{ kN-m}$

Brake specific power using Eq. (2-51):

BSP = \dot{W}_k/A_p = (88.6 kW)/{[($\pi/4$)(9.19 cm)²](4 cyl)} = 0.334 kW/cm²

Output per displacement using Eq. (2-52):

$$OPD = \dot{W}_{h}/V_{d} = (88.6 \text{ kW})/(2.5 \text{ L}) = 35.4 \text{ kW/L}$$

Equation (2-58) is used to find brake specific fuel consumption:

