

EXAMPLE 7.2 CONTINUED	
S T aa tt H	OLUTION he distribution can be determined by finding the shear stress at an <i>rbitrary height y</i> from the neutral axis, Fig. 7–10b, and then plotting his function. Here, the dark colored area A' will be used for $Q.*$ lence
	$Q = \overline{y}'A' = \left[y + \frac{1}{2}\left(\frac{h}{2} - y\right)\right]\left(\frac{h}{2} - y\right)b = \frac{1}{2}\left(\frac{h^2}{4} - y^2\right)b$
А	applying the shear formula, we have
	$\tau = \frac{VQ}{It} = \frac{V(\frac{1}{2})[(\hbar^2/4) - y^2]b}{(\frac{1}{12}b\hbar^3)b} = \frac{6V}{b\hbar^3}(\frac{\hbar^2}{4} - y^2) $ (1)
Copyri	ght© 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE 7.3 CONTINU	
	For point B' , $t_B = 0.300$ m, and A' is the dark shaded area shown in Fig. 7–11 <i>c</i> . Thus,
0.02 m	$Q_{B'} = \overline{y}' A' = [0.110 \text{ m}](0.300 \text{ m})(0.02 \text{ m}) = 0.660(10^{-3}) \text{ m}^3$
	so that
$\overrightarrow{A'}$ $\overrightarrow{B'}$ $\overrightarrow{0.100}$ m	$\tau_{B'} = \frac{VQ_{B'}}{It_{B'}} = \frac{80(10^3) \text{ N}(0.660(10^{-3}) \text{ m}^3)}{155.6(10^{-6}) \text{ m}^4(0.300 \text{ m})} = 1.13 \text{ MPa}$
N / A	For point $B, t_B = 0.015$ m and $Q_B = Q_{B'}$, Fig. 7–11 <i>c</i> . Hence
	$\tau_B = \frac{VQ_B}{It_B} = \frac{80(10^3) \text{ N}(0.660(10^{-3}) \text{ m}^3)}{155.6(10^{-6}) \text{ m}^4(0.015 \text{ m})} = 22.6 \text{ MPa}$
(c)	Note from the discussion of "Limitations on the Use of the Shear
Fig. 7–11	Formula" that the calculated value for both $\tau_{B'}$ and τ_{B} will actually be very misleading. Why?
	Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE 7.3 CONTI	NUED	
Thus,		
$\tau_C = \tau_{\max} = \frac{VQ_C}{It_C} = \frac{80}{1.00}$	$\frac{(10^3) \text{ N}[0.735(10^{-3}) \text{ m}^3]}{555.6(10^{-6}) \text{ m}^4(0.015 \text{ m})} = 25.2 \text{ MPa}$	
NOTE: From Fig. 7–11 <i>b</i> , no the web and is almost unif 22.6 MPa to 25.2 MPa. It is f permit the use of calculatir section of the web rather th discussed further in Chapter	ote that most of the shear stress occurs in orm throughout its depth, varying from or this reason that for design, some codes g the average shear stress on the cross aan using the shear formula. This will be 11.	
	Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall	

GENERAL EQUATIONS OF PLANE-STRESS TRANSFORMATION (cont)

- Sign convention (continued)
- Both the x-y and x'-y' system follow the right-hand rule
- The orientation of an inclined plane (on which the normal and shear stress components are to be determined) will be defined using the angle θ. The angle θ is measured from the positive x to the positive x'-axis. It is positive if it follows the curl of the right-hand fingers.

Copyright © 2011 Pearson Education South Asia Pte Ltd

Fig. 9–20 <i>a</i> . Represent this state of stress on a counterclockwise from the position shown. SOLUTION Construction of the Circle. From the prob $\sigma_x = -8 \text{ ksi}$ $\sigma_y = 12 \text{ ksi}$ The σ and τ axes are established in Fig. 9–20 <i>b</i> . <i>C</i> is on the σ axis at $\sigma_{avg} = \frac{-8 + 12}{2} = 21$ The reference point for $\theta = 0^\circ$ has coordina	an element oriented 30° plem data, $\tau_{xy} = -6 \text{ ksi}$. The center of the circle (a) ksi ttes $A(-8, -6)$.
$R = \sqrt{(10)^2 + (6)^2} = 1$	11.66

21

XAMPLE 9.9 CONTINUED	
These two stress components act on face <i>BD</i> of the element shown in Fig. 9–20c since the x' axis for this face is oriented 30° <i>counterclockwise</i> from the x axis. The stress components acting on the adjacent face <i>DE</i> of the element, which is 60° <i>clockwise</i> from the positive x axis, Fig. 9–20c, are represented by the coordinates of point Q on the circle. This point lies on the radial line <i>CQ</i> , which is 180° from <i>CP</i> . The coordinates of point Q are $\sigma_{x'} = 2 + 11.66 \cos 29.04^\circ = 12.2 \text{ksi}$ Ans. $\tau_{x'y'} = -(11.66 \sin 29.04) = -5.66 \text{ksi}$ (check) Ans.	(c) y' = 5.66 ksi 8.20 ksj 30° y' = x 12.2 ksi 60°