Chapter seven + nine

Shear + stress transformation

By
Laith Batarseh
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I .1. shear rormula _

Transverse shear stress always has its associated longitudinal shear
stress acting along longitudinal planes of the beam.
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7.1. shear formula vg.‘g‘&v

Effects of Shear Stresses:
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Boards not bonded together Boards bonded together
(a) (b)

Fig.7-2

Warping of cross section
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7.1. shear formula ¥, m £
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EXAMPLE | 7.1

The solid shaft and tube shown in Fig. 7-9a are subjected to the shear
force of 4 kN. Determine the shear stress acting over the diameter of
each cross section.

SOLUTION
Section Properties. Using the table on the inside front cover, the
moment of inertia of each section, calculated about its diameter (or
neutral axis), is

il 4 i 4 -6 4 (a)
Lo = et = (005 m)* = 4.909(10%) m

Tipe = %TF(C‘: —ch= %’JT[(0.0S m)* = (0.02 m)*] =4.783(10%) m*

The semicircular area shown shaded in Fig. 7-9b, above (or below)
each diameter, represents Q, because this area is “held onto the member”
by the longitudinal shear stress along the diameter.

., de (w4005 m) (7(0.05 m)*) s
Ouolia = V'A 73”( > )f . ( 5 =8333(10"%) m
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EXAMPLE | 7.1 CONTINUED

de, [mwc? de; (mwc?
= ShiAl =0 o) _ 7;( l)
Qure = 2¥ 377( 7P

_ 4(0.;57 m) (w(o.qzs m)Z) B 4(0.307? m) (wm.ozz m)Z)

= 78.0(10"%) m®

Shear Stress. Applying the shear formula where ¢ = 0.1 m for the
solid section, and ¢ = 2(0.03 m) = 0.06 m for the tube, we have
VQ _ 4(10°) N(8333(10"%) m%)

It 4.909(107%) m*(0.1 m)

VQ  4(10°) N(78.0(107%) m?)

T i

T 4.783(107%) mA(0.06 m)

= 679 kPa Ans.

Tsolid =

= 1.09 MPa Ans.

NOTE: As discussed in the limitations for the shear formula, the
calculations performed here are valid since the shear stress along
the diameter is vertical and therefore tangent to the boundary of the
cross section. An element of material on the diameter is subjected to

(b)
“pure shear” as shown in Fig. 7-9b. Fig. 7-9
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EXAMPLE | 7.2

Determine the distribution of the shear stress over the cross section of
the beam shown in Fig. 7-10a.
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EXAMPLE | 7.2 CONTINUED

SOLUTION

The distribution can be determined by finding the shear stress at an
arbitrary height y from the neutral axis, Fig. 7-10b, and then plotting
this function. Here, the dark colored area A" will be used for Q.

Hence
Q,f,A,,[ +l(ﬁ, )](ﬁ, ) ,l(’ﬁ, 2)b
= e\ m e TS gl

Applying the shear formula, we have

)

T = = 2l

,Q,W,g(pﬂ )
I (Lb1)b A
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EXAMPLE | 7.2 CONTINUED

Applying the shear formula, we have

vo V)04 = ¥ 6V(W 0 @
= = | e y
It (ﬁ th)b b\ 4

This result indicates that the shear-stress distribution over the cross
section is parabolic. As shown in Fig. 7-10c, the intensity varies from
zero at the top and bottom, y = +A/2. to a maximum value at the
neutral axis, y = 0. Specifically, since the area of the cross section is
A = bh,then at y = 0 we have

Shear-stress distribution
(¢)

Tmax = 15K (2)

Fig. 7-10 A

*The area below y can also be used [A" = b(h/2 + y)], but doing so involves a bit
more algebraic manipulation.

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE | 7.2CONTINUED

Tmax
A
Typical shear failure of this wooden
beam occurred at the support and
through the approximate center of its
(d) cross section.

Fig. 7-10 (cont.)

This same value for 7,, can be obtained directly from the shear
formula, 7 = VQ/It, by realizing that 7 ,, occurs where Q is largest,
since V, I, and t are constant. By inspection, Q will be a maximum
when the entire area above (or below) the neutral axis is considered;
thatis, A" = bh/2andy" = h/4. Thus,

Ve _ VU@ v
max It

[0 |p T A
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EXAMPLE | 7.2CONTINUED

By comparison, 7,y is 50% greater than the average shear stress
determined from Eq. 1-7; that is, 74y = V/A.

Itisimportant to realize that 7 ,,, also acts in the longitudinal direction
of the beam, Fig. 7-10d. It is this stress that can cause a timber beam to
fail as shown Fig. 7-10e. Here horizontal splitting of the wood starts
to occur through the neutral axis at the beam’s ends, since there the
vertical reactions subject the beam to large shear stress and wood has
a low resistance to shear along its grains, which are oriented in the
longitudinal direction.

It is instructive to show that when the shear-stress distribution, Eq. 1,
is integrated over the cross section it yields the resultant shear V. To
do this, a differential strip of area d A = b dy is chosen, Fig. 7-10c, and
since 7 acts uniformly over this strip, we have

i/2 >
o (K
dd= | 2Vl
[f [h/zbh3(4 y) J
vl 1,]"
=—5| 7y -2
#4773

6V hz(h h) 1(B KB
= Sl = e
| 4\2 2/ 3\8 8
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EXAMPLE | 7.3

A steel wide-flange beam has the dimensions shown in Fig. 7-11a.
If it is subjected to a shear of V' = 8B0kN, plot the shear-stress
distribution acting over the beam’s cross-sectional area.

20 mm

75 = 113 MPa

75 =22.6 MPa

7c =252 MPa

22.6 MPa
1.13 MPa

- o o — -
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EXAMPLE | 7.3 CONTINUED

SOLUTION

Since the flange and web are rectangular elements, then like the
previous example, the shear-stress distribution will be parabolic and in
this case it will vary in the manner shown in Fig. 7-11b. Due to
symmetry, only the shear stresses at points B, B, and C have to be
determined. To show how these values are obtained, we must first
determine the moment of inertia of the cross-sectional area about the
neutral axis. Working in meters, we have

= [11—2(0.015 m)(0.200 m)s}

+ 2[11—2(0.300 m)(0.02m)? + (0.300 m)(0.02 m)(0.110 rn)Z:I

= 155.6(107%) m*

Copyright ® 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE | 7.3 CONTINUED

0.02m

0300 m*-{_l_

=Ry e
5B 0.100m
(|
(c)
Fig, 711

A

For point B’, tg' = 0.300 m, and A’ is the dark shaded area shown
in Fig. 7-11c. Thus,

Qp =y A’ = [0.110 m](0.300 m)(0.02 m) = 0.660(107) m*
so that
VQp  80(10% N(0.660(107%) m?)
"E T Iy 155.6(10°%) m*(0.300 m)
For point B,tg = 0.015m and Qg = Qp, Fig. 7-11c. Hence

= 1.13 MPa

VO 80(10°) N(0.660(1073) m®)
BT Iy T 1556(10°%) m*(0.015 m)
Note from the discussion of “Limitations on the Use of the Shear

Formula” that the calculated value for both 75 and 75 will actually be
very misleading. Why?

= 22.6 MPa

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall
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EXAMPLE | 7.3 CONTINUED

0.02m

0,300m4-{i

Fig. 7-11 (cont.)

For point C, ¢ = 0.015m and A’ is the dark shaded area shown in
Fig. 7-11d. Considering this area to be composed of two rectangles,
we have

Qc = Sy'A’ = [0.110m](0.300 m)(0.02 m)
+ [0.05 m](0.015 m)(0.100 m)

= 0.735(1073) m?

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE | 7.3 CONTINUED

Thus,

VQe  80(10°) N[0.735(107%) m’]

= =252 MP.
It 155.6(10°) m*(0.015 m) !

T = Tmax —

NOTE: From Fig. 7-11b, note that most of the shear stress occurs in
the web and is almost uniform throughout its depth, varying from
22.6 MPa to 25.2 MPa. It is for this reason that for design, some codes
permit the use of calculating the average shear stress on the cross
section of the web rather than using the shear formula. This will be
discussed further in Chapter 11.

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall
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EXAMPLE | 7.4

65 kN/m The beam shown in Fig. 7-12a is made from two boards. Determine
the maximum shear stress in the glue necessary to hold the boards
together along the seam where they are joined.

SOLUTION

Internal Shear. The support reactions and the shear diagram for the
beam are shown in Fig. 7-12b. It is seen that the maximum shear in the
beam is 19.5 kN.

Section Properties. The centroid and therefore the neutral axis
will be determined from the reference axis placed at the bottom of the
cross-sectional area, Fig. 7-12a. Working in units of meters, we have

_ (0075 m)(0.150m)(0.030 m) + [0.165 m](0.030 m)(0.1S0m) _
a (0.150 m)(0.030 m) + (0.030 m)(0.150 m) cam

Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE | 7.4 CONTINUED

The moment of inertia, about the neutral axis, Fig. 7-12a, is therefore

V (kN) Ii= [11—2(0.030 m)(0.150m)* + (0.150 m)(0.030 m)(0.120 m — 0.075 m)l}
6.5

4\5 8 ym + [11—2(0.150 m)(0.030m)? + (0.030 m)(0.150 m)(0.165 m — 0.120 m)z}

=27.0(107%) m*
®) S0 The top board (flange) is being held onto the bottom board (web) by

the glue, which is applied over the thickness ¢ = 0.03 m. Consequently
A’ is defined as the area of the top board, Fig. 7-12a. We have

Q=7A =[0180m — 0.015m — 0.120 m](0.03 m)(0.150 m)
= 0.2025(107%) m®

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

6/5/2014



EXAMPLE | 7.4 CONTINUED

V=195kN Shear Stress. Using the above data and applying the shear formula
yields
Plane containing glue

vo  19.5(10%) N(0.2025(107%) m®)

e 270(10%) m'0030m) ooMPa Ans
4.88 MPa
The shear stress acting at the top of the bottom board is shown in
5 Fig. 7-12c.
(©
Fig. 7-12 NOTE: Itis the glue’s resistance to this longitudinal shear stress that

holds the boards from slipping at the right-hand support.

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Stress transformation |

GENERAL EQUATIONS OF PLANE-STRESS TRANSFORMATION

The state of plane stress at a point is uniquely represented by three
components acting on an element that has a specific orientation at the
point.

Sign Convention:
Positive normal stress acts outward

,‘
from all faces —I—‘ -

Positive shear stress acts upwards —{‘ ‘|—u—
on the right-hand face of the element 4—1—

(b) ®

Positive Sign Convention

6/5/2014
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O').
— > Ty
X
O.X
B e —
(@)
+0,
y
v
—— T,

(b}
(a) ST .
Positive Sign Convention
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GENERAL EQUATIONS OF PLANE-STRESS
TRANSFORMATION (cont)

e Sign convention (continued)
*  Both the x-y and x’-y’ system follow the right-hand rule

* The orientation of an inclined plane (on which the normal and shear
stress components are to be determined) will be defined using the angle
6. The angle 8 is measured from the positive x to the positive x’-axis. It is
positive if it follows the curl of the right-hand fingers.

0\
—_— T
[ Iy
]
(a) (b)
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(b)
(a)
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GENERAL EQUATIONS OF PLANE-STRESS
TRANSFORMATION (cont)

e Normal and shear stress components:
— Consider the free-body diagram of the segment

G, AAsing
© @

Copyright © 2011 Pearson Education South Asia Pte Ltd
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GENERAL EQUATIONS OF PLANE-STRESS
TRANSFORMATION (cont)

tALF,.=0; o, AA— (1, AA sin6) cos 6 — (o, AAsin 6) sin 6
— (1 AA cos 0) sin O — (o, AA cos B) cos =0
o, = 0, cos? 0 + o, sin? O + 1, (2 sin O cos 0)

tREF,.=0; 10 AA+ (1, AA sin 0) sin 6 — (o, AA sin 6) cos 6
— (T AA cos 0) cos 6 + (o, AAcos 6) sin =0
Tpy = (6, — G,) sin 0 cos O + 1, (cos? O — sin? 0)

_ O + Gy Oy — Gy .
Ox = 2 *t T 5 cos20+r,sin20
o, to
— X y .
Loy = =7 sin20+1cos26
o, to 6,—OC
= y X y .
Oy 7 - 2 cos20-1,sin26

Copyright © 2011 Pearson Education South Asia Pte Ltd

EXAMPLE | 9.1

The state of plane stress at a point on the surface of the airplane
fuselage is represented on the element oriented as shown in Fig. 9-4a.
Represent the state of stress at the point on an element that is oriented
30° clockwise from the position shown.

g o-n-w: g

b
50 MPa
O

(@

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall
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EXAMPLE | 9.1 CONTINUED

AA
AA Sin 300 ‘

A A cos 30°
(®)

-
S

25 A A sin 30°

50 AA cos 30°
©
Fig. 9-4

SOLUTION
The rotated element is shown in Fig. 9-4d. To obtain the stress
component on this element we will first section the element in Fig. 9-4a
by the line a—a. The bottom segment is removed, and assuming the
sectioned (inclined) plane has an area A A, the horizontal and vertical
planes have the areas shown in Fig. 9-4b.The free-body diagram of this
segment is shown in Fig. 9—4c. Applying the equations of force
equilibrium in the x’ and y’ directions to avoid a simultaneous solution
for the two unknowns o and 7,1,y , we have
+/3F, =0; o.AA — (50 AA cos30°) cos 30°

+ (25 A A cos 30°) sin 30° + (80 A A sin 30°) sin 30°

+ (25 AAsin 30°) cos 30° = 0

oy = —4.15 MPa Ans.

+N\ZFy, =0; 7yy AA — (50 AA cos 30°) sin 30°
— (25 AA cos 30°) cos 30° — (80 A A sin 30°) cos 30°
+ (25 AAsin 30°) sin 30° = 0
Tyy = 68.8 MPa Ans.
Since o, is negative, it acts in the opposite direction of that shown in

Fig. 9-4¢. The results are shown on the fop of the element in Fig. 9-4d,
since this surface is the one considered in Fig. 9—4c.

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE | 9.1 CONTINUED

+NEF, = 0; oy AA — (25 AA cos 30°) sin 30°
+ (80 AA cos 30°) cos 30° — (25 AA sin 30°) cos 30°

We must now repeat the procedure to obtain the stress on the
perpendicular plane b—b. Sectioning the element in Fig. 9-4a along
b-b results in a segment having sides with areas shown in Fig. 94e. @ _68.8 MPa
Orienting the +x" axis outward, perpendicular to the sectioned face,
the associated free-body diagram is shown in Fig. 9-4f. Thus,

4.15 MPa

25.8 MPa
~ (50 AA sin 30°) sin 30° = 0

oy = —25.8MPa Ans. o

+73Fy =0; —7py AA + (25 AAcos30°) cos 30°
+ (80 AA cos 30°) sin 30° — (25 A A sin 30°) sin 30°

+ (50 AAsin 30°) cos 30° = 0 AA sin 30°

Tyy = 68.8 MPa Ans. AA cos 30° KA

(e)

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall
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EXAMPLE | 9.1 CONTINUED

Since o is a negative quantity, it acts opposite to its direction shown
in Fig. 9-4f. The stress components are shown acting on the right side
of the element in Fig. 9-4d.

From this analysis we may therefore conclude that the state of stress
at the point can be represented by choosing an element oriented as
shown in Fig. 9—4a, or by choosing one oriented as shown in Fig. 9-4d.
In other words, these states of stress are equivalent.

50 AA sin30°

25 AA sin 30°
25 AA cos 30°

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE | 9.2

50 MPa The state of plane stress at a point is represented by the element shown
in Fig. 9-7a. Determine the state of stress at the point on another
element oriented 30° clockwise from the position shown.

T | SOLUTION

‘ l BUMEn This problem was solved in Example 9.1 using basic principles. Here
we will apply Eqs. 9-1 and 9-2. From the established sign convention,

—] > 25MPa Fig. 9-5, it is seen that

oy =—80MPa  o,=50MPa 7, = —25MPa

Plane CD. To obtain the stress components on plane CD, Fig. 9-7b,
the positive x" axis is directed outward, perpendicular to CD, and the
associated y’ axis is directed along CD. The angle measured from the x
to the x" axis is # = —30° (clockwise). Applying Eqs. 9-1 and 9-2 yields

o, to, oy- 0

oy = — oF Tycos 20 + 7, sin 20
—80 + —80 —
= B()fSO + 80750005 2(=30°) + (—25) sin 2(—30°)
= —25.8 MPa Ans.

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall
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EXAMPLE | 9.2 CONTINUED

The negative signs indicate that o, and 7, act in the negative x" and
y' directions, respectively. The results are shown acting on the element
in Fig. 9-7d.

Plane BC. In asimilar manner, the stress components acting on face
BC,Fig.9-7c,are obtained using # = 60°. Applying Eqgs. 9-1 and 9-2.*

we get
g,:i§§59+i§%1@umﬂmﬂ+(75nmxmﬂ
= —4.15 MPa Ans.
Tyt = *%_50 sin 2(60°) + (—25) cos 2(60°)
= 68.8 MPa Ans.

(d)
Fig. 9-7

25.8 MPa

Here 7, has been calculated twice in order to provide a check. The
negative sign for o indicates that this stress acts in the negative x'
direction, Fig. 9—7¢. The results are shown on the element in Fig. 9-7d.

*Alternatively, we could apply Eq. 9-3 with # = —30° rather than Eq. 9-1.

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

IN-PLANE PRINCIPAL STRESS

* The principal stresses represent the maximum and minimum
normal stress at the point.

* When the state of stress is represented by the principal
stresses, no shear stress will act on the element.

do,, o,

do

Solving this equation leads to 6 =6,

Txy
tan 20, = - .
Gx O /2 Fig.9-8
I AN
o.to o,—0 - \\
O, =——"1% B A T % %_
2 2 YT

In-plane principal stresses n

Fig.9-9

Copyright © 2011 Pearson Education South Asia Pte Ltd

. ooy
== L (25in20)+ 27, cos20 (T
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do, O

—O0

X

IN-PLANE PRINCIPAL STRESS (cont)
~ (2sin20)+ 27, cos26

do

.
| (oo — o)
2] 2 )T
4
_[u’x — o) 2% | I
2 ) 2 Tyy
zﬂpl 1 @

Fig. 9-8

Copyright © 2011 Pearson Education South Asia Pte Ltd
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IN-PLANE PRINCIPAL STRESS (cont)

T
tan 20 = s
v iO'X—O'y )/2

Solving this equation leads to 8 =0, i.e

In-plane principal stresses

Fig. 9-9

Copyright © 2011 Pearson Education South Asia Pte Ltd
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MAXIMUM IN-PLANE PRINCIPAL STRESS

* The state of stress can also be represented in terms of the
maximum in-plane shear stress. In this case, an average
stress will also act on the element.

dr..., o.—0O
-~ 2 (2cosf)-7_(25in20)=0
do 2 ( ) xy( )
. . . . (Gx —O'y)/z
* Solving this equation leads to 8 = Bs; i.e tan 20, = ———
Txy
o —O 2 T
_ 9y 2
T inax in-plane — [TJ +Txy j %, {"~;".-:|
| .
AN _[
* Andthereis a normal stress on the [z I
plane of maximum in-plane shear stress
Fig. 9-10
oO_+0
__ 7 Y
O-avg _T

Copyright © 2011 Pearson Education South Asia Pte Ltd

MOHR’S CIRCLE OF PLANE STRESS

* Ageometrical representation of equations 9.1 and 9.2; i.e.

v

o, +0 o,—0 )
O'x.—[ '2 yjz( 5 chos29+T’Wsm26’

T,

‘\ ) - ‘,r
o - (l’/
‘ o
Gx Gv . . oy - x
T..,=- = [sin26 +7_ sin26
x'y 2 xy

* Sign Convention:
o is positive to the right, and tis positive uowiiwaiu.

Copyright © 2011 Pearson Education South Asia Pte Ltd
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EXAMPLE | 9.7

Due to the applied loading, the element at point A on the solid shaft in
Fig. 9-18a is subjected to the state of stress shown. Determine the principal
stresses acting at this point.

SOLUTION
) . P4
Construction of the Circle. From Fig. 9-18a,

o, = —12ksi a, =0 Tey = —6Oksi
The center of the circle is at
—12.4 B

Tavg = P

= —6ksi

The reference point A(—12, —6) and the center C(—6, 0) are plotted in
Fig. 9-18b. The circle is constructed having a radius of

R = V(12 = 6)* + (6)* = 849 ksi
Principal Stress. The principal stresses are indicated by the
coordinates of points B and D. We have, for oy > o5,
o) =849 — 6 = 249 ksi Ans.
oy = —6 — 849 = —14.5ksi Ans.

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE | 9.7 CONTINUED

The orientation of the element can be determined by calculating the
angle 26, in Fig. 9-18b, which here is measured counterclockwise from
CA to CD. It defines the direction 6, of o and its associated principal |
plane. We have

20, = tan!

= 45.0°
L 125=56

|
6 6
|

12

2] 2257

P2

The element is oriented such that the x' axis or o, is directed 22.5°
counterclockwise from the horizontal (x axis) as shown in Fig. 9-18c.

2.49 ksi

(©)
Fig. 9-18

(b)

7 (ksi)

o (ksi)

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall
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EXAMPLE |9.8

POk The state of plane stress at a point is shown on the element in Fig. 9-19a.
Determine the maximum in-plane shear stress at this point.

— 1 —> 60MPa
SOLUTION
20 MPa Construction of the Circle. From the problem data,
— g, = —20 MPa ay, = 90 MPa Tyy = 60 MPa
(@ The o, 7 axes are established in Fig.9-19b. The center of the circle C is

located on the o axis, at the point

—20 + 90
Twg=—5 — =35MPa

Point C and the reference point A(—20, 60) are plotted. Applying
the Pythagorean theorem to the shaded triangle to determine the
circle’s radius CA, we have

R = V/(60)? + (55)? = 81.4 MPa

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE |9.8 CONTINUED

F
|
35
{ ‘ € o (MPa)
5 !
60 L,
2 205
o 81.4
= A
\\_‘
20 E
7 (MPa)
(b) Maximum In-Plane Shear Stress. The maximum in-plane shear

stress and the average normal stress are identified by point E (or F)
on the circle. The coordinates of point £(35,81.4) give

Ta = 81.4 MPa Ans.

Tavg = 35 MPa Ans.

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall
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EXAMPLE | 9.8 CONTINUED

(e)
Fig. 9-19

The angle 6, measured counterclockwise from CA to CE, can be
found from the circle, identified as 26, . We have

(20 +35
20, = tan 1(T> =425°

9, =21.3° Ans.

This counterclockwise angle defines the direction of the x' axis,
Fig. 9-19c¢. Since point E has positive coordinates, then the average
normal stress and the maximum in-plane shear stress both act in the
positive x' and y' directions as shown.

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE |9.9

The state of plane stress at a point is shown on the element in
Fig. 9-20a. Represent this state of stress on an element oriented 30°
counterclockwise from the position shown.

SOLUTION
Construction of the Circle. From the problem data,
o, = —8ksi oy = 12 ksi Tey = —0Oksi

The o and 7 axes are established in Fig. 9-20b. The center of the circle
Cis on the o axis at

-8+
i s

The reference point for # = 0° has coordinates A(—8, —6).
Hence from the shaded triangle the radius CA is

R = V(10)? + (6)* = 11.66

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall
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12 ksi

8 ksi

—]— 6ksi

()
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EXAMPLE | 9.9 CONTINUED

Stresses on 30° Element. Since the element is to be rotated
30° counterclockwise, we must construct a radial line CP,
2(30°) = 60° counterclockwise, measured from CA (8 = 0°),
Fig. 9-20b. The coordinates of point P(oy, 7o) must now be
obtained. From the geometry of the circle,

b= tan_ll—% = 30.96° ¢ = 60° — 30.96° = 29.04°

gy =2 — 11.66 cos 29.04° = —8.20 ksi Ans.
Tyy = 11.665in 29.04° = 5.66 ksi Ans.

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

7 (ksi)
(b)

o (ksi)

EXAMPLE |9.9 CONTINUED

These two stress components act on face BD of the element shown
in Fig. 9-20¢ since the x' axis for this face is oriented 30°
counterclockwise from the x axis.

The stress components acting on the adjacent face DE of the
element, which is 60° clockwise from the positive x axis, Fig. 9-20c, are
represented by the coordinates of point Q on the circle. This point
lies on the radial line CQ, which is 180° from CP. The coordinates of
point Q are

oy =2+ 11.66 cos 29.04° = 12.2 ksi Ans.
Ty = —(11.665in 20.04) = —5.66 ksi (check) Ans.

NOTE: Here 7,y acts in the —y' direction.
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