Philadelphia University Engineering Measurements (620344)

Mechanical Eng. Dep.

First Exam

Eng. Laith R. Batarseh Sunday 24/11/2013

Student Name: Student ID number:

Problem #1: chose the correct answer and fill the given table

(10marks)

Question	1	2	3	4	5	6	7	8	9	10
Answer										

The following information are for questions 1-4. a voltmeter is used to measure voltage across a resistance is divided into 30 grades from 0V to 30V as shown in the figure. If the exact value was 10.6V and 5 readings were recorded: 9.9, 10.1, 10.6, 10.7 and 10.3 V. Assume that the distance between two consecutive grading is 3 degrees.

 Q_1 : The sensitivity of this device would be

a. 3degree/V b. 0.1V/degree c. 10.6 V/degree

d. 30V/degree

 \mathbf{Q}_2 : The precision of this device

a. 0.8V b. 0.1V c. 0.38 V d. 0.42 V

 $Q_3\hbox{:}\hspace{0.1cm}\text{mean value of these readings is}$

a. 10.6 V b. 10.32V c. 9.9V d. 7.37V

 \mathbf{Q}_4 : the arithmetic median (الوسيط الحسابي) value of these readings is

a. 10.3V b. 10.6V c. 9.9V d. 10.7V

Q₅: in calibration process we compare with standard value. This value can be

a. primary standard b. secondary standard c. known input d. all the mentioned

Q₆: the following system: $5(d^3x/dt^3) + 6(dx/dt) - 2 = t^4$ is

a. 1st order b. 2nd order c. 3rd order d.4th order

 \mathbf{Q}_7 : we called the time needed to achieve 90% response from the step input

a. time constant b. rise time c. settling time d. none of the mentioned

 Q_8 : Uncertainty in measurements is near to

a. errors b. accuracy c. level of confidence d. none of the mentioned

Q₉: Systematic error is error

a. errors in the b. fixed shift in multi-readings c. comes from the d. none of the instrumentation taken by the same device operator mentioned

 Q_{10} : Selection of measurement method and measuring instrument depends on

a. uncertainty b. time c. cost d. all the mentioned

Problem #2: an experiment designed to measure the heat flow through a metal plate. If the heat conduction is governed by the following relation: $Q = kA \frac{T_o - T_i}{\Delta x}$ if the values of k, A, T_i , T_o and Δx are measured as: $k = 40WC^{-1}m^{-1} \pm 0.1\%$, $A = 1.25m^2 \pm 1\%$, $\Delta x = 0.002m \pm 2.5\%$, $T_i = 35C \pm 1C$ and $T_o = 50C \pm 2C$.

Calculate the heat transfer (in W) and the uncertainty in heat transfer.

(5marks)

$$w_{Q} = \sqrt{\left(\frac{\partial w}{\partial k} w_{k}\right)^{2} + \left(\frac{\partial w}{\partial A} w_{A}\right)^{2} + \left(\frac{\partial w}{\partial T_{o}} w_{To}\right)^{2} + \left(\frac{\partial w}{\partial T_{i}} w_{Ti}\right)^{2} + \left(\frac{\partial w}{\partial \Delta x} w_{\Delta x}\right)^{2}}$$

$$\frac{\partial w}{\partial k} = A \frac{T_{o} - T_{i}}{\Delta x} = 1.25 \frac{50 - 35}{0.002} = 9.375 kW / (ku \text{ int}) \text{ and } w_{k} = (40)(0.001) = 0.04$$

$$\frac{\partial w}{\partial A} = k \frac{T_{o} - T_{i}}{\Delta x} = 40 \frac{50 - 35}{0.002} = 300 kW / m^{2} \text{ and } w_{A} = (1.25)(0.01) = 0.0125$$

$$\frac{\partial w}{\partial To} = \frac{kA}{\Delta x} = \frac{(40)(1.25)}{0.002} = 25 kW / (ku \text{ int}) \text{ and } w_{To} = 2C$$

$$\frac{\partial w}{\partial Ti} = -\frac{kA}{\Delta x} = -\frac{(40)(1.25)}{0.002} = -25 kW / (ku \text{ int}) \text{ and } w_{To} = 1C$$

$$\frac{\partial w}{\partial \Delta x} = kA \frac{T_{o} - T_{i}}{\Delta x^{2}} = (40)(1.25) \frac{50 - 35}{0.002^{2}} = 187500 kW / (ku \text{ int}) \text{ and } w_{\Delta x} = (0.002)(0.025) = 5x10^{-5}$$

$$w_Q = 56.68kW$$
 and $Q = (40)(1.25)\frac{(50-35)}{0.002} = 375kW$

So:
$$Q = 375kW \pm 56.65kW$$
 or $Q = 375kW \pm 15.11\%$

Problem #3: the data given in the table represent temperature measurements for heated water in a container using a single thermometer. **Find the mean reading, standard deviation, variance, and average of the absolute value of deviation.** (5 marks)

Decide if this measurement is single or multi-sample system? Single

Reading	Temp, C
No.	
1	23
2	25
3	26
4	24
5	27

2.
$$x_m = \frac{1}{n} \sum_{i=1}^n x_i = \frac{1}{5} \sum_{i=1}^n (23 + 25 + 26 + 24 + 27) = 25C$$

3.
$$\sigma = \sqrt{\sum_{i=1}^{n} \frac{1}{n} (x_i - x_m)^2} = \sqrt{\sum_{i=1}^{n} \frac{1}{5} 10} = \sqrt{2}$$

4. Variance = $\sigma^2 = 2$

5.
$$\left| \overline{d_i} \right| = \frac{1}{n} \sum_{i=1}^{n} \left| x_i - x_m \right| = \frac{1}{5} (6) = 1.2$$

No.	Xi	$\mathbf{d_i} = \mathbf{x_i} - \mathbf{x_m}$	d_i^2	$ \mathbf{d_i} $
1	23	-2	4	2
2	25	0	0	0
3	26	1	1	1
4	24	-1	1	1
5	27	2	4	2
Sum	125		10	6