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Example on PID controller selection  
 

Problem statement: consider the following two unity feedback systems:  

 

 

 

 

Requirements: 

1. Find the steady state error (ess) for the following cases: 

a. r(t) = 1 

b. r(t) = t 

c. r(t) =t2/2  

2. add a PD or PI controller to in satisfy the following conditions: 

For system #1:   

Condition Step Ramp Parabolic 

Steady state error <0.001 <0.001 <0.001 

The maximum overshot (%) < 5 < 5 < 5 

The settling time (s) 0.005 10 10 

Rise time (s) 0.005 5 5 

 

For system #2:   

Condition Step Ramp Parabolic 

Steady state error <0.001 <0.001 <0.001 

The maximum overshot (%) < 5 < 5 < 5 

The settling time (s) 10 10 10 

Rise time (s) 5 5 5 

 

 

System #1: first order system 
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 Solution:- 

For system #1:  
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For the step input r(t) = 1 or R(s) = 1/s, the steady state error can be calculated using Eq.1: 
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For the ramp input r(t) = t or R(s) = 1/s2, the steady state error can be calculated using Eq.2: 





 0

1
0

1
lim)(lim;

00
ss

ss
v

v

ss e
s

s
ssGk

k

R
e  (2) 

 

For the parabolic input r(t) = t2/2 or R(s) = 1/2s3, the steady state error can be calculated using Eq3: 
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As seen from equations 1, 2 and 3, the steady state error or this system does not satisfy condition 

number 1. So, defiantly we need a controller for system 1 

 For system #2:  
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For the step input r(t) = 1 or R(s) = 1/s, the steady state error can be calculated using Eq.4: 
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For the ramp input r(t) = t or R(s) = 1/s2, the steady state error can be calculated using Eq.5: 
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For the parabolic input r(t) = t2/2 or R(s) = 1/2s3, the steady state error can be calculated using Eq.6: 
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As seen from Eq.4, the steady state error is zero but this does not mean that we do not need a controller 

because we need to satisfy the other conditions: max. Overshot, rise time and settling time. On the 

other hand, the ramp and parabolic inputs need a controller.  

A MATLAB code was used to draw both systems for the three inputs and the results are shown in Fig.1. 

    

Fig.1. time response for system 1 (the upper raw) and system 2 (the lower raw). The red line is system 

response and the blue line is the reference input.   

As seen from Fig.1, when unity step input is applied to the first system, the output reaches a value equal 

½ which is half of the original input. This result is proved by Eq.1 where the error is ½. On the other 

hand, the second system shows that this system will reach the reference input eventually which is 

proved by Eq.4 where the error is zero. 

Also it’s obvious that when the input of the first system (first order system) is ramp or parabolic, the 

outputs diverge from the input which is proved by Eqs 2 and 3.  
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For the second system (second order system), the ramp input show a convergence to the input but with 

error equal 1. For example, the steady state response is shown in Fig.1. for ramp input shows that at 

time equal 20 sec – which can be considered enough to steady state condition – the output equal 19 

while the input equal 20 and so the error is 1 which is proved by Eq.5. 

From previous analysis, we show that for both first and second order systems a controller is needed to 

satisfy the conditions required previously.  

Add PD controller for both systems  

The transfer function of PD controller (Gc) is given as:   Gc(s)= Kp + KDs. when this controller is added to 

the systems they become:   

 

 

 

 

Now, the error calculation must be performed again but this time the PD controller is added  

For system #1:  

Error condition:- 

For the step input r(t) = 1 or R(s) = 1/s, the steady state error for the modified system can be calculated 

using Eq.7: 
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From Eq.7. we can find our first condition which is Kp>999. This condition can be satisfied by choosing 

Kp=1000. 

Stability conditions:-  

After adding Gc(s) to the system, the transfer function M(s) = C(s) / R(s) is calculated as: 

System #1: first order system 
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The characteristic equation of the system is: 
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Eq.9 gives the second condition (stability condition). Because Kp and KD are real numbers, s must be 

negative real number to insure stable system and this can be satisfied when  1DK >0 or 1DK   

because the value of Kp is greater than +999 (i.e. the nominator is always negative therefore the 

dominator must be positive).  

 

To draw the time response, a MATLAB simulink is used with values of Kp = 1000 and KD = -0.5. Fig2 shows 

the block diagram and Fig.3 shows the time response for this system. 

 

Fig.2. simulink block diagram for the first system when the input is unit step, Kp=1000 and KD = -0.5 

 

Fig.3. time response for the first system with PD controller when the input is unit step, Kp=1000 and KD = -0.5 
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However, if the time is increased to 1sec instead of 0.01sec and the steady state response is magnified 

as shown in Fig.4, the response will oscillate in behavior show instability. This behavior can be ignored if 

the steady state error is less than 0.001 and we can assume that the system reaches steady state after 

0.005 sec as shown in Fig.3.  

 

Fig.4. magnified time response for the first system with PD controller when the input is unit step, Kp=1000 and KD = -0.5 

In separate experiment, higher values of KD were tested and the results show that as KD increases, the 

oscillation frequency increases and both settling and rise time decreases.   

For the ramp input r(t) = t or R(s) = 1/s2, the steady state error can be calculated using Eq.11: 
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It is obvious here that adding a PD controller do not solve the problem. This can be concluded for the 

parabolic input too as shown in Eq.12 
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As a conclusion, PD controller is not suitable for first order system when the input is either ramp or 

parabolic.   
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 For system #2:  
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For the step input r(t) = 1 or R(s) = 1/s, the steady state error can be calculated using Eq.13: 
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As seen we have to give no extra care about the steady state error. However, we need to test system 

stability. The transfer function M(s) = C(s) / R(s) is calculated as: 
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The characteristic equation of the system is: 

   012  pD KKss  (15) 

This is a square equation and so two roots for s may be found or the stability can be examined using 

Routh method as illustrated in the following table: 

s2 1 Kp 

s1 KD+1 0 
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To insure stable system, the value of Kp and (KD+1) must be positive and so: Kp>0 and KD > -1. The value 

of Kp is chosen as 0.5 and the values of KD were iterated and the results are shown in table below: 

Kp KD Max. overshot (%) tr (s) ts(s) 

0.5 -0.90 230 4 70 

0.5 -0.50 35 3.8 15 

0.5 -0.40 25 3.5 11 

0.5 -0.10 10 3.8 9 

0.5 -0.05 4.5 4 8 

0.5 0.00 4 4.5 7 

0.5 0.05 2 4.8 6 
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 As seen from table, all the shaded rows satisfy all the conditions: max. Overshot <5%, tr <5sec and ts<10 

sec. Fig.5 shows the time response when Kp =0.5 and KD =0.05.  

 

Fig.5. time response for the second system with PD controller when the input is unit step, Kp=0.5 and KD = 0.05 

For the ramp input r(t) = t or R(s) = 1/s2, the steady state error can be calculated using Eq.16: 
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So Kp >1000 to satisfy the steady state condition.  

For stability condition, the characteristic equation does not been affected by the type of input and so 

the previous stability conditions: Kp>0 and KD > -1 or Kp>1000 and KD > -1 to satisfy both error and 

stability conditions are valid. Choosing Kp = 1000 and KD = 0.05 will satisfy all conditions as shown in 

Fig.6 where the red line in the magnified picture shows the reference input.   
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Fig.6. time response for the second system with PD controller when the input is unit ramp, Kp=1000 and KD = 0.05. 

For the parabolic input, the steady state error can be calculated using Eq.17: 
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From Eq.17 there is no benifet from adding PD controller when the input is parabolic because there will 

be s in the nomentor makes Ka = 0 and the steady state error goes to infinity.     

Adding PI controller  

The transfer function of PI controller (Gc) is given as:   Gc(s)= Kp + KI/s. when this controller is added to 

the systems they become:   

 

 

 

 

Now, the error calculation must be performed again but this time the PI controller is added in similar 

way as we have done with PD controller. The next table summrize the new changes after adding the PI 

controller  

 

System #1: first order system 
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System G(s) M(s) = C(s)/R(s) Characteristic Eq. Stability cond 
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Error analysis: 

Next table shows the error condition for the new proposed systems  

System Step Ramp Parabolic 
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According to previous tables we can conclude the followings: 

1. PI controller can not help us to control the first system when the input is parabolic. May be 

addition to second integral controller can help.  

2. For step input, both systems show exact steady state solutions (ess=0) 

3. For ramp inputs, the first system needs to be controlled to satisfy the error condition while 

steady state error in the second system is canceled by the presence of the controller whatever 

the value of KI and KP. 

4. Error of the second system when the input is parabolic can be controlled using PI controller  

Now to satisfy the other requiermnet, we need to itterate for the values of Kp and KI for each case 

individually.  
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Case 1: system 1 + step input + PI controller  

An itteration values of KI and KP were tested and the results are shown in the next table  

 KI KP Max. overshot (%) tr (s) ts(s) 

1 -0.5 48 2.3 13 

1 0.5 4 2.2 8 

1 1.0 ---- 2.1 6 

1 10.0 ---- 0.3 3 

1 100.0 ---- 0.025 0.037 

1 500.0 ---- 0.004 0.006 

1 750.0 ---- 0.003 0.045 

 

As seen, the values of Kp = 750 and KI =1 will satisfay all the conditions. Fig.7 show the time response 

for these values  

 

Fig.7. time response for the first system with PI controller when the input is unit step, Kp=1000 and KI = 1. 
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Case 2: system 1 + ramp input + PI controller 

To satisfy the stability condition, KI > 0 and Kp > -1 or  KI > 1000 and Kp > -1 to satisfy both stability and 

error conditions. Arbittary values of KI =1001 and KP = 1 will satisfy allconditions as shown in Fig.8. 

 

Fig.8. time response for the first system with PI controller when the input is unit ramp, Kp=1 and KI = 1001. 

Case 3: system 2 + step input + PI controller 

After many itterations, the values of KP = 0.5 and KI = 0.001 satisfay all conditions and Fig.9 shows the 

time response under these values  

 

Fig.9. time response for the second system when the input is unit step, Kp=0.5 and KI = 0.001. 
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Case 4: system 2 + ramp input + PI controller 

After many itterations, the values of KP = 10 and KI = 0.001 satisfay all conditions and Fig.10 shows the 

time response under these values  

 

Fig.10. time response for the second system when the input is unit step, Kp=10 and KI = 0.001. 

Case 5: system 2 + parb input + PI controller 

After many itterations, the values of KP = 10000 and KI = 1001 satisfay all conditions and Fig.11 shows 

the time response under these values  

 

Fig.11. time response for the second system with PI controller when the input is ramp step, Kp=10000 and KI = 1001. 


