# Introuction To numerical methods 

## Philadelphia University

Engineering Faculty
Mechanical Engineering Department

Eng. Laith Batarseh

## Introduction to numerical methods

- Numerical methods are those in which the mathematical problem is reformulated so it can be solved by arithmetic operations.
- We use numerical methods when:
- Geometry is very complex
- There is no way to find exact solution
- Mathematical model general form:
$\begin{gathered}\text { Dependent } \\ \text { Variable }\end{gathered}=f\left(\begin{array}{c}\text { Independent } \\ \text { Variable }\end{array}\right.$, Parameters, $\left.\begin{array}{c}\text { Forcing } \\ \text { Function }\end{array}\right)$


## Introduction to numerical methods



## Introduction to numerical methods

Significant Figures

- Significant Figures: are the digits of a number we can use with confidence.
- Significant Figures $=$ number of certain digits + one digit
- Examples:



## Introduction to numerical methods

Significant Figures

- Special Cases:
$-2.55 \& 25.5 \& 255 \& 2550 \& 25500$ have 3 Sig. Figs.


Representation : $2.55 \times 10^{1 \& 2 \& 3 \& 4}$
$-2.55 \& 0.255 \& 0.0255 \& 0.00255$ have 3 Sig. Figs.


Representation : $2.55 \times 10^{-1 \&-2 \&-3 \&-4}$

## Introduction to numerical methods

Accuracy and Precision

- Accuracy refers to how closely a computed or measured value agree with the true value.
- Precision refers to how closely individual computed or measured value agree with each other.
- Bias (inaccuracy) is the opposite of accuracy. Systematic deviation from true value
- Uncertainty (imprecision) is the opposite of precision. Magnitude of scatter.
- Example:


Inaccurate \&


## Introduction to numerical methods

Errors Definitions

- Error represents the deviation from the truth or true value
- There are two types of error may appear when numerical methods are used: Round - off error and Truncation error.
- Both errors can be represented mathematically by:

$$
\begin{array}{ll}
E_{t}=\text { TrueValue }- \text { Approximation } & \mathrm{E}_{\mathrm{t}}=\text { True error } \\
\varepsilon_{t}=\left|\frac{\text { TrueValue }- \text { Approximation }}{\text { TrueValue }}\right| x 100 \% & \varepsilon_{\mathrm{t}}=\text { relative true error } \\
& \mathrm{E}_{\mathrm{a}}=\text { Approximate error } \\
E_{a}=\text { Current Approximation }- \text { Pr } \text { evious Approximation } & \varepsilon_{\mathrm{a}}=\text { relative Approximate error } \\
\varepsilon_{t}=\left|\frac{\text { Current Approximation }- \text { Pr evious Approximation }}{\text { Current Approximation }}\right| x 100 \%
\end{array}
$$

## Introduction to numerical methods

Round - off error

- Round - off error: Results form chopping off some significant figures. This type of error is found in computer processes.
Example:

$$
\pi=3.14159265 \ldots .
$$

Round - off error

- Computer limitations in representation of numeral quantity create such error.
- Computer reduce such problem by rearranging number presentation : $25560000 \rightarrow \mathbf{2 . 5 5 6} \mathbf{~ x 1 0}{ }^{7}$


## Introduction to numerical methods

Truncation error

- Truncation error: Results form using approximation methods instead of exact mathematical procedures to find the solution Example:

Assume $f(x)=x^{2}+x+1$, then $f(5)=5^{2}+5+1=31$
Assume you used the $1^{\text {st }}$ order Taylor series for example to find the value of $f(5)$ and the results was:
$f(5)=f(4)+f^{\prime}(4)(5-4)=30$ assume $x_{i}=4, x_{i+1}=5$
Error $=31-30=1$ (this is a truncation error )


* Taylor series formula:
$f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+\frac{f^{\prime \prime}\left(x_{i}\right) h^{2}}{2!}+\frac{f^{\prime \prime \prime}\left(x_{i}\right) h^{3}}{3!}+\ldots+\frac{f^{(n)}\left(x_{i}\right) h^{n}}{n!}+R_{n}$
$R_{n}=\frac{f^{(n+1)}(\xi) h^{n+1}: \text { the reminder of Taylor series }}{(n+1)!}$
Where:
$h=x_{i+1}-x_{i}($ step size $)$
$x_{i}$ : initial independent value
$x_{i+1}:$ next independent value
$\zeta$ : is a value lies somewhere between $x_{i+1}$ and $x_{i}$
$n$ : Taylor series approximation order


## Truncation Error

## Taylor series

* Example\#1:

$$
\text { If } f(x)=5 x^{4}+3 x^{3}+6 x^{2}+2 x+5 \text { and } x_{i}=0 x_{i+1}=1
$$

Then the Taylor series expansion for

$$
f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+\frac{f^{\prime \prime}\left(x_{i}\right) h^{2}}{2!}+\frac{f^{\prime \prime \prime}\left(x_{i}\right) h^{3}}{3!}+\frac{f^{4}\left(x_{i}\right) h^{4}}{4!}
$$

* Note: when applying Taylor series to estimate polynomials, the number of terms that gives the exact solution equals the order of approximation and the rest term will be equal zero (ie. $f^{(n+1)}=0$ )

*Example\#1(cont):

$$
\begin{aligned}
& f(x)=5 x^{4}+3 x^{3}+6 x^{2}+2 x+5 \quad x_{i}=0 \& x_{i+1}=1 \\
& f\left(x_{i}=0\right)=5 \quad f\left(x_{i+1}=1\right)=21 \\
& \boldsymbol{f}^{(1)}(\boldsymbol{x})=\mathbf{2 0} \boldsymbol{x}^{3}+\mathbf{9} \boldsymbol{x}^{2}+\mathbf{1 2 x}+\mathbf{2} \boldsymbol{f}^{(1)}(\mathbf{0})=\mathbf{2} \quad 0^{\text {th }} \text { order: } f(1)=f(0)=5 \\
& \boldsymbol{f}^{(2)}(\boldsymbol{x})=\mathbf{6 0} x^{2}+\mathbf{1 8} x+12 \quad \boldsymbol{f}^{(2)}(\mathbf{0})=12 \quad \mathbf{1}^{\text {tI }} \text { order: }: f(1)=f(0)+f^{(1)}(0) h=7 \\
& \boldsymbol{f}^{(3)}(\boldsymbol{x})=\mathbf{1 2 0} \boldsymbol{x}+\mathbf{1 8} \quad \boldsymbol{f}^{(3)}(\mathbf{0})=\mathbf{1 8} \quad 2^{\text {nd }} \text { order: } f(1)=f(0)+f^{(1)}(0) h+\frac{f^{(2)}(0) h^{(2)}}{2!}=13 \\
& \boldsymbol{f}^{(4)}(\boldsymbol{x})=\mathbf{1 2 0} \quad \boldsymbol{f}^{(4)}(\mathbf{0})=\mathbf{1 2 0} \quad 3^{\text {rid }} \text { order.: }(1)=f(0)+f^{(1)}(0) h+\frac{f^{(2)}(0) h^{(2)}}{2!}+\frac{f^{(3)}(0) h^{(3)}}{3!}=16 \\
& 4^{\text {th }} \text { order: } f(1)=f(0)+f^{(1)}(0) h+\frac{f^{(2)}(0) h^{(2)}}{2!}+\frac{f^{(3)}(0) h^{(3)}}{3!}+\frac{f^{(4)}(0) h^{(4)}}{4!}=21 \\
& f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+\frac{f^{\prime \prime}\left(x_{i}\right) h^{2}}{2!}+\frac{f^{\prime \prime \prime}\left(x_{i}\right) h^{3}}{3!}+\frac{f^{4}\left(x_{i}\right) h^{4}}{4!}
\end{aligned}
$$


*Example\#1 ${ }^{\text {(cont) }}$ :

$$
\begin{array}{ll}
f\left(x_{i+1}=1\right)=21 & 0^{\text {th }} \text { order }: \varepsilon_{t}=\frac{21-5}{21} \times 100 \%=76.19 \% \\
& 1^{\text {st }} \text { order }: \varepsilon_{t}=\frac{21-7}{21} \times 100 \%=66.67 \% \\
& 2^{\text {nd }} \text { order }: \varepsilon_{t}=\frac{21-13}{21} \times 100 \%=38.09 \% \\
& 3^{\text {rd }} \text { order. }: \varepsilon_{t}=\frac{21-16}{21} \times 100 \%=\mathbf{2 3 . 8 1 \%} \\
& 4^{\text {th }} \text { order }: \varepsilon_{t}=\frac{21-21}{21} \times 100 \%=0 \%
\end{array}
$$

Note : as the order of Taylor approximation increase, the accuracy increase too


| \& Examp $f(x)=\mathbf{c}$ | \#2: <br> x) and $x_{i}$ | 4 $x_{i+1}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Solution: | Order (n) | $f^{(n)}(x)$ | $f(\pi / 3)$ | $\varepsilon_{t}$ |
|  | 0 | $\operatorname{Cos}(x)$ | 0.707106781 | 41.4 |
|  | 1 | $-\sin (\mathrm{x})$ | 0.521986659 | 4.4 |
|  | 2 | $-\cos (x)$ | 0.497754491 | 0.449 |
|  | 3 | $\operatorname{Sin}(x)$ | 0.499869147 | $2.62 \times 10^{-2}$ |
|  | 4 | $\operatorname{Cos}(x)$ | 0.500007551 | $1.51 \times 10^{-3}$ |
|  | 5 | $-\sin (\mathrm{x})$ | 0.500000304 | $6.08 \times 10^{-5}$ |
|  | 6 | $-\cos (x)$ | 0.499999988 | $2.44 \times 10^{-6}$ |

## Truncation Error

Taylor series reminder


* Assume $0^{\text {th }}$ order T.S:
$f\left(x_{i+1}\right)=f\left(x_{i}\right), \quad R_{n}=f^{\prime}\left(x_{i}\right) h+\frac{f^{\prime \prime}\left(x_{i}\right) h^{2}}{2!}+\frac{f^{\prime \prime \prime}\left(x_{i}\right) h^{3}}{3!}+\ldots$
* It is inconvenient to deal with the remainder as infinite series. So, let us start with the $1^{\text {st }}$ term of the remainder : $\boldsymbol{R}_{\boldsymbol{n}}=\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{\boldsymbol{i}}\right) \boldsymbol{h}$
* derivative mean - value theorem states that if a function $f(x)$ and its derivative are continues over an interval from $x i$ and $x i+1$, then there exists at least one point on the function has a slope, designated by $f^{\prime}(\xi)$, that is parallel to the line joining $f\left(x_{i}\right)$ and $f\left(x_{i+1}\right)$.

* Graphical Presentation
$f^{\prime}(\xi)=\frac{R_{o}}{h}$
$\Rightarrow \boldsymbol{R}_{o}=\boldsymbol{f}^{\prime}(\xi) \boldsymbol{h}$
$\Rightarrow R_{1}=\frac{f^{\prime \prime}(\xi)}{2!} h^{2}$



Example:
Let us take the $1^{\text {st }}$ order approximation in Taylor series:

$$
f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)+R_{1}
$$

Rearrange the terms :

$$
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{\frac{\left(x_{i+1}-x_{i}\right)}{\underbrace{}_{i+1}}+\underbrace{\frac{R_{1}}{\left(x_{i+1}-x_{i}\right)}}_{\substack{\text { First-order } \\
\text { Approximation }}} \text { Truncation } \begin{array}{c}
\text { Error }
\end{array}}
$$

Note that the $1^{\text {st }}$ part is used to approximate the $1^{\text {st }}$ derivative in numerical methods


Example ${ }^{(\text {cont })}$ :
The reminder represents the truncation error and equal to

$$
\frac{R_{1}}{\left(x_{i+1}-x_{i}\right)}=\frac{f^{\prime \prime}(\xi)}{2!}\left(x_{i+1}-x_{i}\right)
$$

Or:

$$
\frac{R_{1}}{\left(x_{i+1}-x_{i}\right)}=O\left(x_{i+1}-x_{i}\right)
$$

$O\left(x_{i+1}-x_{i}\right):$ error order notification and it means that the error is in the order of $h$ so, if $h$ is halve, then the error is halve too. In similar way, if the error was in order $O\left(h^{2}\right)$, its mean if the step $h$ is halve the error will be reduced to $1 / 4^{\text {th }}$ of its previous value.


* First derivative
* Formula derivation
* Assume we take the $1^{\text {st }}$ order Taylor series terms

$$
f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)+R_{1}
$$

* Rearrange to separate the first derivative:

$$
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{\left(x_{i+1}-x_{i}\right)}+O\left(x_{i+1}-x_{i}\right)=\frac{\Delta f_{i}}{h}+O(h)
$$

$\Delta f_{i}: 1^{\text {st }}$ forward difference.
$\Delta f / h: 1^{\text {st }}$ finite forward divided difference.

## Numerical Differentiation

Backward Difference

* First derivative
* Formula derivation
* Expand $2^{\text {nd }}$ order Taylor series terms backward to get:

$$
f\left(x_{i-1}\right)=f\left(x_{i}\right)-f^{\prime}\left(x_{i}\right)(h)+\frac{f^{\prime \prime}\left(x_{i}\right)}{2!} h^{2}+\ldots
$$

* Truncate above equation after the $1^{\text {st }}$ term and rearrange to separate the first derivative:

$$
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{(h)}+O\left(x_{i+1}-x_{i}\right)=\frac{\nabla f_{1}}{h}+O(h)
$$

$\nabla f_{1}: 1^{\text {st }}$ Backward difference.
$\nabla f_{1} / h: 1^{\text {st }}$ finite backward divided difference.


```
* First derivative
* Formula derivation
```

$$
\begin{gathered}
f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)(h)+\frac{f^{\prime \prime}\left(x_{i}\right)}{2!} h^{2}+\ldots \quad f\left(x_{i-1}\right)=f\left(x_{i}\right)-f^{\prime}\left(x_{i}\right)(h)+\frac{f^{\prime \prime}\left(x_{i}\right)}{2!} h^{2}+\ldots \\
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i-1}\right)}{(2 h)}-\frac{f^{(3)}\left(x_{i}\right)}{6}-\ldots=\frac{f\left(x_{i+1}\right)-f\left(x_{i-1}\right)}{(2 h)}+O\left(h^{2}\right)
\end{gathered}
$$





## Example \#1

* Given information
* assume you have the following functions:
a. $f(x)=\frac{x^{4}-x^{3}+1}{x^{2}-1}$
b. $f(x)=\sqrt{x^{4}-x^{3}+1}$
c. $f(x)=\frac{x^{4}-x^{3}+1}{\sqrt{x^{3}+1}}$
*Find the value of $f(2)$ using Taylor series $3^{\text {rd }}$ order expansion. Let $h=0.5$ and find the relative true error $\left(\varepsilon_{t}\right)$



## * Example \#1

* Solution
* Taylor series $3^{\text {rd }}$ order expansion $(\mathbf{n}=3)$ is obtained as:

$$
f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{(1)}\left(x_{i}\right) h+\frac{f^{(2)}\left(x_{i}\right) h^{2}}{2!}+\frac{f^{(3)}\left(x_{i}\right) h^{3}}{3!}
$$

* The exact solution is found as:
a. $f(2)=\frac{2^{4}-2^{3}+1}{2^{2}-1}=3$
b. $f(2)=\sqrt{2^{4}-2^{3}+1}=3$
c. $f(2)=\frac{2^{4}-2^{3}+1}{\sqrt{2^{3}+1}}=3$

* Example \#1
* Solution
* a. $f_{1}(2)=f_{1}(1.5)+f_{1}^{\prime}(1.5) * 0.5+\frac{f_{1}^{\prime \prime}(1.5) * 0.5^{2}}{2!}+\frac{f_{1}^{\prime \prime \prime}(1.5) * 0.5^{3}}{3!}=2.5008$
b. $f_{2}(2)=f_{2}(1.5)+f_{2}^{\prime}(1.5) * 0.5+\frac{f_{2}^{\prime \prime}(1.5) * 0.5^{2}}{2!}+\frac{f_{2}^{\prime \prime}(1.5) * 0.5^{3}}{3!}=2.9944$
c. $f_{3}(2)=f_{3}(1.5)+f_{3}^{\prime}(1.5) * 0.5+\frac{f_{3}^{\prime \prime}(1.5) * 0.5^{2}}{2!}+\frac{f_{3}^{\prime \prime \prime}(1.5) * 0.5^{3}}{3!}=3.0027$

| function | $f^{(1)}(1.5)$ | $f^{(2)}(1.5)$ | $f^{(3)}(1.5)$ | $f(2)$ |
| :---: | :---: | :---: | :---: | :---: |
| $a$ | 0.2400 | 9.8080 | 0.2400 | 2.5008 |
| $b$ | 2.0587 | 2.9046 | 2.0587 | 2.9944 |
| $c$ | 2.2359 | 4.5990 | 2.2359 | 3.0027 |



* Example \#2
* Given information
* assume you have the following functions :
a. $f(x)=\frac{x^{4}-x^{3}+1}{x^{2}-1}$
b. $f(x)=\sqrt{x^{4}-x^{3}+1}$
c. $f(x)=\frac{x^{4}-x^{3}+1}{\sqrt{x^{3}+1}}$
* Find the value of $f^{\prime}(2)$ using forward, backward and centered finite divided difference
* Assume $x_{i-1}=1.5 x_{i}=2 x_{i+1}=2.5$



## Example \#2

* Solution
* forward finite divided difference:

$$
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{\left(x_{i+1}-x_{i}\right)}
$$

* Assume: $x_{i}=2 x_{i+1}=2.5$
a. $f^{\prime}(2)=\frac{f(2.5)-f(2)}{2.5-2}=3.3095$
b. $f^{\prime}(2)=\frac{f(2.5)-f(2)}{2.5-2}=3.8869$
c. $f^{\prime}(2)=\frac{f(2.5)-f(2)}{2.5-2}=5.9869$

* Example \#2
* Solution
* backward finite divided difference:

$$
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{(h)}
$$

* Assume: $\boldsymbol{x}_{i-1}=1.5 x_{i}=2$
a. $f^{\prime}(2)=\frac{f(2)-f(1.5)}{2.5-2}=1.7000$
b. $f^{\prime}(2)=\frac{f(2)-f(1.5)}{2.5-2}=2.7213$
c. $f^{\prime}(2)=\frac{f(2)-f(1.5)}{2.5-2}=3.4303$

* Example \#2
* Solution
* centered finite divided difference:

$$
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i-1}\right)}{(2 h)}
$$

* Assume: $x_{i-1}=1.5 x_{i+1}=2.5$
a. $f^{\prime}(2)=\frac{f(2.5)-f(1.5)}{2(2.5-2)}=2.5048$
b. $f^{\prime}(2)=\frac{f(2.5)-f(1.5)}{2(2.5-2)}=3.3041$
c. $f^{\prime}(2)=\frac{f(2.5)-f(1.5)}{2(2.5-2)}=4.7086$

