Roots of Equation

Philadelphia University

Engineering Faculty
Mechanical Engineering Department

Eng. Laith Batarseh

Roots of equation

Bracketing Methods:

- Uses the fact that a function typically changes sign in the vicinity of a root
- Two initial guesses for the root are required

Open Methods:

- Single initial guesses for the root are required

Bracketing Methods

Graphical Methods

* Example : $\quad f(x)=\sin (10 x)+\cos (3 x)$

Bracketing Methods

Graphical Methods

```
* Advantages
    * easy to conduct
* Disadvantages
    * Not precise enough
    & In multi - roots case such as triangular functions , it
        may mislead you when the chosen range of data used
        to draw the function passes some roots.
```


Bracketing Methods

Bisection method

	* Mathematical translation $f\left(x_{1}\right) f\left(x_{u}\right)<0$

Bisection method

Procedures

* The following procedures are used to find root of equation by Bisection method :

Step 1: Chose lower x_{I} and upper x_{u} guesses for the root such that the function changes sign over the interval. You can check this out by insuring that $f\left(x_{1}\right) f\left(x_{u}\right)<0$
Step 2: An estimate of root \boldsymbol{x}_{r} is determined by:

$$
x_{r}=\frac{x_{l}+x_{u}}{2}
$$

Step3: make the following evaluations to determine the next iteration:

- If $f\left(x_{r}\right) f\left(x_{r}\right)<0$ Set $x_{u}=x_{r}$ and return to step 2
- If $f\left(x_{1}\right) f\left(x_{r}\right)>0$ Set $x_{l}=x_{r}$ and return to step 2
- If $f\left(X_{\nu}\right) f\left(X_{r}\right)=0$ stop the iteration. You find the true root

Bisection method

Termination criteria

* To terminate the iteration, we have to define a termination criteria.

Because bisection method is a numerical method and the true value is not found in typical ways, the use of approximation error is convenient to this case:

$$
\varepsilon_{a}=\left|\frac{x_{r}^{n e w}-x_{r}^{\text {old }}}{x_{r}^{\text {new }}}\right| 100 \%
$$

Bisection method

Example \#1

- Find the root of the following function : $f(x)=\frac{100}{x}\left(1-e^{-0.15 x}\right)-20$
- Solution:
- Graphical representation

As you can see, the exact root of the given equation is hard to find so numerical method must be used

Bisection method

Example \#1 ${ }^{\text {cont }}$

- Solution: $1^{\text {st }}$ iteration

Step 1: assume $\boldsymbol{x}_{I}=\mathbf{- 5}$ and $\boldsymbol{x}_{u}=1 \quad(f(-5) f(1)<0)$
Step2: $\quad x_{r}=\frac{x_{l}+x_{u}}{2}=\frac{1+-5}{2}=-2 \Rightarrow f(-5)=2.34, f(-2)=-2.51$
Step3: $f(-5) f(-2)<0 \rightarrow x_{u}=x_{r} \rightarrow x_{u}=\mathbf{- 2}$

Bisection method

Example \#1 ${ }^{\text {cont }}$

- Solution: $2^{\text {nd }}$ iteration

Step 1: assume $x_{I}=-5$ and $x_{u}=-2$
Step2: $\quad x_{r}=\frac{x_{l}+x_{u}}{2}=\frac{-2+-5}{2}=-3.5 \Rightarrow f(-5)=2.34, f(-3.5)=-0.273$
Step3: $f(-5) f(-3.5)<0 \rightarrow x_{u}=x_{r} \rightarrow x_{u}=\mathbf{- 3 . 5}$

Bisection method

Example \#1 ${ }^{\text {cont }}$

- Solution: $3^{\text {rd }}$ iteration

Step 1: assume $x_{I}=-5$ and $x_{u}=-3.5$
Step2: $x_{r}=\frac{x_{l}+x_{u}}{2}=\frac{-3.5+-5}{2}=-4.25 \Rightarrow f(-5)=2.34, f(-4.25)=0.982$
Step3: $f(-5) f(-4.25)>0 \rightarrow x_{I}=x_{r} \rightarrow x_{I}=\mathbf{- 4 . 2 5}$

Bisection method

Example \#1 ${ }^{\text {cont }}$

Solution: 4th iteration

Step 1: assume $x_{I}=-4.25$ and $x_{u}=-3.5$
Step2: $x_{r}=\frac{x_{l}+x_{u}}{2}=\frac{-3.5+-4.25}{2}=-3.875 \Rightarrow f(-4.25)=0.982, f(-3.875)=0.353$

Step3: $f(-5) f(-4.25)>0 \rightarrow x_{I}=x_{r} \rightarrow x_{I}=\mathbf{- 3 . 8 7 5}$

Bisection method

Example \#1 ${ }^{\text {cont }}$

Solution: $5^{\text {th }}$ iteration

Step 1: assume $x_{I}=-3.875$ and $x_{u}=-3.5$

Step2: $x_{r}=\frac{x_{t}+x_{u}}{2}=\frac{-3.5+-3.875}{2}=-3.6875 \Rightarrow f(-3.875)=0.3425, f(-3.6875)=-8.4786$

Step3: $f(-5) f(-4.25)<0 \rightarrow x_{I}=x_{r} \rightarrow x_{u}=\mathbf{- 4 . 2 5}$

Bisection method

Example \#1 ${ }^{\text {cont }}$

Solution: iteration summary

Iteration	X_{I}	$x_{\boldsymbol{l}}$	X_{r}	\mathcal{E}_{a}
1	-5	1	-2	-----
2	-5	-2	-3.5	42.86
3	-5	-3.5	-4.25	17.41
4	-4.25	-3.5	-3.875	9.68
5	-3.875	-3.5	-3.6875	5.08

Bisection method

Example \#2

Find the root of the following function: $\quad f(x)=x^{2}-1$

- Solution:
- Graphical representation

As you can see, the roots of the given equation are -1 and +1 . we will aim to find the second root and you can try to find the other root.

Bisection method

Example \#2

Solution: iteration summary

Iteration	X_{J}	X_{u}	X_{r}	\mathcal{E}_{a}	\mathcal{E}_{t}
1	0	1.2	0.6	---	40
2	0.6	1.2	0.9	33.3	10
3	0.9	1.2	1.05	14.3	5
4	0.9	1.05	0.975	7.7	2.5
5	0.975	1.05	1.0125	3.7	1.25

Bracketing Methods

False position method

* This method is based on a graphical insight
* Graphical presentation

Bracketing Methods

False position method

```
* This method is based on a graphical insight
* Mathematical formula
\[
x_{r}=x_{u}-\frac{f\left(x_{u}\right)\left(x_{l}-x_{u}\right)}{f\left(x_{l}\right)-f\left(x_{u}\right)}
\]
* Implementation :
Step 1: Chose lower \(x_{I}\) and upper \(x_{u}\) guesses for the root such that the function changes sign over the interval. You can check this out by insuring that \(f\left(x_{l}\right) f\left(x_{u}\right)<0\)
Step 2: An estimate of root \(x_{r}\) is determined by:
Step3: make the following evaluations to determine the next iteration:
- If \(f\left(x_{\nu}\right) f\left(x_{r}\right)<0\) Set \(x_{u}=x_{r}\) and return to step 2
- If \(f\left(x_{\nu}\right) f\left(x_{r}\right)>0\) Set \(x_{l}=x_{r}\) and return to step 2
- If \(f\left(x_{\nu}\right) f\left(x_{r}\right)=0\) stop the iteration. You find the true root
```


False position method

Example \#3

- Find the root of the following function : $f(x)=\frac{100}{x}\left(1-e^{-0.15 x}\right)-20$
- Solution: $1^{\text {st }}$ iteration

Step 1: assume $\boldsymbol{x}_{\boldsymbol{I}}=\mathbf{- 5}$ and $\boldsymbol{x}_{\boldsymbol{u}}=1 \quad(f(-5) f(1)<0)$
Step2: $\quad x_{r}=1-\frac{f(1)(1--5)}{f(-5)-f(1)}=-3.4797$
Step3: $f(-5) f(-3.4797)<0 \rightarrow x_{u}=x_{r} \rightarrow x_{u}=\mathbf{- 3 . 4 7 9 7}$

False position method

Example \#3 ${ }^{\text {cont }}$

Solution: iteration summary

Iteration	X_{I}	X_{U}	X_{r}	\mathcal{E}_{a}
1	-5	1	-3.3307	-----
2	-5	-3.3307	-3.6449	8.5
3	-5	-3.6449	-3.6664	0.58
4	-5	-3.6664	-3.6679	0.106
5	-5	-3.6679	-3.668	0.00272

Open Methods

Simple fixed - point iteration

* It is also called the one-point iteration or successive iteration .
* It depends on change the function to be in the form : $x=g(x)$.
* This transformation could be done by:
- Algebraic manipulation
- Simply add x to both sides of equation
* Examples

$$
x^{2}-2 x+3=0 \Rightarrow x=\frac{x^{2}+3}{2} \quad \sin (x)=0 \Rightarrow x=\sin (x)+x
$$

* you can use any method but its preferred to try the first one and then if failed you can go to the second method

Open Methods

Simple fixed - point iteration

* Methodology and error
* methodology :

$$
x_{i+1}=g\left(x_{i}\right)
$$

* Error

$$
\varepsilon_{a}=\left|\frac{x_{i+1}-x_{i}}{x_{i+1}}\right| 100 \%
$$

Open Methods

Simple fixed - point iteration

- Example\#4 :

Find the roots of the following function: $f(x)=e^{-x}-x$

- Solution:
step1: $e^{-x}-x=0 \Rightarrow x=e^{-x}$ then $g(x)=e^{-x}$
step 2: define the iterative formula : $x_{i+1}=e^{-x_{i}}$
step 3: start iteration : assume $x_{i}=0$ then $x_{i+1}=1$

False position method

Example \#4 cont

Solution: iteration summary

i	$\mathcal{X}_{\boldsymbol{i}}$	$\mathcal{E}_{\boldsymbol{a}}(\%)$
0	0	$-\ldots$
1	1.000000	100
2	0.367879	171.8
3	0.692201	46.9
4	0.500473	38.3
5	0.606244	17.4

False position method

Convergence \qquad

Separate the iteration formula into two functions: $y_{1}=x, y_{2}=g(x)$
Draw both functions and the intersect point between them will be the root:

False position method

Convergence examples

Open Methods

Newton - Raphson Method

* Methodology and error
* methodology :

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
$$

- Error

$$
\varepsilon_{a}=\left|\frac{x_{i+1}-x_{i}}{x_{i+1}}\right| 100 \%
$$

Open Methods

Newton - Raphson Method

```
* Example\#5 :
```

Find the roots of the following function: $f(x)=e^{-x}-x$ * Solution:
step 1: $\quad f(x)=-e^{-x}-1$
step 2: define the iterative formula : $x_{i+1}=x_{i}-\frac{e^{-x_{i}}-x_{i}}{-e^{-x_{i}}-1}$
step 3: start iteration: assume $x_{i}=0$ then $x_{i+1}=1$

Newton - Raphson Method

Example \#5 ${ }^{\text {cont }}$

Solution: iteration summary

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{i}}$	$\mathcal{E}_{a}(\%)$
0	0	---
1	0.500000000	100
2	0.566311003	11.8
3	0.567143165	0.0000220
4	0.567143290	$<\mathbf{1 0}^{-8}$

Newton - Raphson Method

Pitfalls

In some cases, the Newton - Raphson method shows slow rate of convergence. The following example Illustrates that:

Given data $f(x)=x^{10}-1$

$$
x_{0}=0.5
$$

Solution $\quad x_{i+1}=x_{i} \frac{x_{i}^{10}-1}{10 x_{i}^{9}}$

i	x_{i}
0	0.5
1	51.65
2	46.486
3	41.8362
4	37.65285
.	
.	
∞	

- Methodology and error
- Methodology :

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)\left(x_{i-1}-x_{i}\right)}{f\left(x_{i-1}\right)-f\left(x_{i}\right)}
$$

* Notes:
* Although two initial guesses are required but it is still open method because it dose not need change in sign in the function like the bracketing methods
* Its derived by substitution of the first derivative evaluated from the backward divided difference into the Newton - Raphson formula

Error $\quad \varepsilon_{a}=\left|\frac{x_{i+1}-x_{i}}{x_{i+1}}\right| 100 \%$

Open Methods

Secant method

* Example\#6:

Find the roots of the following function: $f(x)=e^{-x}-x$ * Solution:
step1: define the initial iterations x_{i-1} and x_{i}.

$$
\begin{aligned}
& x_{-1}=0 \rightarrow f\left(x_{-1}\right)=1.000000 \\
& x_{0}=1 \rightarrow f\left(x_{0}\right)=-0.63212
\end{aligned}
$$

step2: $\quad x_{1}=1-\frac{-0.63212(0-1)}{1-(-0.63212)}=0.61270$

$$
\begin{aligned}
& \text { Example\# } 6^{\text {cont }}: \\
& 2^{\text {nd }} \text { iteration : } \\
& \text { step3: define the } 2^{\text {nd }} \text { iterations } x_{i-1} \text { and } x_{i} \\
& \qquad \begin{array}{l}
x_{0}=1 \rightarrow f\left(x_{O}\right)=-0.63212 \\
x_{1}=0.61270 \rightarrow f\left(x_{l}\right)=-0.07081 \\
\text { step4: } x_{2}=0.61270-\frac{-0.0708(1-0.61270)}{-0.63212-(-0.0708)}=0.56384
\end{array}
\end{aligned}
$$

