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Roots of equation 

Bracketing Methods:

 Uses the fact that a function typically changes sign in

the vicinity of a root

 Two initial guesses for the root are required

Open Methods:

 Single initial guesses for the root are required

Bracketing Methods 

Example : f(x) = sin(10x)+cos(3x)

Graphical Methods
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Bracketing Methods 

Advantages

 easy to conduct

Disadvantages

Not precise enough

In multi – roots case such as triangular functions , it

may mislead you when the chosen range of data used

to draw the function passes some roots.

Graphical Methods

Bracketing Methods 

Philosophy

function

changes its sign

when it passes

from one side

of the root to

the other side.

 Graphical

representation

 Mathematical

translation

f(xl) f(xu)<0

Bisection method 
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Bisection method 

 The following procedures are used to find root of equation by

Bisection method :

Step 1: Chose lower xl and upper xu guesses for the root such that the function

changes sign over the interval. You can check this out by insuring

that f(xl) f(xu)<0

Step 2: An estimate of root xr is determined by:

Step3: make the following evaluations to determine the next iteration:

 If f(xl) f(xr)<0 Set xu = xr and return to step 2

 If f(xl) f(xr)>0 Set xl = xr and return to step 2

 If f(xl) f(xr)=0 stop the iteration. You find the true root

Procedures 
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Bisection method 

 To terminate the iteration, we have to define a termination criteria.

Because bisection method is a numerical method and the true value is

not found in typical ways, the use of approximation error is

convenient to this case:

Termination criteria 
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Bisection method 

 Find the root of the following function :

 Solution:

 Graphical representation

Example #1
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As you can see, the

exact root of the given

equation is hard to find

so numerical method

must be used

Bisection method 

 Solution: 1st iteration

Step 1: assume xl = -5 and xu =1 ( f(-5) f(1) < 0)

Step2:

Step3: f(-5) f(-2) < 0 → xu = xr → xu = -2

Example #1 cont

51.2)2(,34.2)5(2
2

51

2






 ff

xx
x ul

r



11/09/1433

6

Bisection method 

 Solution: 2nd iteration

Step 1: assume xl = -5 and xu =-2

Step2:

Step3: f(-5) f(-3.5) < 0 → xu = xr → xu = -3.5

Example #1 cont
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Bisection method 

 Solution: 3rd iteration

Step 1: assume xl = -5 and xu =-3.5

Step2:

Step3: f(-5) f(-4.25) >0 → xl = xr → xl = -4.25

Example #1 cont
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Bisection method 

Solution: 4th iteration

Step 1: assume xl = -4.25 and xu = -3.5

Step2:

Step3: f(-5) f(-4.25) >0 → xl = xr → xl = -3.875

Example #1 cont
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Bisection method 

Solution: 5th iteration

Step 1: assume xl = -3.875 and xu = -3.5

Step2:

Step3: f(-5) f(-4.25) <0 → xl = xr → xu = -4.25

Example #1 cont
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Bisection method 

Solution: iteration summary

Example #1 cont

Iteration xl xu xr εa  

1 -5 1 -2 ------

2 -5 -2 -3.5 42.86

3 -5 -3.5 -4.25 17.41

4 -4.25 -3.5 -3.875 9.68

5 -3.875 -3.5 -3.6875 5.08

Bisection method 

Find the root of the following function:

 Solution:

 Graphical representation

Example #2
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As you can see, the

roots of the given

equation are -1 and +1.

we will aim to find the

second root and you

can try to find the other

root.
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Bisection method 

Solution: iteration summary

Example #2

Iteration xl xu xr εa  εt

1 0 1.2 0.6 ---- 40

2 0.6 1.2 0.9 33.3 10

3 0.9 1.2 1.05 14.3 5

4 0.9 1.05 0.975 7.7 2.5

5 0.975 1.05 1.0125 3.7 1.25

Bracketing Methods 

This method is based on a graphical insight

Graphical presentation

False position method 
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Bracketing Methods 

 This method is based on a graphical insight

 Mathematical formula

 Implementation :

Step 1: Chose lower xl and upper xu guesses for the root such that the function
changes sign over the interval. You can check this out by insuring
that f(xl) f(xu)<0

Step 2: An estimate of root xr is determined by:

Step3: make the following evaluations to determine the next iteration:

 If f(xl) f(xr)<0 Set xu = xr and return to step 2

 If f(xl) f(xr)>0 Set xl = xr and return to step 2

 If f(xl) f(xr)=0 stop the iteration. You find the true root

False position method 
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False position method 

 Find the root of the following function :

 Solution: 1st iteration

Step 1: assume xl = -5 and xu =1 ( f(-5) f(1) < 0)

Step2:

Step3: f(-5) f(-3.4797) < 0 → xu = xr → xu = -3.4797

Example #3
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False position method 

Solution: iteration summary

Example #3 cont

Iteration xl xu xr εa  

1 -5 1 -3.3307 ------

2 -5 -3.3307 -3.6449 8.5

3 -5 -3.6449 -3.6664 0.58

4 -5 -3.6664 -3.6679 0.106

5 -5 -3.6679 -3.668 0.00272

Open Methods 

 It is also called the one-point iteration or successive iteration .

 It depends on change the function to be in the form : x = g(x).

 This transformation could be done by:

 Algebraic manipulation

 Simply add x to both sides of equation

 Examples

 you can use any method but its preferred to try the first one and then if

failed you can go to the second method

Simple fixed – point iteration 
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Open Methods 

Methodology and error

 methodology :

Error

Simple fixed – point iteration 
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Open Methods 

Example#4 :

Find the roots of the following function:

 Solution:

step1: then

step 2: define the iterative formula :

step 3: start iteration : assume xi =0 then xi+1 = 1

Simple fixed – point iteration 
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False position method 

Solution: iteration summary

Example #4 cont

i xi εa  (%)

0 0 ----

1 1.000000 100

2 0.367879 171.8

3 0.692201 46.9

4 0.500473 38.3

5 0.606244 17.4

Error increased

False position method 

 Separate the iteration formula into two functions : y1 = x, y2 = g(x)

 Draw both functions and the intersect point between them will be the root:

Convergence 
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False position method 

Convergence examples 

Open Methods 

Methodology and error

 methodology :

Error

Newton – Raphson Method
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Open Methods 

Example#5 :

Find the roots of the following function:

 Solution:

step1:

step 2: define the iterative formula :

step 3: start iteration : assume xi =0 then xi+1 = 1

Newton – Raphson Method
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Newton – Raphson Method

Solution: iteration summary

Example #5 cont

i xi εa  (%)

0 0 ----

1 0.500000000 100

2 0.566311003 11.8

3 0.567143165 0.0000220

4 0.567143290 <10-8
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Newton – Raphson Method

 In some cases, the Newton – Raphson method shows slow rate of

convergence. The following example Illustrates that:

 Given data

Solution

Pitfalls 

i xi

0 0.5

1 51.65

2 46.486

3 41.8362

4 37.65285
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Open Methods 

Methodology and error

 Methodology :

 Notes:

 Although two initial guesses are required but it is still open method because it

dose not need change in sign in the function like the bracketing methods

 Its derived by substitution of the first derivative evaluated from the backward

divided difference into the Newton – Raphson formula

Error

Secant method 
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Open Methods 

Example#6 :

Find the roots of the following function:

 Solution:

step1: define the initial iterations xi-1 and xi.

x-1 = 0 → f(x-1) = 1.000000

x0 = 1 → f(x0) = -0.63212

step2:

Secant method 
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Open Methods 

Example#6 cont :

 2nd iteration :

step3: define the 2nd iterations xi-1 and xi.

x0 = 1→ f(x0) = -0.63212

x1 = 0.61270→ f(x1) =-0.07081

step4:

Secant method 
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