Chapter Four

4.1. condition for equilibrium +FBD

By

Laith Batarseh

condition for equilibrium +FBD

Internal, external forces and F.B.D

Internal forces are the forces caused by the interaction between body particles

External forces are the forces act on the outer surface of the body

Free - body diagram (F.B.D) shows only the external forces
Internal forces are opposite forces cancel each other

condition for equilibrium +FBD

Equilibrium condifions

condition for equilibrium +FBD

Equilibrium conditions

$$
\mathbf{F}_{\mathrm{R}}=\sum \mathbf{F}=\mathbf{0} \text { and }\left(\mathbf{M}_{\mathrm{R}}\right)_{\mathbf{0}}=\sum \mathbf{M}_{\mathbf{0}}=\mathbf{0}
$$

These equations are su
Assume that we have a body subjected to resultant force and body moment system shown

$$
\left(M_{R}\right)_{0}=0 \quad F_{R}=0
$$

condition for equilibrium +FBD

F.B.D

To apply the equilibrium conditions successfully, all the external forces acting on the body must be specified

Free body diagram is a way to represent these forces graphically.
F.B.D is a sketch of the outlined shape of the body isolated from its surrounding (i.e. connections)

All the forces and couple moments generated from the surrounding on the body must be drawn in the F.B.D.

condition for equilibrium +FBD

Support reactions

Reaction is a resistance force developed in the supporting points due to the application of external load (force)

The type of reaction in support depends on the type of motion prevented by the support.

Prevent translational motion

Prevent rotational motion

Reaction moment

condition for equilibrium +FBD

Examples

For more connection reactions, refer to Engineering Mechanics, Statics, $12^{\text {th }}$ edition, R. C. Hibbeler, 2010, pp 202-203

condition for equilibrium +FBD

Example [1]

Draw the F.B.D for the body shown in the figure

Solution

condition for equilibrium +FBD

Example [2]

Solution

Equilibrium conditions

$$
\begin{gathered}
F_{x}=0 ; 100+200-R_{x}=\mathbf{0 .} \text { so, } R_{x}=-\mathbf{3 0 0} \mathrm{N} \\
F_{y}=0 ;-\mathbf{3 0 0}+R_{y}=0 . \text { so, } R_{y}=\mathbf{3 0 0} \mathrm{N}
\end{gathered}
$$

As you see, the assumed directions are correct. In other cases where the sign associated with the reaction is opposite to the assumed direction then, the assumed direction must be reversed

Statics

Chapter Four

4.2. equations of equilibrium

By

Laith Batarseh

Equations of equilibrium

In this lecture

DLearn how to use equilibrium equations to find unknown reactions or forces

Equations of equilibrium

Equations of equilibrium

as said previously, the body will be under equilibrium if the summation of both resultant forces and moments equal zero

Mathematically, $\Sigma \mathrm{F}=\Sigma \mathrm{M}=\mathbf{0}$
In planer forces (2D problems), the rectangular notation for forces is very useful

$$
\begin{gathered}
\sum F_{x}=0 \\
\sum F_{y}=0 \\
\sum M_{0}=0
\end{gathered}
$$

Equations of equilibrium

Alternative set of equilibrium equations

In some cases we can use only the equilibrium of forces equations or the moment equation only

The main criteria that determine the number of equations used to solve a problem is the number of the unknowns

Algebraically, to solve a certain number of unknowns, you need the same number of equations. For example, you can solve 4 equations with 4 unknowns

Equations of equilibrium

Analysis procedures

Establish F.B.D with all the acting forces and couple moments beside the reaction forces and moments shown clearly.

Use the equilibrium equations to find the unknown reactions, forces or moments required. These equations are $\sum \mathrm{Fx}=\Sigma \mathrm{Fy}=\Sigma \mathrm{M}=0$

If the assumed force or moment show an opposite sense (i.e. different sign from the originally assumed) the sense of force or moment must be reversed

It is preferred to use equilibrium moment equation at the reaction that have two unknowns to eliminate them

Equations of equilibrium

Example [1]

Draw the F.B.D for the body shown in Fig. 1 and find the reactions at both points A and B that make this system under equilibrium

Equations of equilibrium

Example [1]

Solution

Equilibrium equations

$\overrightarrow{+} \sum F x=0 \Rightarrow A x+500 \cos (30)+250=0 \Rightarrow A x=-683 N$
$+\uparrow \sum F y=0 \Rightarrow A y+B y-500 \sin (30)=0 \Rightarrow A y+B y=250 N---(1)$
$\sum M_{A}=0 \Rightarrow-500 \sin 30(2)-400(3.5)+B y(7)=0 \Rightarrow B y=271 N$

Back to Eq. 1

$$
A y+271-500 \sin (30)=0 \Rightarrow A y=379 N
$$

Equations of equilibrium

Example [2]

Draw the F.B.D for the body shown in Fig. 2 and find the reactions at the supporting points that make this system under equilibrium

Fig. 2

Equations of equilibrium

Example[2]

Solution

\square First, We divide the distributed load $w(x)$ into two identical regions: $A \rightarrow B$ and $B \rightarrow C$. then, we must find the resultant force F_{R} for each region. By using the method of reduction distrusted loads that we learn previously, F_{R} can be found for region $A \rightarrow B$ as:

$$
F_{R}=\int_{0}^{3} x^{2} \cdot d x=\left.\frac{x^{3}}{3}\right|_{0} ^{3}=\frac{27}{3}=9 k N
$$

\square the location of $F_{R}\left(x^{\prime}\right)$ is found as:

$$
x^{\prime}=\frac{\int_{0}^{3} x\left(x^{2}\right) \cdot d x}{\int_{0}^{3}\left(x^{2}\right) \cdot d x}=\frac{\left.\frac{x^{4}}{4}\right|_{0} ^{3}}{9}=2.25 \mathrm{~m}
$$

Equations of equilibrium

Example[2]

Solution

\square Due to the symmetry between the two regions ($A \rightarrow B$ and $B \rightarrow C$), the reduction process of the distributed load acting on region $A \rightarrow B$ can be ,simply, duplicated to find the magnitude and the location of the resultant force acting on region $B \rightarrow C$. now we can represent these forces on the beam:

Equations of equilibrium

Example[2]

Solution

\square After reducing the distributed loads, the time now is appropriate to draw F.B.D. The F.B.D is shown in Fig. 3

Equations of equilibrium

Example[2]

Solution

\square As you can see, there is no force acting on this body at x-direction. So, $\mathbf{A x}=\mathbf{0}$ and the summation of forces at y-direction yield to:

$$
B y+A y=9+9=18 k N---(1)
$$

\square applying the equilibrium equation about a certain point for example point A to find the reaction By:

$$
\sum M_{A}=0 \rightarrow(9)(4.50+0.75)+(9)(0.75)-B y(6)--(2)
$$

\square Rearrange Eq. 2 and solve for $B y: B y=9 k N \uparrow$ Ans
■. Back to Eq.2, substitute the value of By to find Ay:

$$
A y+9=18 \rightarrow A y=9 N \text { Ans }
$$

Equations of equilibrium

Example[2]

Solution

You can note:
$>$ Because of the symmetry in this problem, the reactions were identical. Such note can be generalized on other symmetrical system.
$>$ You can use the momentum equation again to find $A y$ instead of using the force equation. This procedure can be used also to verify the solution

