Second exam, second semester: 2016/2017
 Mechanical Engineering Department

Course Title: theory of machines
Course No: 620333
Lecturer: Eng. Laith Batarseh
Date: 2 /1/2017
Time: 50min
No. of pages: 4
Sun, Thu and Tue 12:10-1:00
Mon and Wed 12:45-2:15

Instructions:

- ALLOWED: Non-programmable calculator, pens and drawing tools (no red color).
- NOT ALLOWED: Papers, literatures and any handouts. Otherwise, it will lead to the non-approval of your examination.
- Shut down Telephones, and other communication devices.

Please note:
. Write your name and your matriculation number on every page of the solution sheets.

- All solutions together with solution methods (explanatory statement) must be inserted in the labeled position on the solution sheets.
- Support your answer with diagrams, equations and examples when possible
- You can submit your exam after the first $1 / 2$ hour.
- Use the given space wisely. It will not be allowed to have a second sheet of solution.
- You may write on the back of these pages. However, you must mention that in the front pages.

Question 1:

(8marks)
General concepts
Chose the correct answer for the short questions in page 2 and fill the table given in page 1 of 4 with your answers. Use the symbol (X).

Student Name:
Student Number:
Serial Number:

Question 1:continu

1. A mechanism has 4 links will has a number of instantaneous centers equal
a. 15
(b. \varnothing
c. 21
d. 10
e. none of the previous
2. For the four bar mechanism shown in the fig. if $\omega_{2}=1200 \mathrm{RPM}, \mathrm{O}_{2} \mathrm{k}=40 \mathrm{~cm}$ and $O_{4} \mathrm{k}=80 \mathrm{~cm}$. find the angular speed of link $4\left(\omega_{4}\right)$ in RPM

a. 600
b. 150
c. 300
d. 1200
e. none of the previous
3. A rigid bar link has length equal 50 cm and rotates about one of its joints by angular speed equal 50 $\mathrm{rad} / \mathrm{s}$. its tangential velocity in m / s will equal
a. 100
b. 50
c. 200
d. 25
e. none of the previous
4. a 1.5 m bar link rotate about one of its joints at a constant angular speed equal $10 \mathrm{rad} / \mathrm{s}$. then the magnitude of its acceleration equal in $\mathrm{m} / \mathrm{s}^{2}$:
a. 3750
b. 1350
(c.) 150
d. 600
e. none of the previous
5. a bar link is analyzed statically. If the force at one of its joints is :- $\mathbf{5 i +} \mathbf{7 j}$, the Cartesian vector for the force in the other joint will be
a. $-5 \mathrm{i}+7 \mathrm{j}$
(b) $5 \mathrm{i}-7 \mathrm{j}$
c. $-7 \mathrm{i}+5 \mathrm{j}$
d. $7 \mathrm{i}-5 \mathrm{j}$
e. none of the previous

The flowing data are for questions 6 and 7:
When a cam rotates with speed equal 600 RPM from 0° to 90° it makes the follower to raise in SHM from 0 cm to 4 cm .
6. Find the follower displacement at cam angle equal 45°.
a. 3.72 cm
b. 3.00 cm
C. 2.00 cm
d. 1.00 cm
e. none of the previous
7. Find the follower velocity at cam angle equal 45°.round the solution to two decimal digits.
a. $3.15 \mathrm{~m} / \mathrm{s}$
b. $2.51 \mathrm{~m} / \mathrm{s}$
c. $2.17 \mathrm{~m} / \mathrm{s}$
d. $1.26 \mathrm{~m} / \mathrm{s}$
e. none of the previous
8. An eccentric cam has eccentricity $(\mathbf{e})=\mathbf{1 0} \mathbf{~ c m}$, find the displacement at angle $=180^{\circ}$.
a. 15.0 cm
20.0 cm
c. 13.4 cm
d. 5.0 cm
e. none of the previous

Second exam, second semester: 2016/2017
Mechanical Engineering Department
Course Title: theory of machines
Date: 2 /1/2017
Course No: 620333
Time: 50min
Lecturer: Eng. Laith Batarseh
No. of pages: 4
Sun, Thu and Tue 12:10-1:00
Mon and Wed 12:45-2:15

Instructions:

- ALLOWED: Non-programmable calculator, pens and drawing tools (no red color).
- NOT ALLOWED: Papers, literatures and any handouts. Otherwise, it will lead to the non-approval of your examination.
- Shut down Telephones, and other communication devices.

Please note:

- Write your name and your matriculation number on every page of the solution sheets.
- All solutions together with solution methods (explanatory statement) must be inserted in the labeled position on the solution sheets.
- Support your answer with diagrams, equations and examples when possible
- You can submit your exam after the first $1 / 2$ hour.
- Use the given space wisely. It will not be allowed to have a second sheet of solution.
- You may write on the back of these pages. However, you must mention that in the front pages.

Question 1:

(8marks)

General concepts
Chose the correct answer for the short questions in page 2 and fill the table given in page 1 of 4 with your answers. Use the symbol (X).

Student Name:
Student Number:
Serial Number:

Question 1:continu

(8marks)

1. A mechanism has $\underline{\mathbf{5}}$ links will has a number of instantaneous centers equal
a. 15
b. 6
c. 21
(d.) 0
e. none of the previous
2. For the four bar mechanism shown in the fig. if $\omega_{2}=2400 \mathrm{RPM}, \mathrm{O}_{2} \mathrm{k}=40 \mathrm{~cm}$ and $O_{4} \mathrm{k}=80 \mathrm{~cm}$. find the angular speed of link $4\left(\omega_{4}\right)$ in RPM

a. 600
b. 150
c. 300
d 1200
e. none of the previous
3. A rigid bar link has length equal 50 cm and rotates about one of its joints by angular speed equal 400 $\mathrm{rad} / \mathrm{s}$. its tangential velocity in m / s will equal
a. 100
b. 50
c. 200
d. 25
e. none of the previous
4. a 1.5 m bar link rotate about one of its joints at a constant angular speed equal $50 \mathrm{rad} / \mathrm{s}$. then the magnitude of its acceleration equal in $\mathrm{m} / \mathrm{s}^{2}$:
a. 3750
b. 1350
c. 150
d. 600
e. none of the previous
5. a bar link is analyzed statically. If the force at one of its joints is :-7i+5j, the Cartesian vector for the force in the other joint will be
a. $-5 i+7 j$
b. $5 \mathrm{i}-7 \mathrm{j}$
c. $-7 \mathrm{i}+5 \mathrm{j}$
d. $7 i-5 j$
e. none of the previous

The flowing data are for questions 6 and 7:
When a cam rotates with speed equal 600 RPM from 0° to 90° it makes the follower to raise in SHM from 0 cm to 4 cm .
6. Find the follower displacement at cam angle equal 75°.
a. 3.72 cm
b. 3.00 cm
c. 2.00 cm
d. 1.00 cm
e. none of the previous
7. Find the follower velocity at cam angle equal 75°.round the solution to two decimal digits.
a. $3.15 \mathrm{~m} / \mathrm{s}$
b. $2.51 \mathrm{~m} / \mathrm{s}$
c. $2.17 \mathrm{~m} / \mathrm{s}$
d. $1.26 \mathrm{~m} / \mathrm{s}$
e. none of the previous
8. An eccentric cam has eccentricity $(\mathrm{e})=\mathbf{1 0} \mathrm{cm}$, find the displacement at angle $=\mathbf{3 0 0 ^ { \circ }}$.
a. 15.0 cm
b. 20.0 cm
c. 13.4 cm
(d. 5.0 cm
e. none of the previous

This space can be used for the calculations in problem 1 and it will not be considered as a solution.

Philadelphia University Faculty of Engineering

Second Exam, Second Semester: 2016/2017 Mechanical Engineering Department

Course Title: theory of machines
Course No: 620333
Lecturer: Eng. Leith Batarseh

Date: $2 / 1 / 2017$
Time: 50 min
No. of pages: 4
Mon and Wed 12:45-2:15

Instructions:

- ALLOWED: Non-programmable calculator, pens and drawing tools (no red color).
- NOT ALLOWED: Papers, literature and any handouts. Otherwise, it will lead to the non-approval of your examination.
- Shut down Telephones, and other communication devices.

Please note:

- Write your name and your matriculation number on every page of the solution sheets.
- All solutions together with solution methods (explanatory statement) must be inserted in the labeled position on the solution sheets.
- Support your answer with diagrams, equations and examples when possible
- You can submit your exam after the first $1 / 2$ hour.
- Use the given space wisely. It will not be allowed to have a second sheet of solution.
- You may write on the back of these pages. However, you must mention that in the front pages.

Question 1:

(8marks)

General concepts
Chose the correct answer for the short questions in page 2 and fill the table given in page 1of 4 with your answers. Use the symbol (X).

Ans /Q	1	2	3	4	5	6	7	8
a	X				X			X
b			X					
\boldsymbol{c}		X					X	
\boldsymbol{d}				X		X		
\boldsymbol{e}								

Student Name:
Student Number:
Serial Number:

Question 1:continu

1. A mechanism has $\underline{6}$ links will has a number of instantaneous centers equal
a. (15)
b. 6
c. 21
d. 10
e. none of the previous
2. For the four bar mechanism shown in the fig. if $\omega_{2}=600 \mathrm{RPM}, \mathrm{O}_{2} \mathrm{k}=40 \mathrm{~cm}$ and $\mathrm{O}_{4} \mathrm{k}$ $=80 \mathrm{~cm}$. find the angular speed of link 4 $\left(\omega_{4}\right)$ in RPM

a. 600
b. 150
c. 300
d. 1200
e. none of the previous
3. A rigid bar link has length equal 50 cm and rotates about one of its joints by angular speed equal 100 rad/s. its tangential velocity in m / s will equal
a. 100
4. 50
c. 200
d. 25
e. none of the previous
5. a 1.5 m bar link rotate about one of its joints at a constant angular speed equal $20 \mathrm{rad} / \mathrm{s}$. then the magnitude of its acceleration equal in $\mathrm{m} / \mathrm{s}^{2}$:
a. 3750
b. 1350
c. 150
d. 800
e. none of the previous
6. a bar link is analyzed statically. If the force at one of its joints is : 5i-7j , the Cartesian vector for the force in the other joint will be
a. $5 \mathrm{i}+7 \mathrm{j}$
b. $5 \mathrm{i}-7 \mathrm{j}$
c. $-7 \mathrm{i}+5 \mathrm{j}$
d. $7 \mathrm{i}-5 \mathrm{j}$
e. none of the previous

The flowing data are for questions 6 and 7:
When a cam rotates with speed equal 600 RPM from 0° to 90° it makes the follower to raise in SHM from 0 cm to 4 cm .
6. Find the follower displacement at cam angle equal 30°.
a. 3.72 cm
b. 3.00 cm
c. 2.00 cm
(d) 1.00 cm
e. none of the previous
7. Find the follower velocity at cam angle equal 30°.round the solution to two decimal digits.
a. $3.15 \mathrm{~m} / \mathrm{s}$
b. $2.51 \mathrm{~m} / \mathrm{s}$
C. $2.17 \mathrm{~m} / \mathrm{s}$
d. $1.26 \mathrm{~m} / \mathrm{s}$
e. none of the previous
8. An eccentric cam has eccentricity $(e)=10 \mathrm{~cm}$, find the displacement at angle $=120^{\circ}$.
a) 15.0 cm
b. 20.0 cm
c. 13.4 cm
d. 5.0 cm
e. none of the previous

This space can be used for the calculations in problem 1 and it will not be considered as a solution.

Student Name:
Student Number:
Serial Number:
Second exam, second semester: 2016/2017
Mechanical Engineering Department
Course Title: theory of machines
Course No: 620333
Lecturer: Eng. Laith Batarseh
Sun, Thu and Tue 12:10-1:00

Instructions:

- ALLOWED: Non-programmable calculator, pens and drawing tools (no red color).
- NOT ALLOWED: Papers, literatures and any handouts. Otherwise, it will lead to the non-approval of your examination.
- Shut down Telephones, and other communication devices.

Please note:

- Write your name and your matriculation number on every page of the solution sheets.
- All solutions together with solution methods (explanatory statement) must be inserted in the labeled position on the solution sheets.
- Support your answer with diagrams, equations and examples when possible
- You can submit your exam after the first $1 / 2$ hour.
- Use the given space wisely. It will not be allowed to have a second sheet of solution.
- You may write on the back of these pages. However, you must mention that in the front pages.

Question 1: (8marks)
General concepts
Chose the correct answer for the short questions in page 2 and fill the table given in page 1of 4 with your answers. Use the symbol (X).

Student Name:
Student Number:
Serial Number:

Question 1:continu

1. A mechanism has $\underline{7}$ links will has a number of instantaneous centers equal
a. 15
b. 6
d. 10
e. none of the previous
2. For the four bar mechanism shown in the fig. if $\omega_{2}=300 \mathrm{RPM}, \mathrm{O}_{2} \mathrm{k}=40 \mathrm{~cm}$ and $\mathrm{O}_{4} \mathrm{k}$ $=80 \mathrm{~cm}$. find the angular speed of link 4 $\left(\omega_{4}\right)$ in RPM
a. 600
b. 150
c. 300
d. 1200
e. none of the previous
3. A rigid bar link has length equal 50 cm and rotates about one of its joints by angular speed equal 200 $\mathrm{rad} / \mathrm{s}$. its tangential velocity in m / s will equal
a. 100
b. 50
c. 200
d. 25
e. none of the previous
4. a 1.5 m bar link rotate about one of its joints at a constant angular speed equal $30 \mathrm{rad} / \mathrm{s}$. then the magnitude of its acceleration equal in $\mathrm{m} / \mathrm{s}^{2}$:
a. 3750
(b.) 1350
c. 150
d. 600
e. none of the previous
5. a bar link is anatyzed statically. If the force at one of its joints is :7i-5j, the Cartesian vector for the force in the other joint will be
a. $-5 i+7 j$
b. $5 \mathrm{i}-7 \mathrm{j}$
(c) $-7 i+5 j$
d. $7 \mathrm{i}-5 \mathrm{j}$
e. none of the previous

The flowing data are for questions 6 and 7:
When a cam rotates with speed equal 600 RPM from 0° to 90° it makes the follower to raise in SHM from 0 cm to 4 cm .
6. Find the follower displacement at cam angle equal 60°.
a. 3.72 cm
b. 3.00 cm
c. 2.00 cm
d. 1.00 cm
e. none of the previous
7. Find the follower velocity at cam angle equal 60°.round the solution to two decimal digits.
a. $3.15 \mathrm{~m} / \mathrm{s}$
b. $2.51 \mathrm{~m} / \mathrm{s}$
(c.) $2.17 \mathrm{~m} / \mathrm{s}$
d. $1.26 \mathrm{~m} / \mathrm{s}$
e. none of the previous
8. An eccentric cam has eccentricity (e) $=10 \mathrm{~cm}$, find the displacement at angle $=\mathbf{2 5 0}$.
a. 15.0 cm
b. 20.0 cm
c. 13.4 cm
d. 5.0 cm
e. none of the previous

This space can be used for the calculations in problem 1 and it will not be considered as a solution.

Question 2:

(6 marks)
Consider the following loop closure equation for four bar mechanism and the given data in the table:

Qunt.	d_{1}	$\mathrm{~d}_{2}$	$\mathrm{~d}_{3}$	$\mathrm{~d}_{4}$	Θ_{2}	Θ_{3}	Θ_{4}	ω_{2}	ω_{3}	ω_{4}
value	0.9	0.2	0.7	0.5	60	25	110	300	$?$	$?$
Unit	m	m	m	m	Degree	Degree	Degree	RPM	RPM	RPM

1. Derive an expression to find ω_{3} and ω_{4}
2. Substitute the values in table to find ω_{3} and ω_{4}
3. $d_{2} \omega_{2} \dot{U_{\theta 2}}+d_{3} \omega_{3} \dot{U_{\theta 3}}=d_{4} \omega_{4} \dot{U_{\theta 4}}$

Dot product both sides by U_{63} to eliminate ω_{3}

$$
d_{2} \omega_{2} \sin \left(\theta_{3}-\theta_{2}\right)+0=d_{4} \omega_{4} \sin \left(\theta_{3}-\theta_{4}\right)
$$

Solve for $\omega_{4}:-\omega_{4}=\frac{d_{2} \omega_{2} \sin \left(\theta_{3}-\theta_{2}\right)}{d_{4} \sin \left(\theta_{3}-\theta_{4}\right)}$
To find ω_{3}, dot product both sides of derivative equation by U_{84} to eliminate ω_{4} :

$$
d_{2} \omega_{2} \sin \left(\theta_{4}-\theta_{2}\right)+d_{3} \omega_{3} \sin \left(\theta_{4}-\theta_{3}\right)=0
$$

Solve this equation for $\omega_{3}:-\omega_{3}=-\frac{d_{2} \omega_{2} \sin \left(\theta_{4}-\theta_{2}\right)}{d_{3} \sin \left(\theta_{4}-\theta_{3}\right)}$
2. substitute the values from table

$$
\begin{aligned}
& \omega_{3}=-\frac{(0.2)(300) \sin (110-60)}{0.7 \sin (110-25)}=-65 R P M=-6.9 \frac{\mathrm{Ral}}{5} \\
& \omega_{4}=\frac{(0.2)(300) \sin (25-60)}{0.5 \sin (25-1 \varphi 0)}=69 R P M=7: 22 \frac{\mathrm{Ral}_{5}}{5}
\end{aligned}
$$

Student Number:
Serial Number:

Question 3:

Assume a cam has basic radius of 6 cm and has the following follower program

- $0 \rightarrow 90^{\circ}:$ SHM rise to 4 cm
[$90^{\circ} \rightarrow 180^{\circ}$: Dwell
[$180^{\circ} \rightarrow 270^{\circ}:$ SHM return to 0
- $270^{\circ} \rightarrow 360^{\circ}$: Dwell

1. Draw an approximate sketch for S-Ө diagram

2. Complete the following table and show all the calculations you used to find these values

For SHM: $s(\theta)=\frac{H}{2}\left(1-\cos \left(\frac{\pi \theta}{\beta}\right)\right)$
For 45 degree: $\mathrm{H}=4 \mathrm{~cm}, \beta=90^{\circ}, \Theta=45$

Cam angle (degree)	Follower disp. (m)	Cam radius (cm)
45	0.02	128
225	0.02	128

$s(45)=\frac{0.04}{2}\left(1-\cos \left(\frac{\pi 45}{90}\right)\right)=0.02 m$
$r_{c}=r_{b}+s=2 \mathrm{~cm}+\underset{6}{10 \mathrm{~cm}}=\frac{12}{2} \mathrm{~cm}$
For 225 degree: $H=4 \mathrm{~cm}, \beta=90^{\circ}, \Theta=225-180=45$
$s(225)=4-\frac{0.04}{2}\left(1-\cos \left(\frac{\pi 45}{90}\right)\right)=0.02 m$
$r_{c}=r_{b}+s=2 \mathrm{~cm}+10 \mathrm{~cm}=12 \mathrm{~cm}$

Theory of machines data sheet

Student name: \qquad Reg. No: \qquad

$$
\begin{array}{ll}
S=2 H\left(\frac{\theta}{\beta}\right)^{2} ; & 0<\theta<\beta / 2
\end{array} \quad S=H\left(1-2\left(1-\frac{\theta}{\beta}\right)^{2}\right) ; \quad \beta / 2<\theta<\beta, \quad \dot{S}=4 H \omega\left(\frac{\theta}{\beta^{2}}\right) ; \quad 0<\theta<\beta / 2 \quad \dot{S}=4 H \frac{\omega}{\beta}\left(1-\frac{\theta}{\beta}\right) ; \quad \beta / 2<\theta<\beta
$$

$$
\begin{gathered}
s(\theta)=\frac{H}{2}\left(1-\cos \left(\frac{\pi \theta}{\beta}\right)\right) \\
\dot{s}(\theta)=\frac{H}{2}\left(\frac{\pi \omega}{\beta}\right) \sin \left(\frac{\pi \theta}{\beta}\right) \\
\ddot{s}(\theta)=\frac{H}{2}\left(\frac{\pi \omega}{\beta}\right)^{2} \cos \left(\frac{\pi \theta}{\beta}\right)
\end{gathered}
$$

$$
\begin{aligned}
& s(\theta)=\frac{h}{\pi}\left(\frac{\pi \theta}{\beta}-\frac{1}{2} \sin \left(\frac{2 \pi \theta}{\beta}\right)\right) \\
& \dot{s}(\theta)=\frac{h}{\pi}\left(\frac{\omega}{\beta}\right)\left(1-\cos \left(\frac{2 \pi \theta}{\beta}\right)\right) \\
& \ddot{s}(\theta)=2 h \pi\left(\frac{\omega}{\beta}\right)^{2} \sin \left(\frac{2 \pi \theta}{\beta}\right)
\end{aligned}
$$

$$
h=e\{1-\cos (\theta)\} \quad v=\omega e \sin (\theta) \quad a=\omega^{2} e \cos (\theta)
$$

