
Chapter 1:
What is Software Architecture?

© Len Bass, Paul Clements, Rick Kazman,
distributed under Creative Commons

Attribution License

Chapter Outline

• What Software Architecture Is and What It
Isn’t

• Architectural Structures and Views

• Architectural Patterns

• What Makes a “Good” Architecture?

• Summary

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

What is Software Architecture?

The software architecture of a system is the set
of structures needed to reason about the system,
which comprise software elements, relations
among them, and properties of both.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Definition

• This definition stands in contrast to other
definitions that talk about the system’s “early” or
“major” design decisions.
– Many architectural decisions are made early, but not

all are.
– Many decisions are made early that are not

architectural.
– It’s hard to look at a decision and tell whether or not

it’s “major.”

• Structures, on the other hand, are fairly easy to
identify in software, and they form a powerful
tool for system design.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Architecture Is a Set of Software
Structures

• A structure is a set of elements held together
by a relation.

• Software systems are composed of many
structures, and no single structure holds claim
to being the architecture.

• There are three important categories of
architectural structures.
1. Module

2. Component and Connector

3. Allocation

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Module Structures

• Some structures partition systems into
implementation units, which we call modules.

• Modules are assigned specific computational
responsibilities, and are the basis of work
assignments for programming teams.

• In large projects, these elements (modules)
are subdivided for assignment to sub-teams.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Component-and-connector
Structures

• Other structures focus on the way the elements
interact with each other at runtime to carry out the
system’s functions.

• We call runtime structures component-and-connector
(C&C) structures.

• In our use, a component is always a runtime entity.
– Suppose the system is to be built as a set of services.
– The services, the infrastructure they interact with, and the

synchronization and interaction relations among them
form another kind of structure often used to describe a
system.

– These services are made up of (compiled from) the
programs in the various implementation units – modules.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Allocation Structures

• Allocation structures describe the mapping from
software structures to the system’s environments
– organizational
– developmental
– installation
– Execution

• For example
– Modules are assigned to teams to develop, and

assigned to places in a file structure for
implementation, integration, and testing.

– Components are deployed onto hardware in order to
execute.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Which Structures are Architectural?

• A structure is architectural if it supports
reasoning about the system and the system’s
properties.

• The reasoning should be about an attribute of the
system that is important to some stakeholder.

• These include
– functionality achieved by the system
– the availability of the system in the face of faults
– the difficulty of making specific changes to the system
– the responsiveness of the system to user requests,
– many others.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Architecture is an Abstraction

• An architecture comprises software elements and how the
elements relate to each other.
– An architecture specifically omits certain information about elements that

is not useful for reasoning about the system.
– It omits information that has no ramifications outside of a single element.
– An architecture selects certain details and suppresses others.
– Private details of elements—details having to do solely with internal

implementation—are not architectural.

• The architectural abstraction lets us look at the system in terms of
its elements, how they are arranged, how they interact, how they
are composed, what their properties are that support our system
reasoning, and so forth.

• This abstraction is essential to taming the complexity of an
architecture.

• We simply cannot, and do not want to, deal with all of the
complexity all of the time.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Every System has a Software
Architecture

• Every system comprises elements and relations among
them to support some type of reasoning.

• But the architecture may not be known to anyone.
– Perhaps all of the people who designed the system are

long gone

– Perhaps the documentation has vanished (or was never
produced)

– Perhaps the source code has been lost (or was never
delivered)

• An architecture can exist independently of its
description or specification.

• Documentation is critical.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Architecture Includes Behavior

• The behavior of each element is part of the architecture insofar as that
behavior can be used to reason about the system.

• This behavior embodies how elements interact with each other, which is
clearly part of the definition of architecture.

• Box-and-line drawings that are passed off as architectures are not
architectures at all.
– When looking at the names of the a reader may well imagine the functionality

and behavior of the corresponding elements.
– But it relies on information that is not present – and could be wrong!

• This does not mean that the exact behavior and performance of every
element must be documented in all circumstances.
– Some aspects of behavior are fine-grained and below the architect’s level of

concern.

• To the extent that an element’s behavior influences another element or
influences the acceptability of the system as a whole, this behavior must
be considered, and should be documented, as part of the software
architecture.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Physiological Structures

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

• The neurologist, the orthopedist, the hematologist,
and the dermatologist all have different views of the
structure of a human body.

• Ophthalmologists, cardiologists, and podiatrists
concentrate on specific subsystems.

• The kinesiologist and psychiatrist are concerned with
different aspects of the entire arrangement’s behavior.

• Although these views are pictured differently and have
different properties, all are inherently related,
interconnected.

• Together they describe the architecture of the human
body.

• So it is with software!

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Physiological Structures

Structures and Views

• A view is a representation of a coherent set of architectural
elements, as written by and read by system stakeholders.
– A view consists of a representation of a set of elements and the

relations among them.

• A structure is the set of elements itself, as they exist in
software or hardware.

• In short, a view is a representation of a structure.
– For example, a module structure is the set of the system’s

modules and their organization.
– A module view is the representation of that structure,

documented according to a template in a chosen notation, and
used by some system stakeholders.

• Architects design structures. They document views of those
structures.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Module Structures

• Module structures embody decisions as to how the system is to be
structured as a set of code or data units that have to be constructed
or procured.

• In any module structure, the elements are modules of some kind
(perhaps classes, or layers, or merely divisions of functionality, all of
which are units of implementation).

• Modules are assigned areas of functional responsibility; there is less
emphasis in these structures on how the software manifests at
runtime.

• Module structures allow us to answer questions such as these:
– What is the primary functional responsibility assigned to each

module?
– What other software elements is a module allowed to use?
– What other software does it actually use and depend on?
– What modules are related to other modules by generalization or

specialization (i.e., inheritance) relationships?

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Component-and-connector
Structures

• Component-and-connector structures embody decisions as to how the system
is to be structured as a set of elements that have runtime behavior
(components) and interactions (connectors).

• Elements are runtime comopnents such as services, peers, clients, servers,
filters, or many other types of runtime element)

• Connectors are the communication vehicles among components, such as call-
return, process synchronization operators, pipes, or others.

• Component-and-connector views help us answer questions such as these:
– What are the major executing components and how do they interact at runtime?

– What are the major shared data stores?

– Which parts of the system are replicated?

– How does data progress through the system?

– What parts of the system can run in parallel?

– Can the system’s structure change as it executes and, if so, how?

• Component-and-connector views are crucially important for asking questions
about the system’s runtime properties such as performance, security,
availability, and more.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Allocation structures

• Allocation structures show the relationship
between the software elements and elements in
one or more external environments in which the
software is created and executed.

• Allocation views help us answer questions such as
these:
– What processor does each software element execute

on?
– In what directories or files is each element stored

during development, testing, and system building?
– What is the assignment of each software element to

development teams?

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Structures Provide Insight

• Structures play such an important role in our perspective
on software architecture because of the analytical and
engineering power they hold.

• Each structure provides a perspective for reasoning about
some of the relevant quality attributes.

• For example:
– The module structure, which embodies what modules use what

other modules, is strongly tied to the ease with which a system
can be extended or contracted.

– The concurrency structure, which embodies parallelism within
the system, is strongly tied to the ease with which a system can
be made free of deadlock and performance bottlenecks.

– The deployment structure is strongly tied to the achievement of
performance, availability, and security goals.

– And so forth.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Some Useful Module Structures

Decomposition structure
• The units are modules that are related to each other by the is-a-

submodule-of relation.
• It shows how modules are decomposed into smaller modules

recursively until the modules are small enough to be easily
understood.

• Modules often have products (such as interface specifications,
code, test plans, etc.) associated with them.

• The decomposition structure determines, to a large degree, the
system’s modifiability, by assuring that likely changes are localized.

• This structure is often used as the basis for the development
project’s organization, including the structure of the
documentation, and the project’s integration and test plans.

• The units in this structure tend to have names that are organization-
specific such as “segment” or “subsystem.”

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Some Useful Module Structures

Uses structure.
• The units here are also modules, perhaps classes.
• The units are related by the uses relation, a specialized

form of dependency.
• A unit of software uses another if the correctness of

the first requires the presence of a correctly
functioning version (as opposed to a stub) of the
second.

• The uses structure is used to engineer systems that can
be extended to add functionality, or from which useful
functional subsets can be extracted.

• The ability to easily create a subset of a system allows
for incremental development.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Some Useful Module Structures

Layer structure
• The modules in this structure are called layers.
• A layer is an abstract “virtual machine” that

provides a cohesive set of services through a
managed interface.

• Layers are allowed to use other layers in a strictly
managed fashion.
– In strictly layered systems, a layer is only allowed to

use a single other layer.

• This structure is imbues a system with portability,
the ability to change the underlying computing
platform.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Some Useful Module Structures

Class (or generalization) structure
• The module units in this structure are called classes.
• The relation is inherits from or is an instance of.
• This view supports reasoning about collections of

similar behavior or capability
– e.g.,the classes that other classes inherit from and

parameterized differences

• The class structure allows one to reason about reuse
and the incremental addition of functionality.

• If any documentation exists for a project that has
followed an object-oriented analysis and design
process, it is typically this structure.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Some Useful Module Structures

Data model

• The data model describes the static
information structure in terms of data entities
and their relationships.

– For example, in a banking system, entities will
typically include Account, Customer, and Loan.

– Account has several attributes, such as account
number, type (savings or checking), status, and
current balance.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Some Useful C&C Structures

• The relation in all component-and-connector structures is
attachment, showing how the components and the connectors
are hooked together.

• The connectors can be familiar constructs such as “invokes.”
• Useful C&C structures include:

– Service structure
• The units are services that interoperate with each other by service

coordination mechanisms such as SOAP.
• The service structure helps to engineer a system composed of components

that may have been developed anonymously and independently of each
other.

– Concurrency structure
• This structure helps determine opportunities for parallelism and the

locations where resource contention may occur.
• The units are components
• The connectors are their communication mechanisms.
• The components are arranged into logical threads.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Some Useful Allocation Structures

Deployment structure
• The deployment structure shows how software is assigned

to hardware processing and communication elements.
• The elements are software elements (usually a process

from a C&C view), hardware entities (processors), and
communication pathways.

• Relations are allocated-to, showing on which physical units
the software elements reside, and migrates-to if the
allocation is dynamic.

• This structure can be used to reason about performance,
data integrity, security, and availability.

• It is of particular interest in distributed and parallel
systems.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Some Useful Allocation Structures

Implementation structure
• This structure shows how software elements (usually modules) are

mapped to the file structure(s) in the system’s development,
integration, or configuration control environments.

• This is critical for the management of development activities and
build processes.

Work assignment structure
• This structure assigns responsibility for implementing and

integrating the modules to the teams who will carry it out.
• Having a work assignment structure be part of the architecture

makes it clear that the decision about who does the work has
architectural as well as management implications.

• The architect will know the expertise required on each team.
• This structure will also determine the major communication

pathways among the teams: regular teleconferences, wikis, email
lists, and so forth.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Relating Structures to Each Other

• Elements of one structure will be related to
elements of other structures, and we need to
reason about these relations.

– A module in a decomposition structure may be
manifested as one, part of one, or several
components in one of the component-and-
connector structures.

• In general, mappings between structures are
many to many.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Modules vs. Components

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Architectural Patterns

• Architectural elements can be composed in ways that solve particular
problems.
– The compositions have been found useful over time, and over many different

domains
– They have been documented and disseminated.
– These compositions of architectural elements, called architectural patterns.
– Patterns provide packaged strategies for solving some of the problems facing a

system.

• An architectural pattern delineates the element types and their forms of
interaction used in solving the problem.

• A common module type pattern is the Layered pattern.
– When the uses relation among software elements is strictly unidirectional, a

system of layers emerges.
– A layer is a coherent set of related functionality.
– Many variations of this pattern, lessening the structural restriction, occur in

practice.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Architectural Patterns

Common component-and-connector type patterns:

• Shared-data (or repository) pattern.
– This pattern comprises components and connectors that

create, store, and access persistent data.

– The repository usually takes the form of a (commercial)
database.

– The connectors are protocols for managing the data, such
as SQL.

• Client-server pattern.
– The components are the clients and the servers.

– The connectors are protocols and messages they share
among each other to carry out the system’s work.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Architectural Patterns

Common allocation patterns:
• Multi-tier pattern

– Describes how to distribute and allocate the components of a
system in distinct subsets of hardware and software, connected
by some communication medium.

– This pattern specializes the generic deployment (software-to-
hardware allocation) structure.

• Competence center pattern and platform pattern
– These patterns specialize a software system’s work assignment

structure.
– In competence center, work is allocated to sites depending on

the technical or domain expertise located at a site.
– In platform, one site is tasked with developing reusable core

assets of a software product line, and other sites develop
applications that use the core assets.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

What Makes a “Good” Architecture?

• There is no such thing as an inherently good
or bad architecture.

• Architectures are either more or less fit for
some purpose

• Architectures can be evaluated but only in the
context of specific stated goals.

• There are, however, good rules of thumb.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Process “Rules of Thumb”

• The architecture should be the product of a single architect or a small
group of architects with an identified technical leader.
– This approach gives the architecture its conceptual integrity and technical consistency.

– This recommendation holds for Agile and open source projects as well as “traditional”
ones.

– There should be a strong connection between the architect(s) and the development
team.

• The architect (or architecture team) should base the architecture on a
prioritized list of well-specified quality attribute requirements.

• The architecture should be documented using views. The views should
address the concerns of the most important stakeholders in support of the
project timeline.

• The architecture should be evaluated for its ability to deliver the system’s
important quality attributes.
– This should occur early in the life cycle and repeated as appropriate.

• The architecture should lend itself to incremental implementation,
– Create a “skeletal” system in which the communication paths are exercised but which at

first has minimal functionality.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Structural “Rules of Thumb”

• The architecture should feature well-defined modules whose functional
responsibilities are assigned on the principles of information hiding and
separation of concerns.
– The information-hiding modules should encapsulate things likely to change
– Each module should have a well-defined interface that encapsulates or

“hides” the changeable aspects from other software

• Unless your requirements are unprecedented your quality attributes
should be achieved using well-known architectural patterns and tactics
specific to each attribute.

• The architecture should never depend on a particular version of a
commercial product or tool. If it must, it should be structured so that
changing to a different version is straightforward and inexpensive.

• Modules that produce data should be separate from modules that
consume data.
– This tends to increase modifiability
– Changes are frequently confined to either the production or the consumption

side of data.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Structural “Rules of Thumb”

• Don’t expect a one-to-one correspondence between
modules and components.

• Every process should be written so that its assignment to a
specific processor can be easily changed, perhaps even at
runtime.

• The architecture should feature a small number of ways for
components to interact.
– The system should do the same things in the same way

throughout.
– This will aid in understandability, reduce development time,

increase reliability, and enhance modifiability.

• The architecture should contain a specific (and small) set of
resource contention areas, the resolution of which is clearly
specified and maintained.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Summary

• The software architecture of a system is the set of structures
needed to reason about the system, which comprise software
elements, relations among them, and properties of both.

• A structure is a set of elements and the relations among
them.

• A view is a representation of a coherent set of architectural
elements. A view is a representation of one or more
structures.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Summary

• There are three categories of structures:
– Module structures show how a system is to be structured as a set of code or data

units that have to be constructed or procured.

– Component-and-connector structures show how the system is to be structured as a
set of elements that have runtime behavior (components) and interactions
(connectors).

– Allocation structures show how the system will relate to nonsoftware structures in
its environment (such as CPUs, file systems, networks, development teams, etc.).

• Structures represent the primary engineering leverage points of an
architecture.

• Every system has a software architecture, but this architecture may
be documented and disseminated, or it may not be.

• There is no such thing as an inherently good or bad architecture.
Architectures are either more or less fit for some purpose.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

