Philadelphia University
Faculty of Eng. & Tech.
Department of Computer
Engineering

Second Semester 2018/2019

Date: - 26/3/2019

Allowed time:-50 minutes

Engineering Analysis (630262) First Exam

Student Name:- ID:-

Question:	Q1/25	Q2/25	Q3/25	Q4/25	Total/100
Points:					

Notes: All trigonometric functions are in radian scale.
Round your calculations to 4 significant digits

Question 1: Use Bisection method to approximate the root of the following equation using $x_s=2$ and $x_e=3$, with relative error $\varepsilon_{rel}<0.03$.

$$f(x) = 32e^{0.09x} - 39$$

Question 2: Use False position method to approximate the root of the following equation using $x_l=3.2$, and $x_u=5.2$ with absolute error $\varepsilon_{abs}<0.03$.

$$f(x) = \ln(3x + 1) - x^2 + 4x$$

Question 3: Apply three Newton-Raphson iterations to approximate the root of the following equation using $x_0=4.5$. 25 points

$$f(x) = x^2 \ln(x) - 5x$$

Question 4: Choose the correct answer for the following questions. 25 points

- 1-If x_7 is correct for 3 significant digits, then the relative error in x_7 is less than :
 - a) 5%

- b) 0.5%
- c) 0.05%
- d) None of the choices
- 2-Assume that the absolute error in x_4 is 0.1 , using bisection method, the absolute error in x_6 is:
- a) 0.05
- b) 0.025
- c) 0.0125
- d) Cannot be determined from the given
- 3-If $f(x) = \sin^2(x)$ then the simplified Newton-Raphson formula is:
- a) $x_{i+1} = x_i \frac{1}{2} \tan(x_i)$
- b) $x_{i+1} = x_i \frac{1}{2}\sin(x_i)$
- c). $x_{i+1} = x_i \frac{2\sin(x_i)\cos(x_i)}{\sin^2(x_i)}$
- d). None of the choices

Use the following matrices to answer questions (4) and (5)

$$[A] = \begin{bmatrix} a_{11} & 1 \\ 0 & a_{22} \\ 1 & -3 \\ 2 & 4 \end{bmatrix}$$

$$[A] = \begin{bmatrix} a_{11} & 1 \\ 0 & a_{22} \\ 1 & -3 \end{bmatrix} \qquad [B] = \begin{bmatrix} 3 & 1 & b_{13} \\ -2 & b_{22} & 4 \end{bmatrix} \qquad [C] = \begin{bmatrix} -1 & 1 \\ 3 & c_{22} \end{bmatrix}$$

$$[C] = \begin{bmatrix} -1 & 1\\ 3 & c_{22} \end{bmatrix}$$

- 4-Assume that [D]=[A][B] then $d_{31}=$

- 5-If $|\mathcal{C}|=5$ then $c_{22}=$
 - a) 1

b) 0

- c) -1
- d) None of the choices