

Question:	Q1/25	Q2/25	Q3/25	Q4/25	Total/100
Points:					

Notes: All trigonometric functions are in radian scale. Round your calculations to 4 significant digits

Question 1: Use Bisection method to approximate the root of the following equation using $x_{s}=2$ and $x_{e}=3$, with relative error $\varepsilon_{r e l}<0.03$.

25 points

$$
f(x)=32 e^{0.09 x}-39
$$

Question 2: Use False position method to approximate the root of the following equation using $x_{l}=3.2$, and $x_{u}=5.2$ with absolute error $\varepsilon_{a b s}<0.03$. 25 points

$$
f(x)=\ln (3 x+1)-x^{2}+4 x
$$

Question 3: Apply three Newton-Raphson iterations to
approximate the root of the following equation using $x_{0}=4.5$.
25 points

$$
f(x)=x^{2} \ln (x)-5 x
$$

Question 4: Choose the correct answer for the following questions.

1- If x_{7} is correct for 3 significant digits, then the relative error in x_{7} is less than :
a) 5%
b) 0.5%
C) 0.05%
d) None of the choices

2- Assume that the absolute error in x_{4} is 0.1 , using bisection method, the absolute error in x_{6} is:
a) 0.05
b) 0.025
C) 0.0125
d) Cannot be determined from the given

3- If $f(x)=\sin ^{2}(x)$ then the simplified Newton-Raphson formula is:
a) . $x_{i+1}=x_{i}-\frac{1}{2} \tan \left(x_{i}\right)$
b) . $x_{i+1}=x_{i}-\frac{1}{2} \sin \left(x_{i}\right)$
c) . $x_{i+1}=x_{i}-\frac{2 \sin \left(x_{i}\right) \cos \left(x_{i}\right)}{\sin ^{2}\left(x_{i}\right)}$
d). None of the choices

Use the following matrices to answer questions (4) and (5)
$[A]=\left[\begin{array}{cc}a_{11} & 1 \\ 0 & a_{22} \\ 1 & -3 \\ 2 & 4\end{array}\right]$

$$
[B]=\left[\begin{array}{ccc}
3 & 1 & b_{13} \\
-2 & b_{22} & 4
\end{array}\right] \quad[C]=\left[\begin{array}{cc}
-1 & 1 \\
3 & c_{22}
\end{array}\right]
$$

4- Assume that $[D]=[A][B]$ then $d_{31}=$
a) -2
b) 9
C) -10
d) Not defined

5-If $|C|=5$ then $c_{22}=$
a) 1
b) 0
C) -1
d) None of the choices

