
JavaScript Tutorial
JavaScript is the world's most popular programming language.

JavaScript is the programming language of the Web.

JavaScript is easy to learn.

Why Study JavaScript?
JavaScript is one of the 3 languages all web developers must learn:

 1. HTML to define the content of web pages

 2. CSS to specify the layout of web pages

 3. JavaScript to program the behavior of web pages

Commonly Asked Questions

• How do I get JavaScript?

• Where can I download JavaScript?

• Is JavaScript Free?

You don't have to get or download JavaScript.

JavaScript is already running in your browser on your computer, on

your tablet, and on your smart-phone.

JavaScript is free to use for everyone.

https://www.w3schools.com/html/default.asp
https://www.w3schools.com/css/default.asp

JavaScript Where To?

1) The <script> Tag

In HTML, JavaScript code is inserted between <script> and </script> tags.

Example

<script>

document.getElementById("demo").innerHTML = "My First JavaScript";

</script>

Old JavaScript examples may use a type attribute:
<script type="text/javascript">.

The type attribute is not required. JavaScript is the default scripting language in
HTML.

2) JavaScript in <head> or <body>

You can place any number of scripts in an HTML document.

Scripts can be placed in the <body>, or in the <head> section of an HTML page,

or in both.

3) JavaScript in <head>

In this example, a JavaScript function is placed in the <head> section of an

HTML page.

The function is invoked (called) when a button is clicked:

Example

<!DOCTYPE html>

<html>

<head>

<script>

function myFunction() {

 document.getElementById("demo").innerHTML = "Paragraph changed.";

}

</script>

</head>

<body>

<h2>Demo JavaScript in Head</h2>

<p id="demo">A Paragraph</p>
<button type="button" onclick="myFunction()">Try it</button>

</body>
</html>

4) JavaScript in <body>

In this example, a JavaScript function is placed in the <body> section of an

HTML page.

The function is invoked (called) when a button is clicked:

Example

<!DOCTYPE html>

<html>

<body>

<h2>Demo JavaScript in Body</h2>

<p id="demo">A Paragraph</p>

<button type="button" onclick="myFunction()">Try it</button>

<script>

function myFunction() {

 document.getElementById("demo").innerHTML = "Paragraph changed.";

}

</script>

</body>

</html>

Placing scripts at the bottom of the <body> element improves the display
speed, because script interpretation slows down the display.

5) External JavaScript

Scripts can also be placed in external files:

External file: myScript.js

function myFunction() {

 document.getElementById("demo").innerHTML = "Paragraph changed.";

}

External scripts are practical when the same code is used in many different web
pages.

JavaScript files have the file extension .js.

To use an external script, put the name of the script file in the src (source)

attribute of a <script> tag:

Example

<script src="myScript.js"></script>

You can place an external script reference in <head> or <body> as you like.

The script will behave as if it was located exactly where the <script> tag is

located.

External scripts cannot contain <script> tags.

External JavaScript Advantages

Placing scripts in external files has some advantages:

• It separates HTML and code
• It makes HTML and JavaScript easier to read and maintain

• Cached JavaScript files can speed up page loads

To add several script files to one page - use several script tags:

Example

<script src="myScript1.js"></script>

<script src="myScript2.js"></script>

JavaScript Syntax
JavaScript syntax is the set of rules, how JavaScript programs are

constructed:

// How to create variables:
var x;
let y;

// How to use variables:
x = 5;
y = 6;
let z = x + y;

✓ JavaScript Values

The JavaScript syntax defines two types of values:

• Fixed values
• Variable values

Fixed values are called Literals.

Variable values are called Variables.

✓ JavaScript Literals

The two most important syntax rules for fixed values are:

1. Numbers are written with or without decimals:

10.50

1001

2. Strings are text, written within double or single quotes:

"John Doe"
'John Doe'

✓ JavaScript Variables
In a programming language, variables are used to store data values.

JavaScript uses the keywords var, let and const to declare variables.

➢ An equal sign is used to assign values to variables.

In this example, x is defined as a variable. Then, x is assigned (given) the value

6:

let x;

x = 6;

✓ JavaScript Operators

JavaScript uses arithmetic operators (+ - * /) to compute values:

(5 + 6) * 10

JavaScript uses an assignment operator (=) to assign values to variables:

let x, y;
x = 5;
y = 6;

✓ JavaScript Expressions

An expression is a combination of values, variables, and operators, which
computes to a value.

The computation is called an evaluation.

For example, 5 * 10 evaluates to 50:

5 * 10

Expressions can also contain variable values:

x * 10

The values can be of various types, such as numbers and strings.

For example, "John" + " " + "Doe", evaluates to "John Doe":

"John" + " " + "Doe"

✓ JavaScript Keywords

JavaScript keywords are used to identify actions to be performed.

The let keyword tells the browser to create variables:

let x, y;

x = 5 + 6;

y = x * 10;

The var keyword also tells the browser to create variables:

var x, y;
x = 5 + 6;
y = x * 10;

In these examples, using var or let will produce the same result.
✓ JavaScript Comments
Not all JavaScript statements are "executed".

Code after double slashes // or between /* and */ is treated as a comment.

Comments are ignored, and will not be executed:

let x = 5; // I will be executed

// x = 6; I will NOT be executed

✓ JavaScript Identifiers / Names
Identifiers are JavaScript names.

Identifiers are used to name variables and keywords, and functions.

The rules for legal names are the same in most programming languages.

A JavaScript name must begin with:

• A letter (A-Z or a-z)
• A dollar sign ($)

• Or an underscore (_)

Subsequent characters may be letters, digits, underscores, or dollar signs.

Note

Numbers are not allowed as the first character in names.

This way JavaScript can easily distinguish identifiers from numbers.

✓ JavaScript is Case Sensitive

All JavaScript identifiers are case sensitive.

The variables lastName and lastname, are two different variables:

let lastname, lastName;

lastName = "Doe";

lastname = "Peterson";

JavaScript does not interpret LET or Let as the keyword let.

✓ JavaScript and Camel Case

Historically, programmers have used different ways of joining multiple words
into one variable name:

➢ Hyphens:

first-name, last-name, master-card, inter-city.

Hyphens are not allowed in JavaScript. They are reserved for

subtractions.

➢ Underscore:

first_name, last_name, master_card, inter_city.

➢ Upper Camel Case (Pascal Case):

FirstName, LastName, MasterCard, InterCity.

➢ Lower Camel Case:

JavaScript programmers tend to use camel case that starts with a

lowercase letter:

firstName, lastName, masterCard, interCity.

✓ JavaScript Character Set

JavaScript uses the Unicode character set.

Unicode covers (almost) all the characters, punctuations, and symbols in the

world.

JavaScript Variables…Extra Details

✓ 4 Ways to Declare a JavaScript Variable:

• Using var
• Using let
• Using const
• Using nothing

✓ What are Variables?

Variables are containers for storing data (storing data values).

In this example, x, y, and z, are variables, declared with the var keyword:

Example

var x = 5;

var y = 6;

var z = x + y;

In this example, x, y, and z, are variables, declared with the let keyword:

Example

let x = 5;

let y = 6;

let z = x + y;

In this example, x, y, and z, are undeclared variables:

Example

x = 5;

y = 6;

z = x + y;

From all the examples above, you can guess:

• x stores the value 5

• y stores the value 6
• z stores the value 11

✓ When to Use JavaScript var?

Always declare JavaScript variables with var, let, or const.

The var keyword is used in all JavaScript code from 1995 to 2015.

The let and const keywords were added to JavaScript in 2015.

If you want your code to run in older browsers, you must use var.

✓ When to Use JavaScript const?
If you want a general rule: always declare variables with const.

If you think the value of the variable can change, use let.

In this example, price1, price2, and total, are variables:

Example

const price1 = 5;

const price2 = 6;

let total = price1 + price2;

The two variables price1 and price2 are declared with the const keyword.

These are constant values and cannot be changed.

The variable total is declared with the let keyword.

This is a value that can be changed.

Just Like Algebra

Just like in algebra, variables hold values:

let x = 5;

let y = 6;

Just like in algebra, variables are used in expressions:

let z = x + y;

From the example above, you can guess that the total is calculated to be 11.

JavaScript Identifiers

All JavaScript variables must be identified with unique names.

These unique names are called identifiers.

Identifiers can be short names (like x and y) or more descriptive names (age,

sum, totalVolume).

The general rules for constructing names for variables (unique identifiers) are:

• Names can contain letters, digits, underscores, and dollar signs.

• Names must begin with a letter.
• Names can also begin with $ and _ (but we will not use it in this tutorial).

• Names are case sensitive (y and Y are different variables).
• Reserved words (like JavaScript keywords) cannot be used as names.

Note

JavaScript identifiers are case-sensitive.

The Assignment Operator

In JavaScript, the equal sign (=) is an "assignment" operator, not an "equal to"

operator.

This is different from algebra. The following does not make sense in algebra:

x = x + 5

In JavaScript, however, it makes perfect sense: it assigns the value of x + 5 to
x.

(It calculates the value of x + 5 and puts the result into x. The value of x is

incremented by 5.)

Note

The "equal to" operator is written like == in JavaScript.

JavaScript Data Types

JavaScript variables can hold numbers like 100 and text values like "John Doe".

In programming, text values are called text strings.

JavaScript can handle many types of data, but for now, just think of numbers
and strings.

Strings are written inside double or single quotes. Numbers are written without

quotes.

If you put a number in quotes, it will be treated as a text string.

Example

const pi = 3.14;

let person = "John Doe";

let answer = 'Yes I am!';

Declaring a JavaScript Variable

Creating a variable in JavaScript is called "declaring" a variable.

You declare a JavaScript variable with the var or the let keyword:

var carName;

or:

let carName;

After the declaration, the variable has no value (technically it is undefined).

To assign a value to the variable, use the equal sign:

carName = "Volvo";

You can also assign a value to the variable when you declare it:

let carName = "Volvo";

In the example below, we create a variable called carName and assign the value

"Volvo" to it.

Then we "output" the value inside an HTML paragraph with id="demo":

Example

<p id="demo"></p>

<script>

let carName = "Volvo";

document.getElementById("demo").innerHTML = carName;

</script>

One Statement, Many Variables

You can declare many variables in one statement.

Start the statement with let and separate the variables by comma:

Example

let person = "John Doe", carName = "Volvo", price = 200;

A declaration can span multiple lines:

Example

let person = "John Doe",

carName = "Volvo",

price = 200;

Value = undefined

In computer programs, variables are often declared without a value. The value
can be something that has to be calculated, or something that will be provided
later, like user input.

A variable declared without a value will have the value undefined.

The variable carName will have the value undefined after the execution of this

statement:

Example

let carName;

Re-Declaring JavaScript Variables

If you re-declare a JavaScript variable declared with var, it will not lose its

value.

The variable carName will still have the value "Volvo" after the execution of

these statements:

Example

var carName = "Volvo";

var carName;

JavaScript Arithmetic

As with algebra, you can do arithmetic with JavaScript variables, using
operators like = and +:

Example

let x = 5 + 2 + 3;

You can also add strings, but strings will be concatenated:

Example

let x = "John" + " " + "Doe";

Also try this:

Example

let x = "5" + 2 + 3;

Note

If you put a number in quotes, the rest of the numbers will be treated as
strings, and concatenated.

Now try this:

Example

let x = 2 + 3 + "5";

JavaScript Dollar Sign $

Since JavaScript treats a dollar sign as a letter, identifiers containing $ are valid
variable names:

Example

let $ = "Hello World";

let $$$ = 2;

let $myMoney = 5;

Using the dollar sign is not very common in JavaScript, but professional
programmers often use it as an alias for the main function in a JavaScript

library.

In the JavaScript library jQuery, for instance, the main function $ is used to

select HTML elements. In jQuery $("p"); means "select all p elements".

JavaScript Underscore (_)

Since JavaScript treats underscore as a letter, identifiers containing _ are valid
variable names:

Example

let _lastName = "Johnson";

let _x = 2;

let _100 = 5;

Using the underscore is not very common in JavaScript, but a
convention among professional programmers is to use it as an alias for

"private (hidden)" variables.

JavaScript Comments
JavaScript comments can be used to explain JavaScript code, and to make it

more readable.

JavaScript comments can also be used to prevent execution, when testing

alternative code.

Single Line Comments

Single line comments start with //.

Any text between // and the end of the line will be ignored by JavaScript (will

not be executed).

This example uses a single-line comment before each code line:

Example

// Change heading:

document.getElementById("myH").innerHTML = "My First Page";

// Change paragraph:

document.getElementById("myP").innerHTML = "My first paragraph.";

Multi-line Comments

Multi-line comments start with /* and end with */.

Any text between /* and */ will be ignored by JavaScript.

This example uses a multi-line comment (a comment block) to explain the
code:

Example

/*

The code below will change

the heading with id = "myH"

and the paragraph with id = "myP"

in my web page:

*/

document.getElementById("myH").innerHTML = "My First Page";

document.getElementById("myP").innerHTML = "My first paragraph.";

Using Comments to Prevent Execution

Using comments to prevent execution of code is suitable for code testing.

Adding // in front of a code line changes the code lines from an executable line

to a comment.

This example uses // to prevent execution of one of the code lines:

Example

//document.getElementById("myH").innerHTML = "My First Page";

document.getElementById("myP").innerHTML = "My first paragraph.";

JavaScript HTML DOM
With the HTML DOM, JavaScript can access and change all the elements of an HTML

document.

The HTML DOM (Document Object

Model)

When a web page is loaded, the browser creates a Document Object Model of
the page.

The HTML DOM model is constructed as a tree of Objects:

The HTML DOM Tree of Objects

With the object model, JavaScript gets all the power it needs to create dynamic
HTML:

• JavaScript can change all the HTML elements in the page
• JavaScript can change all the HTML attributes in the page

• JavaScript can change all the CSS styles in the page
• JavaScript can remove existing HTML elements and attributes

• JavaScript can add new HTML elements and attributes
• JavaScript can react to all existing HTML events in the page

• JavaScript can create new HTML events in the page

What You Will Learn

In the next chapters of this tutorial you will learn:

• How to change the content of HTML elements
• How to change the style (CSS) of HTML elements

• How to react to HTML DOM events
• How to add and delete HTML elements

What is the HTML DOM?

The HTML DOM is a standard object model and programming interface for
HTML. It defines:

• The HTML elements as objects

• The properties of all HTML elements
• The methods to access all HTML elements

• The events for all HTML elements

In other words: The HTML DOM is a standard for how to get, change, add,
or delete HTML elements.

JavaScript - HTML DOM Methods
HTML DOM methods are actions you can perform (on HTML Elements).

HTML DOM properties are values (of HTML Elements) that you can set or

change.

The DOM Programming Interface

The HTML DOM can be accessed with JavaScript (and with other programming
languages).

In the DOM, all HTML elements are defined as objects.

The programming interface is the properties and methods of each object.

A property is a value that you can get or set (like changing the content of an

HTML element).

A method is an action you can do (like add or deleting an HTML element).

Example

The following example changes the content (the innerHTML) of the <p> element

with id="demo":

Example

<html>

<body>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = "Hello World!";

</script>

</body>

</html>

In the example above, getElementById is a method, while innerHTML is

a property.

The getElementById Method

The most common way to access an HTML element is to use the id of the

element.

In the example above the getElementById method used id="demo" to find the

element.

The innerHTML Property

The easiest way to get the content of an element is by using
the innerHTML property.

The innerHTML property is useful for getting or replacing the content of HTML

elements.

The innerHTML property can be used to get or change any HTML element,

including <html> and <body>.

JavaScript HTML DOM Document
The HTML DOM document object is the owner of all other objects in your

web page.

The HTML DOM Document Object

The document object represents your web page.

If you want to access any element in an HTML page, you always start with
accessing the document object.

Below are some examples of how you can use the document object to access
and manipulate HTML.

Finding HTML Elements
Method Description

document.getElementById(id) Find an element by element id
document.getElementsByTagName(name) Find elements by tag name
document.getElementsByClassName(name) Find elements by class name

Changing HTML Elements
Property Description

element.innerHTML = new html content Change the inner HTML of an element
element.attribute = new value Change the attribute value of an HTML element
element.style.property = new style Change the style of an HTML element

Method Description
element.setAttribute(attribute, value) Change the attribute value of an HTML element

The HTML DOM allows JavaScript to change the content of HTML elements.

Changing HTML Content

The easiest way to modify the content of an HTML element is by using
the innerHTML property.

To change the content of an HTML element, use this syntax:

document.getElementById(id).innerHTML = new HTML

This example changes the content of a <p> element:

Example

<html>

<body>

<p id="p1">Hello World!</p>

<script>

document.getElementById("p1").innerHTML = "New text!";

</script>

</body>

</html>

Example explained:

• The HTML document above contains a <p> element with id="p1"

• We use the HTML DOM to get the element with id="p1"

• A JavaScript changes the content (innerHTML) of that element to "New

text!"

This example changes the content of an <h1> element:

Example

<!DOCTYPE html>
<html>

<body>

<h1 id="id01">Old Heading</h1>

<script>

const element = document.getElementById("id01");

element.innerHTML = "New Heading";

</script>

</body>

</html>

Example explained:

• The HTML document above contains an <h1> element with id="id01"

• We use the HTML DOM to get the element with id="id01"

• A JavaScript changes the content (innerHTML) of that element to "New

Heading"

Changing the Value of an Attribute

To change the value of an HTML attribute, use this syntax:

document.getElementById(id).attribute = new value

This example changes the value of the src attribute of an element:

Example

<!DOCTYPE html>

<html>

<body>

<script>

document.getElementById("myImage").src = "landscape.jpg";

</script>

</body>

</html>

Example explained:

• The HTML document above contains an element with id="myImage"
• We use the HTML DOM to get the element with id="myImage"
• A JavaScript changes the src attribute of that element from "smiley.gif"

to "landscape.jpg"

Dynamic HTML content

JavaScript can create dynamic HTML content:

Date : Sat May 20 2023 17:49:38 GMT+0300 (GMT+03:00)

Example

<!DOCTYPE html>

<html>

<body>

<script>

document.getElementById("demo").innerHTML = "Date : " + Date(); </script>

</body>

</html

document.write()

In JavaScript, document.write() can be used to write directly to the HTML

output stream:

Example

<!DOCTYPE html>

<html>

<body>

<p>Bla bla bla</p>

<script>

document.write(Date());

</script>

<p>Bla bla bla</p>

</body>

</html>

Never use document.write() after the document is loaded. It will overwrite the

document.

Adding and Deleting Elements
Method Description

document.createElement(element) Create an HTML element
document.removeChild(element) Remove an HTML element
document.appendChild(element) Add an HTML element
document.replaceChild(new, old) Replace an HTML element
document.write(text) Write into the HTML output stream

Adding Events Handlers
Method Description

document.getElementById(id).onclick =
function(){code}

Adding event handler code to an onclick event

The following HTML objects (and object collections) are also accessible:

• document.anchors

• document.body
• document.documentElement
• document.embeds

• document.forms
• document.head

• document.images
• document.links

• document.scripts
• document.title

JavaScript Introduction

This page contains some examples of what JavaScript can do.

✓ JavaScript Can Change HTML Content

One of many JavaScript HTML methods is getElementById().

The example below "finds" an HTML element (with id="demo"), and changes

the element content (innerHTML) to "Hello JavaScript":

https://www.w3schools.com/js/tryit.asp?filename=tryjs_doc_anchors
https://www.w3schools.com/js/tryit.asp?filename=tryjs_doc_body
https://www.w3schools.com/js/tryit.asp?filename=tryjs_doc_element
https://www.w3schools.com/js/tryit.asp?filename=tryjs_doc_embeds
https://www.w3schools.com/js/tryit.asp?filename=tryjs_doc_forms
https://www.w3schools.com/js/tryit.asp?filename=tryjs_doc_head
https://www.w3schools.com/js/tryit.asp?filename=tryjs_doc_images
https://www.w3schools.com/js/tryit.asp?filename=tryjs_doc_links
https://www.w3schools.com/js/tryit.asp?filename=tryjs_doc_scripts
https://www.w3schools.com/js/tryit.asp?filename=tryjs_doc_title

Example

document.getElementById("demo").innerHTML = "Hello JavaScript";

JavaScript accepts both double and single quotes:

Example

document.getElementById('demo').innerHTML = 'Hello JavaScript';

✓ JavaScript Can Change HTML Styles

(CSS)

Changing the style of an HTML element, is a variant of changing an HTML
attribute:

Example

document.getElementById("demo").style.fontSize = "35px";

✓ JavaScript Can Hide HTML Elements

Hiding HTML elements can be done by changing the display style:

Example

document.getElementById("demo").style.display = "none";

✓ JavaScript Can Show HTML Elements

Showing hidden HTML elements can also be done by changing
the display style:

Example

document.getElementById("demo").style.display = "block";

JavaScript HTML DOM Elements

Finding HTML Elements

Often, with JavaScript, you want to manipulate HTML elements.

To do so, you have to find the elements first. There are several ways to do this:

• Finding HTML elements by id
• Finding HTML elements by tag name

• Finding HTML elements by class name
• Finding HTML elements by CSS selectors

• Finding HTML elements by HTML object collections

Finding HTML Element by Id

The easiest way to find an HTML element in the DOM, is by using the element
id.

This example finds the element with id="intro":

Example

const element = document.getElementById("intro");

If the element is found, the method will return the element as an object (in
element).

If the element is not found, element will contain null.

Finding HTML Elements by Tag Name

This example finds all <p> elements:

Example

const element = document.getElementsByTagName("p");

This example finds the element with id="main", and then finds all <p> elements

inside "main":

Example

const x = document.getElementById("main");

const y = x.getElementsByTagName("p");

Finding HTML Elements by Class Name

If you want to find all HTML elements with the same class name,
use getElementsByClassName().

This example returns a list of all elements with class="intro".

Example

const x = document.getElementsByClassName("intro");

Finding HTML Elements by CSS Selectors

If you want to find all HTML elements that match a specified CSS selector (id,
class names, types, attributes, values of attributes, etc), use
the querySelectorAll() method.

This example returns a list of all <p> elements with class="intro".

Example

const x = document.querySelectorAll("p.intro");

Finding HTML Elements by HTML Object

Collections

This example finds the form element with id="frm1", in the forms collection,

and displays all element values:

Example

const x = document.forms["frm1"];

let text = "";

for (let i = 0; i < x.length; i++) {

 text += x.elements[i].value + "
";

}

document.getElementById("demo").innerHTML = text;

JavaScript Functions
A JavaScript function is a block of code designed to perform a particular task.

A JavaScript function is executed when "something" invokes it (calls it).

Example

// Function to compute the product of p1 and p2

function myFunction(p1, p2) {

 return p1 * p2;

}

JavaScript Function Syntax

A JavaScript function is defined with the function keyword, followed by

a name, followed by parentheses ().

Function names can contain letters, digits, underscores, and dollar signs (same
rules as variables).

The parentheses may include parameter names separated by commas:
(parameter1, parameter2, ...)

The code to be executed, by the function, is placed inside curly brackets: {}

function name(parameter1, parameter2, parameter3) {

 // code to be executed

}

Function parameters are listed inside the parentheses () in the function
definition.

Function arguments are the values received by the function when it is

invoked.

Inside the function, the arguments (the parameters) behave as local variables.

Function Invocation

The code inside the function will execute when "something" invokes (calls) the
function:

• When an event occurs (when a user clicks a button)
• When it is invoked (called) from JavaScript code

• Automatically (self invoked)

Function Return

When JavaScript reaches a return statement, the function will stop executing.

If the function was invoked from a statement, JavaScript will "return" to
execute the code after the invoking statement.

Functions often compute a return value. The return value is "returned" back to
the "caller":

Example

Calculate the product of two numbers, and return the result:

// Function is called, the return value will end up in x

let x = myFunction(4, 3);

function myFunction(a, b) {

// Function returns the product of a and b

 return a * b;

}

Why Functions?

With functions you can reuse code

You can write code that can be used many times.

You can use the same code with different arguments, to produce different

results.

The () Operator

The () operator invokes (calls) the function:

Example

Convert Fahrenheit to Celsius:

function toCelsius(fahrenheit) {

 return (5/9) * (fahrenheit-32);

}

let value = toCelsius(77);

Accessing a function with incorrect parameters can return an incorrect answer:

Example

function toCelsius(fahrenheit) {

 return (5/9) * (fahrenheit-32);

}

let value = toCelsius();

Accessing a function without () returns the function and not the function result:

Example

function toCelsius(fahrenheit) {

 return (5/9) * (fahrenheit-32);

}

let value = toCelsius;

Note

As you see from the examples above, toCelsius refers to the function object,

and toCelsius() refers to the function result.

Functions Used as Variable Values

Functions can be used the same way as you use variables, in all types of
formulas, assignments, and calculations.

Example

Instead of using a variable to store the return value of a function:

let x = toCelsius(77);

let text = "The temperature is " + x + " Celsius";

You can use the function directly, as a variable value:

let text = "The temperature is " + toCelsius(77) + " Celsius";

Local Variables

Variables declared within a JavaScript function, become LOCAL to the function.

Local variables can only be accessed from within the function.

Example

// code here can NOT use carName

function myFunction() {

 let carName = "Volvo";

 // code here CAN use carName

}

// code here can NOT use carName

Since local variables are only recognized inside their functions, variables with
the same name can be used in different functions.

Local variables are created when a function starts, and deleted when the
function is completed.

JavaScript Events
HTML events are "things" that happen to HTML elements.

When JavaScript is used in HTML pages, JavaScript can "react" on these

events.

HTML Events

An HTML event can be something the browser does, or something a user does.

Here are some examples of HTML events:

• An HTML web page has finished loading
• An HTML input field was changed

• An HTML button was clicked

Often, when events happen, you may want to do something.

JavaScript lets you execute code when events are detected.

HTML allows event handler attributes, with JavaScript code, to be added to

HTML elements.

With single quotes:

<element event='some JavaScript'>

With double quotes:

<element event="some JavaScript">

In the following example, an onclick attribute (with code), is added to

a <button> element:

Example

<button onclick="document.getElementById('demo').innerHTML = Date()">The

time is?</button>

In the example above, the JavaScript code changes the content of the element
with id="demo".

In the next example, the code changes the content of its own element
(using this.innerHTML):

Example

<button onclick="this.innerHTML = Date()">The time is?</button>

JavaScript code is often several lines long. It is more common to see event
attributes calling functions:

Example

<button onclick="displayDate()">The time is?</button>

Common HTML Events
Event Description

onchange An HTML element has been changed
onclick The user clicks an HTML element
onmouseover The user moves the mouse over an HTML

element
onmouseout The user moves the mouse away from an HTML

element
onkeydown The user pushes a keyboard key
onload The browser has finished loading the page

JavaScript Event Handlers

Event handlers can be used to handle and verify user input, user actions, and
browser actions:

• Things that should be done every time a page loads
• Things that should be done when the page is closed

• Action that should be performed when a user clicks a button
• Content that should be verified when a user inputs data

• And more ...

Many different methods can be used to let JavaScript work with events:

• HTML event attributes can execute JavaScript code directly

• HTML event attributes can call JavaScript functions
• You can assign your own event handler functions to HTML elements

• You can prevent events from being sent or being handled
• And more ...

JavaScript Output

JavaScript Display Possibilities

JavaScript can "display" data in different ways:

• Writing into an HTML element, using innerHTML.
• Writing into the HTML output using document.write().
• Writing into an alert box, using window.alert().
• Writing into the browser console, using console.log().

Using innerHTML

To access an HTML element, JavaScript can use
the document.getElementById(id) method.

The id attribute defines the HTML element. The innerHTML property defines the

HTML content:

Example

<!DOCTYPE html>

<html>

<body>

 <h1>My First Web Page</h1>

 <p>My First Paragraph</p>

 <p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = 5 + 6;

</script>

</body>

</html>

Changing the innerHTML property of an HTML element is a common way to
display data in HTML.

Using document.write()

For testing purposes, it is convenient to use document.write():

Example

<!DOCTYPE html>

<html>

<body>

 <h1>My First Web Page</h1>

 <p>My first paragraph.</p>

<script>

document.write(5 + 6);

</script>

</body>

</html>

Using document.write() after an HTML document is loaded, will delete all
existing HTML:

Example

<!DOCTYPE html>

<html>

<body>

 <h1>My First Web Page</h1>

 <p>My first paragraph.</p>

<button type="button" onclick="document.write(5 + 6)">Try it</button>

</body>

</html>

The document.write() method should only be used for testing.

Using window.alert()

You can use an alert box to display data:

Example

<!DOCTYPE html>

<html>

<body>

<h1>My First Web Page</h1>

<p>My first paragraph.</p>

<script>

window.alert(5 + 6);

</script>

</body>

</html>

You can skip the window keyword.

In JavaScript, the window object is the global scope object. This means that

variables, properties, and methods by default belong to the window object. This
also means that specifying the window keyword is optional:

Example

<!DOCTYPE html>

<html>

<body>

<h1>My First Web Page</h1>

<p>My first paragraph.</p>

<script>

alert(5 + 6);

</script>

</body>

</html>

Using console.log()

For debugging purposes, you can call the console.log() method in the browser

to display data.

You will learn more about debugging in a later chapter.

Example

<!DOCTYPE html>

<html>

<body>

<script>

console.log(5 + 6);

</script>

</body>

</html>

JavaScript Print

JavaScript does not have any print object or print methods.

You cannot access output devices from JavaScript.

The only exception is that you can call the window.print() method in the

browser to print the content of the current window.

Example

<!DOCTYPE html>

<html>

<body>

<button onclick="window.print()">Print this page</button>

</body>

</html>

