
Programming Fundamentals 1

Loop - Repetition
structure

Programming Fundamentals 2

Loop - Repetition structure

Topics to cover here:

• Introduction to Repetition

• FOR .. DO Statement

• WHILE .. DO Statement

• DO .. WHILE Statement

• Nested Loops

• BREAK and CONTINUE Statements

Programming Fundamentals 3

Repetition: An Introduction

• You can repeat many steps in an algorithm.

• Repetition of a sequence of steps in an algorithm is

called a loop.

• Types of loops:

- Counter-controlled loops

(e.g. WHILE..DO, FOR..DO, DO..WHILE)

- Conditional loops (e.g. WHILE..DO, DO..WHILE)

Programming Fundamentals 4

int sum ;

sum = 1+2+3+4+5+……..+10 ;

cout << sum ;

Example

Programming Fundamentals 5

Find the Sum of the first 100 Integer

starting from 1

Programming Fundamentals 6

Counter-Controlled Loop
• The repetition of this loop is controlled by a loop control

variable (lcv) whose value represents a count.

• This type of loops is used when you can determine prior to
loop execution exactly how many loop repetitions will be
needed to solve a problem.

• The lcv should be incremented as the final statement of
the loop.

• NOTE:

All types of repetition statements could be used as
counter-controlled loops. The FOR statement is based
suited for this type of looping.

Programming Fundamentals 7

FOR Statement

• It could be an increasing loop or decreasing loop.

• Syntax for the increasing loop:
FOR (lcv  initial_value TO final_value [BY increment_value]) DO

Statements

END FOR

where, lcv is the loop control variable, and the part [BY increment] is

optional (it is omitted if it is 1).

Programming Fundamentals 8

FOR .. DO Statement .. Cont.

• Semantics:

The execution of this statement is as follows

1- The lcv is set to initial_value

2- lcv is checked with final_value

- if it is less than or equal, then

* statements are executed

* the lcv is incremented by increment_value

* repeat the process from step (2)

- else, goto the rest of the algorithm

These steps are shown in the following flowchart:

Programming Fundamentals 9

FOR .. DO Statement .. Cont.

lcv  final_value

Statements

lcv  initial_value

continue

False

True

lcv  lcv + increment_value

Programming Fundamentals 10

FOR .. DO Statement .. Cont.

• Syntax for the decreasing loop:

FOR (lcv  final_value DOWNTO initial_value [BY decrement_value]) DO

Statements

END FOR

• The lcv is initialized to the final_value and consequentially will take values up
to the initial_value. The lcv is decremented in each step by the
decrement_value.

Programming Fundamentals 11

Examples

• Example 1

Write an algorithm that print the first 10 positive

integer numbers

•Analysis Stage:

- Problem Input:

The 10 integers are generated by the algorithm

- Problem Output:

The first 10 positive integers

Programming Fundamentals 12

Example 1 .. Cont.

• Algorithm Design:

ALGORITHM Print

Begin

FOR (I  1 TO 10) DO // here, increment by 1

OUTPUT I, “ “

END FOR

END print

Programming Fundamentals 13

Example 1.. Cont.

• Testing the Algorithm

I (I ≤ 5) The output:

1 True 12345678910

2 True

3 True

4 True

5 True

6 True

7 True

8 True

9 True
10 True
11 False (Stop)

Programming Fundamentals 14

For Statement in C++

• Syntax

for (initialization; test expression; update)

Statements

where,

- initialization is to initialize the loop control

variable (lcv)

- test expression is the condition that will stop the

loop

- update is the increment to the lcv (in case of

increasing loop) or decrement to the lcv (in case of

decreasing loop)

Programming Fundamentals 15

Example 1: C++ Program

#include <iostream>

using namespace std;

void main ()

{

int I;

for(I = 1;I<= 10;I++)

cout << I<<“ “ endl;

}

Programming Fundamentals 16

• Exercise

Modify the above Example so that it prints

the numbers from 1 to n.

• Modify the above Example so that it prints

the numbers from m to n.

Programming Fundamentals 17

Example2

Write an algorithm that finds the sum of the
first 5 positive integer numbers

•Analysis Stage:

- Problem Input:

The 5 integers are generated by the
algorithm

- Problem Output:

The sum of the first 5 positive integers

Programming Fundamentals 18

Example 2 .. Cont.

• Algorithm Design:

ALGORITHM SumOfIntegers

Begin

sum  0

FOR (I  1 TO 5) DO // here,
increment by 1

sum  sum + I

END FOR

OUTPUT “ Sum = “, sum

END SumOfIntegers

Programming Fundamentals 19

Example 2.. Cont.

• Testing the Algorithm

sum I (I ≤ 5) The output:

0
1

True
1

2
True

3
3

True
6

4
True

10
5

True
15

6
False (Stop)

sum = 15

Programming Fundamentals 20

Example 2: C++ Program

#include <iostream>

using namespace std;

void main ()

{ int I, sum = 0;

for (I = 1; I < =5; I++) // here, increment by 1

sum = sum + I;

cout << “ Sum = “ << sum << endl;

}

Programming Fundamentals 21

• Exercise

Modify the above example so that it finds

the sum of any 10 integers.

Programming Fundamentals 22

WHILE Statement

• Syntax:

In pseudo code In C++

lcv  initial value

WHILE (logical expression) DO

Statements

lcv  lcv+1

END WHILE

Lcv=initial value;

WHILE (logical expression)

{

Statements;

lcv = lcv+1;

}

Programming Fundamentals 23

Example 3

Write an algorithm that finds the product of
odd numbers among the first 6 positive
integers.

• Analysis Stage:

- Problem Input:

The first 6 integers are generated by the

algorithm

- Problem Output:

The product of the odd integers

Programming Fundamentals 24

Example 3 .. Cont.

• Algorithm Design:

ALGORITHM product_Odd

Begin

p  1

I  1

while (I≤ 6) do

p p * I

I=I+2

END while

OUTPUT “ product = “, p

END product_Odd

Programming Fundamentals 25

Example 3 .. Cont.

• Testing the Algorithm

p I (I ≤ 6) The output:

1
1

True
1

3
True

3
5

True
15

7
False (Stop)

product = 15

Programming Fundamentals 26

Example 3: C++ Program

/* The program finds the sum of the odd numbers among the first 6
positive integers. */

#include <iostream>

using namespace std;

void main ()

{ int i, p = 1 ;

i =1

while (i <=6)

{

p *= i ;

i += 2;

}

cout << “ product = “ << p << endl;

}

Programming Fundamentals 27

Example 4

Write an algorithm that reads 10 numbers and finds the

maximum and minimum numbers among them.

• Analysis Stage:

Use a loop to read the 10 numbers one by one and test it for

maximum and minimum.

- Problem Input:

Ten numbers to be read repeatedly.

- Problem Output:

maximum, minimum

- Criteria

Let max and min equal the first number in the sequence

Programming Fundamentals 28

Example 4 .. Cont.
• Algorithm Design:

ALGORITHM MaxMin

Begin

OUTPUT “ Enter a number: ”

INPUT n

max  n

min  n

I  2

while (I≤10) DO

OUTPUT “ Enter a number: ”

INPUT n

IF (n > max) THEN

max  n

END IF

IF (n < min) THEN

min  n

END IF

II+1

END while

OUTPUT “ Max = “ , max, “ Min = “ , min

END MaxMin

Programming Fundamentals 29

Example 4 .. Cont.
• Testing the Algorithm (for 4 numbers only)

I (I ≤4) n max min (n>max) (n<min) The output:
Enter a number:

5
5

5
2 True

Enter a number:
7

True
7

False
3 True

Enter a number:
2

False
True

2
4 True

Enter a number:
9

True
9

False
5 False (stop)

Max = 9 Min = 2

Programming Fundamentals 30

Example 4: C++ Program

#include <iostream>

using namespace std;

void main ()

{ int I, n, max, min;

cout << “ Enter a number: ” ;

cin >> n ;

max = n ; min = n ;

I = 2;

for (I <= 10)

{ cout << “ Enter a number: ” ;

cin >> n ;

if (n > max)

max = n ;

if (n < min)

min = n ;

I++

}

cout << “ Max = “<< max<< “ Min = “<< min<< endl;

}

Programming Fundamentals 31

Conditional Loops
• Such loops are used when you cannot determine the exact

number of loop repetitions before loop execution begins.

• The number of repetitions may depend on some aspects

of the data that is not known before the loop is entered but

that usually can be stated by a condition.

• The condition value should be modified inside the loop to

ensure loop termination.

• NOTE:

The WHILE .. DO statement and DO .. WHILE

statement are best suited for this type of looping.

Programming Fundamentals 32

WHILE Statement
• Syntax:

WHILE (logical expression) DO

Statements

END WHILE

• Semantics:

The execution of this statement is shown as in the

following flowchart:

Programming Fundamentals 33

WHILE Statement Execution

Programming Fundamentals 34

While Statement in C++

Syntax:

while (logical expression)

statements;

where statements could be one or more statements
enclosed by braces { and }

Semantics:

This statement has the same meaning as in the
algorithmic language.

Programming Fundamentals 35

An Example on Conditional Loops
• Example 1:

Write an algorithm that reads a sequence of integer numbers
and finds the product of the numbers as long they are positive.

• Analysis Stage:

- Problem Input:

a sequence of integers

- Problem Output:

The product of the positive integers

- Criteria:

Any negative number will stop looping

Programming Fundamentals 36

Example 1 .. Cont.
• Algorithm Design:

ALGORITHM Multiplying

Begin

product  1

OUTPUT “ Enter first number: “

INPUT number

WHILE (number > 0) DO

product  product * number

OUTPUT “ Enter next number: “

INPUT number

END WHILE

OUTPUT “ The product is “ , product

END Multiplying

Programming Fundamentals 37

Example 1 .. Cont.
• Testing the Algorithm

product number (number > 0) The output:

1 Enter first number:

2

True

2

Enter next number:

5

True

10

Enter next number:

7

True

70

Enter next number:

-3 False (stop)

The product is 70

Programming Fundamentals 38

Example 1: C++ Program

#include <iostream>

using namespace std;

void main ()

{

int number, product;

product = 1 ;

cout << “ Enter first number: “ ;

cin >> number

while (number > 0)

{ product = product * number ;

cout << “ Enter next number; to end enter any negative number “ ;

cin >> number ;

}

cout << “ The product is “ << product << endl;

}

Programming Fundamentals 39

Sentinel-Controlled Loops
• This type of loops is used when you don’t know exactly how

many data items a loop will process before it begins execution.

• One way to handle this situation is to instruct the user to enter

a unique data value, called a sentinel value, as the last data

item.

• The sentinel value should be carefully chosen and must be a

value that cannot possibly occur data.

• NOTE:

The WHILE .. DO statement and DO .. WHILE

statement are can be used for this type of looping.

Programming Fundamentals 40

An Example on Sentinel-Controlled Loops
• Example 2:

Write an algorithm that sums up the student’s exam scores by
using sentinel-controlled loop.

• Analysis Stage:

You must choose a sentinel value that could not be a student’s
score (say, -1)

- Problem Input:

a sequence of student’s exam scores that ends with -1

- Problem Output:

The sum of the scores

- Criteria:

the input -1 will stop looping

Programming Fundamentals 41

Example 2 .. Cont.

• Algorithm Design:

ALGORITHM Scores

Begin

sum  0

OUTPUT “Enter a score: “

INPUT score

WHILE (score ≠ -1) DO

sum  sum + score

OUTPUT “Enter the next score, to end enter -1: “

INPUT score

END WHILE

OUTPUT “ The sum is “ , sum

END Score

Programming Fundamentals 42

Example 2 .. Cont.
• Testing the Algorithm

sum score (score ≠ -1) The output:

0

Enter a score:

60

True

60

Enter the next score, to end enter -1:
75

True

135

Enter the next score, to end enter -1:

80

True

215

Enter the next score, to end enter -1:

-1

False (stop)

The sum is 215

Programming Fundamentals 43

Example 2: C++ Program
#include <iostream>

using namespace std;

void main ()

{ int sum = 0 , score ;

cout << “Enter a score: “ ;

cin >> score ;

while (score != -1)

{

sum =- sum + score ;

cout << “Enter the next score, to end enter -1: “ ;

cin >> score ;

}

cout << “ The sum is “ << sum << endl ;

}

Programming Fundamentals 44

• Exercise

Modify the above example so that it

calculates the average of the exam

scores.

Programming Fundamentals 45

For and While loop executes

zero or more times.

What if we want the loop to

execute at least one time?

Programming Fundamentals 46

do-while
Do while loop execute on or more times

Programming Fundamentals 47

do-while loop

47

Syntax:

The semantics (execution) of this statement:

The statements are evaluated first, then the condition is tested. If the

condition is true, the process is repeated until the condition become false.

•This statement is executed at least once.

In pseudo code In C++

DO

Statements

WHILE (condition)

do

{

statements ;

}

while (condition) ;

Programming Fundamentals 48

Flow chart for do-while loop

Programming Fundamentals 49

do-while loop

49

Example 1:
Write an algorithm that reads a sequence of integer numbers and
finds the product of the numbers as long they are positive.

Programming Fundamentals 50

Example

#include <iostream>

using namespace std;

void main ()

{

int number, product;

product = 1 ;

do

{

cout << “ Enter positive number” ;

cin >> number

product = product * number ;

} while (number > 0) ;

cout << “ The product is “ << product << endl;

}

Programming Fundamentals 51

Nested Loops

• When you write a loop inside another loop, then it is
called a nested loop.

• You can use FOR loop inside another FOR loop

• You can use WHILE loop inside a FOR loop or vise
versa.

Programming Fundamentals 52

Example of Nested Loops

• Example:

Write an algorithm that prints the following

figure by printing one “*” each time. Use

nested loops.

*

* *

* * *

* * * *

* * * * *

Programming Fundamentals 53

Example of Nested Loops

• Algorithm Design:

ALGORITHM Stars

Begin

FOR (I  1 TO 5) DO

FOR (J  1 TO I) DO

OUTPUT “ * “ , “ “

END FOR

OUTPUT “\n”

END FOR

END Stars

Programming Fundamentals 54

Example : C++ Program

/* The program prints a figure of stars by using nested
loops to print one “*” at a time. */

#include <iostream>

using namespace std;

void main ()

{ int I, J;

for (I = 1; I <= 5 ; I++)

for (J = 1; J <= I ; J++)

cout << “ * “ << “ “ ;

cout << endl ;

}

Programming Fundamentals 55

The BREAK and CONTINUE Statements in Loops

• The BREAK Statement

• Use BREAK to leave the loop even if the condition for its
end is not achieved.

• Example

FOR (n  10 DOWNTO 0 BY -1) DO

OUTPUT n * 2 , “ , “

IF (n = 4) THEN

OUTPUT “ Loop Aborted”

BREAK

END IF

END FOR

The output is: 20, 18, 16, 14, 12, 10, 8, Loop Aborted

Programming Fundamentals 56

The BREAK and CONTINUE Statements in Loops

• The CONTINUE Statement

• This statement causes the program to skip the rest of the loop in
the present iteration as if the end of the statement block would
have been reached, causing it to jump to the following iteration.

• Example

FOR (n  1 TO 10) DO

IF (n = 5) THEN

CONTINUE

END IF

OUTPUT n , “, ”

END FOR

OUTPUT “ Finished “

• The output is: 1, 2, 3, 4, 6, 7, 8, 9, 10, Finished

